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Abstract
As time series datasets are growing in size, data reduction approaches like PAA and SAX are used to keep them storable and
analyzable. Yet, finding the right trade-off between data reduction and remaining utility of the data is a challenging problem.
So far, it is either done in a user-driven way and offloaded to the analyst, or it is determined in a purely data-driven, automated
way. None of these approaches take the analytic task to be performed on the reduced data into account. Hence, we propose a
task-driven parametrization of PAA and SAX through a parameter space visualization that shows the difference of progressively
running a given analytic computation on the original and on the reduced data for a representative set of data samples. We
illustrate our approach in the context of climate analysis on weather data and exoplanet detection on light curve data.

CCS Concepts
• Human-centered computing → Visual analytics; • Applied computing → Astronomy; Environmental sciences;

1. Introduction

Time series data is ubiquitous as it is being collected by many sen-
sors found in modern environments. Yet, analyzing these data is of-
ten time-consuming due to the vast number of measurements col-
lected and the large value ranges that individual data points can
cover. To nevertheless gain timely insights into such data, ana-
lysts often use data reduction methods to increase analytic through-
put [SAAF18]. One approach for instance is reducing the temporal
resolution of the data by aggregating data segments by their mean
using a Piecewise Aggregate Approximation (PAA) [KCPM01].
Another approach is to reduce the resolution of the measured val-
ues, for instance by aggregating value ranges to symbolic values
using Symbolic Aggregate approXimation (SAX) [LKLC03].

Both reduction methods are widely used for analyzing time se-
ries data [WLCB19]. However, while reducing the amount of pro-
cessed data increases the performance of analysis algorithms, it
at the same time decreases the accuracy of the results. Address-
ing this trade-off has been the focus of previous work, proposing
user-driven, manual approaches and data-driven, automated ap-
proaches to find suitable parametrizations for PAA and SAX.

User-driven approaches ask the analysts to set the parameters
based on their domain knowledge and expertise. The data is then re-
duced using these user-defined parameters. In some cases, the result
is then being shown to allow the analysts to readjust the parameters
in a trial&error fashion until the output fits their expectation. Visual
analytic tools employing this approach are, for example, Grammar-
Viz [SLW∗14] and ARC-VIEW [NNW14].

Data-driven approaches rely on measures derived from the input
dataset to determine suitable parameters for their reduction with-
out any user input. These measures include descriptive statistics
like standard deviation and frequency distributions, but also more
elaborate characteristics like complexity estimates [CA15, ZY17].
The quality of these approaches is usually evaluated with a classifi-
cation task on a standard benchmark dataset [BLB∗17]. That other
tasks – e.g., correlation or trend analyses – might benefit from other
parametrizations seems not to be considered in these evaluations.

In this work, we fill this gap with a task-driven, semi-automated
approach to the parametrization of PAA and SAX. To this end, we
compute for different parameter combinations the discrepancy be-
tween the outputs of computational analyses being run on samples
of the raw data and of the reduced data. Depending on the ana-
lytic task, a different computational analysis will be run – e.g., for
finding periodicities, the greatest periodicity is computed, while for
establishing trends a regression analysis is carried out. Visualizing
the resulting discrepancies for the different parameter configura-
tions allows the analyst to make an informed choice with respect to
the gain from the data reduction and the loss from the error incurred
specifically for the particular task at hand. To cope with the rather
long runtimes for computing these discrepancies for many different
parameter combinations, we employ a progressive computation that
generates outputs of increasing quality and quantity [ASSS18]. We
demonstrate this approach on two analysis tasks: finding periodic
patterns in light intensity data to identify exoplanets, and analyzing
trends in weather data to characterize local climates.
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2. A Task-based Parametrization for PAA and SAX

The Symbolic Aggregate approXimation (SAX) and the Piece-
wise Aggregate Approximation (PAA) are usually used in con-
cert by applying the SAX transformation on top of the PAA:
sax(paa(D,ω),α), with D denoting the initial dataset.

The function paa(D,ω) reduces the number of time points in a
dataset [KCPM01]. To do so, it takes time series data of arbitrary
length and splits it into equal-sized segments of length ω, for which
the mean value is computed and used instead of the individual val-
ues of that segment. Thus, PAA reduces the temporal resolution
of the dataset. For example, by setting ω = 2, the aggregated data
produced by PAA is only half of the original data size.

The function sax(D,α) reduces the possible values the time se-
ries can take on to a set of symbols [LKLC03]. To do so, it dis-
cretizes time series by mapping intervals of continuous data values
to a discrete alphabet. These intervals are regions of equal proba-
bility from a normal distribution fitted around the mean of the data.
The number of intervals and therefore the number of symbols in the
output alphabet is the parameter α passed to the algorithm. Thus,
SAX reduces the resolution of the values at each time point of the
dataset. For example, setting α = 3 will map all data values onto
a 3-letter alphabet: high values to the letter a, values around the
mean to the letter b, and low values to the letter c.

While value intervals used in the original SAX transforma-
tion [LKLC03] assume a normal distribution of the data, this is
hardly true in general. Multiple approaches have been proposed to
better reflect arbitrary distributions by, for example, including min
and max measures in the computation to more accurately capture
local patterns and trends [LYK06, MGQT13]. We utilize adaptive
SAX (aSAX) [PLD10] to improve the fit of the symbolized repre-
sentation to the data. It does so by computing the interval bound-
aries using representatives produced by Lloyd’s algorithm [Llo82],
basically performing a 1D k-means clustering of the value range.

2.1. Computing and Using the Task-based Error Measure

To determine the utility of the dataset after differently parametrized
PAA and SAX transformations, we captured the analytic task by the
computational function f – e.g., estimating a trend using regression
analysis. Computing this function yields a numerical result f (D)
– e.g., the slope of the regression line. We can then compare the
results generated on the original data f (D) and on the reduced data
f (sax(paa(D,ω),α) to determine how much error was introduced
by the data reduction with parameters ω and α. Note that in order
to apply f to the symbolic representation, we need to transform it
back into numbers – e.g., by using the mean values of the intervals.

We represent the resulting error measures in a matrix visualiza-
tion, where each column represents a PAA segment size ω and each
row represents a SAX alphabet size α. Here we use 1≤ω≤ 15 and
3≤ α≤ 20 as potentially suitable parameter combinations, but any
other parameter space size would also work. Each cell in the matrix
shows the error measure on a continuous color scale (see Figures 1
and 3), where the smallest difference and thus the highest quality
maps to the brightest color, and the biggest difference and thus the
worst quality maps to the darkest color.

2.2. Progressive Parameter Space Visualization

Generating the matrix visualization for all parameter combinations
and for the full dataset requires extensive computational efforts that
are not achievable in reasonable time. One solution to this problem
is not to wait for such exhaustive result to come back, but to visu-
alize early partial results computed on subsets of the data that are
then refined over time. This approach is known as Progressive Vi-
sual Analytics (PVA) [SPG14,MSA∗19], and allows users to make
decisions about the analysis early on by steering the computation
towards regions of interest as these emerge [WM04, BEF17]. We
use PVA to address the computational bottleneck of generating the
parameter space visualization described in Sec. 2.1.

For this, we begin by selecting a representative sample of the full
dataset. This selection is either done manually by the analyst or au-
tomated using appropriate algorithms. Then, we divide the sample
into equal-sized chunks and iteratively compute the error measure
for each cell in the matrix as discussed in the previous section. This
produces partial results in a breadth-first manner: Instead of pro-
cessing each cell in full one after another, the computations can
now be run per chunk with the ability to obtain partial results for
each cell. To this end, we use Latin Hypercube Sampling [Flo92] to
determine the order in which the cells are processed, which avoids
oversampling individual columns and rows. After each full itera-
tion over the cells, we continue with the first cell and the next data
chunk. In doing so, an early overview of the full parameter space is
available early on.

The analyst can steer the computation towards parameter sub-
spaces of interest through interaction. For this purpose, columns,
rows, or individual cells of the matrix may be selected through
clicking in order to focus the computational resources on them. The
user may make multiple selections throughout the analysis process
to add or remove cells from the selection. Once cells have been se-
lected, the subroutine choosing the order of cells prioritizes those
cells that are part of this selection, thereby steering the computation
towards the user-selected region.

The visualization further includes progress bars for all columns
and rows, indicating the degree two which the data has been pro-
cessed across the particular set of parameter combinations (see Fig-
ure 2). This serves as a visual guide for the user to gauge both
the quality of the partial results as well as the progress in overall
computation [AMSS19]. An implementation in Python adapted for
the following two application scenarios can be found on https:
//github.com/vis-au/ExoVis.

3. Application to Light Curves

We first evaluated our approach with publicly available data on
light intensity emitted by stars that was measured by the Kepler
space telescope during a NASA mission on discovering exoplanets
between 2009 and 2013 [BKB∗10, Bor16]. Using the Python li-
braries Lightkurve [LCH∗18] and AstroPy [Thea], we make use of
a cleaned version of that data provided by the Mikulski Archive for
Space Telescopes (MAST) [Theb]. For an individual region cov-
ered by the telescope, the dataset contains measurements of 30-60
minutes intervals for periods of around 90 days.
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Figure 1: Parameter space visualization showing the result of a complete computation of the average error between the BLS computed on
a sample of light curve data for six exoplanets and the computation on the same data aggregated with SAX and PAA. The aggregated data
using only one third of the original data (ω = 3) while reducing its value range to an alphabet of only six symbols (α = 6) yields only a minor
computational error in comparison to using the unaggregated data.

To find extrasolar planets in these datasets, one is looking for pe-
riodic patterns. These are produced when a planet orbits around a
central host star and periodically reduces the light intensity of that
star during transit from the view point of the telescope [CBBL07].
The light intensity deviates significantly between host stars, and
as a result, lower light intensities measured for one star may be
larger than the highest intensities measured for other stars. That is
why one rather wants to look for periodicities in the light inten-
sity curves as opposed to identifying exoplanets through absolute
measurements.

To do so, we utilize the Box-fitting Least Squares (BLS)
[KZM02] algorithm that searches for periodic alternations between
two intensity levels in the data. Its result is the period with the
highest, non-trivial periodicity coefficient. As the dataset is vast,
these computations are too time-intensive to run exhaustively on
the full data which is why reducing the data using PAA and SAX

Figure 2: Partial results of the progressive computation for the pa-
rameter space depicted in Figure 1, including progress bars for
columns and rows. Trends in the data found in the full computation
gradually become apparent in partial results. A user may thus de-
cide on a parametrization for SAX and PAA before the full matrix
is even generated, based on the task at hand. To view the animated
figure, a stand-alone PDF viewer is needed.

is a suitable approach. As the error measure to be shown in the ma-
trix, we use the absolute difference between the periods computed
on the original and on the reduced data. As data sample for the
computations, we use the light curve data for six planets gathered
from MAST. As parameter space, we utilized the value ranges of
1≤ ω≤ 15 and 3≤ α≤ 20.

Figure 1 shows the parameter space visualization for six
lightcurve measurements from the Kepler mission (with Kepler
ID’s 2 to 7). A light curve for a planet orbiting a star contains a
relatively constant signal that at periodic intervals exhibits short
sections of significantly lower light intensity, whenever the planet
transits between its host star and the telescope sensor. Because of
this property, the light-curve analysis is not very sensitive towards
the particular numeric values at each time point, but to capture these
brief transit periods we need to maintain a high temporal resolution.
The parametrization of the data reduction reflects these properties
in that the error measure varies more strongly between neighbor-
ing columns than between neighboring rows. To determine a suit-
able parametrization, the analyst may first identify a suitable PAA
segment size ω along the horizontal axis, before determining a suf-
ficient alphabet size α for SAX. One plausible pair of parameters
is for instance α = 10 and ω = 3, resulting in a reduction of the
overall data by approximately 96% compared to the size original
dataset. In an exemplar computation of BLS on the first 10 quar-
ters of exoplanet kepler-8b, this parametrization lead to a compu-
tational speed-up from 61.7 down to 20.6 minutes, thus decreasing
the computation time by approximately 66%.

4. Application to Weather Data

The second context in which we evaluated our approach is the pub-
licly available dataset on global weather data, provided by Berke-
ley Earth [MM]. The data contains multiple parameters about the
weather for different countries, measured in monthly time intervals
from as early as 1754 until 2013. For each country, the data thus
contains around 3,000 measurements. Therefore, the dataset con-
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Figure 3: Parameter space visualization showing the result of a complete computation of the average error between a linear regression
model computed on a sample of weather data from ten countries and computed on the same data aggregated with SAX and PAA. The overall
computational error using aggregated data compared to the original is low. Analysts may thus decide to use aggregated data for their
computation, for instance using only a fifth of the overall data (ω = 5) and reducing the value range to 12 symbols (α = 12).

taining all countries is reasonably large to provide a feasible target
for its reduction.

One analytic task of current interest to be performed on this data
is to assess climatic trends in certain regions of the Earth – i.e., to
quantify the climate change. For this purpose, data capturing dif-
ferent aspects of the weather such as air and surface temperatures,
humidity, precipitation, and wind speeds are considered. In order to
establish trend in such data, Different variants of regression analy-
sis are commonly used to describe climate development [Mud19].

For our purposes, we compute a linear regression model for the
data and use the difference in slope of the resulting regression line
as error measure for assessing parameter combinations for SAX
and PAA. We base our assessment on a data sample of temperature
data for ten countries (including Afghanistan, Denmark, and Portu-
gal). A suitable parametrization found for this sample then serves
as basis configuration for assessing the climate in other regions. As
parameter space, we maintained the configurations of 1 ≤ ω ≤ 15
and 3≤ α≤ 20.

The resulting parameter space matrix is depicted in Figure 3. As
temperature changes gradually over the course of a year, the tem-
poral resolution is not as important in this case as it was in the
previous scenario. Yet, the resolution of the value range is much
more important here, as small deviations in the values can have a
large influence on the resulting slope. The matrix visualization re-
flects this property in that the error measure varies stronger between
neighboring rows than between neighboring columns. To determine
a suitable parameter combination, analysts may therefore first iden-
tify an alphabet size α that produces sufficient accuracy of the slope
of regression line before identifying a segment size ω that includes
enough data points. One plausible pair of parameters is for instance
α = 10 and ω = 3, resulting in a reduction of the overall data by ap-
proximately 93% compared to the size of the original dataset. In an
exemplar computation of a linear regression models on the weather
data consisting of around 2,509 entries, this parametrization again
lead to a computational speed-up of approximately two thirds.

5. Summary

In this paper, we presented a task-driven approach to parametriza-
tion of PAA/SAX-based data reduction. With this approach, we are
able to capture that some tasks are more sensitive to reductions of
the temporal granularity, while others depend more on the granu-
larity of the value range. This result-oriented approach to param-
eter estimation is made possible through PVA methods for com-
puting partial error measures for multiple parameter combinations
and thereby being able to show them to the analyst long before an
exhaustive computation would be complete. The user can interac-
tively steer the progression of these computations towards regions
of interest in the parameter space, and finally make an informed
decision for a suitable parametrization.

While we were able to address particular user requirements, our
approach makes the following assumptions about the data and al-
gorithms used. For instance, computing the error measure assumes
a representative sample from the dataset on which the ground truth
value can be computed. For time series data, progressive, represen-
tative sampling is a non-trivial task, in particular when aiming to
preserve local patterns. This is a standing problem in the field of
PVA and needs to be addressed in future work. Currently, our im-
plementation of the iterative matrix computation relies on a single-
threaded implementation. Yet, since the computation for each cell
can be done independently of the remainder of the matrix, it is
straight-forward to extend our code with a multi-threaded imple-
mentation in the future for further increased performance. Another
assumption is that the algorithm that is used to compute the error
measure can produce meaningful, progressive results. Implemen-
tations for such algorithms often require a manual, “progressive”
re-implementation, or cannot be made progressive at all.
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