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Abstract
Visualizing high-dimensional (HD) data is a key challenge for data scientists. The importance of this challenge is to properly
map data properties, e.g., patterns, outliers, and correlations, from a HD data space onto a visualization. Parallel coordinate
plots (PCPs) are a common way to do this. However, a PCP visualization can be arranged in several ways by reordering its
axes, which may lead to different visual representations. Many methods have been developed with the aim of evaluating the
quality of reorderings of given PCP view. A high-dimensional data set can be divided into multiple classes, and being able to
identify differences between the classes is important. Then, besides overlaying the groups in a single PCP, we can show the
different groups in individual PCPs in a small multiple fashion. This raises the problem of jointly reordering sets of PCPs to
create meaningful reorderings of the set of plots. We propose a joint reordering strategy, based on maximizing the pairwise
visual difference in PCPs, such as to support their contrastive comparison. We present an implementation and an evaluation
of the reordering strategy to assess the effectiveness of the method. The approach shows feasible in bringing out pairwise
difference in PCP plots and hence support comparison of grouped data.

1. Introduction

Analyzing high-dimensional (HD) data is a challenge, and many
visualization techniques for it have been proposed to date. For ex-
ample, dimension reduction techniques [EMK∗21] or visualization
techniques including scatter plot matrices, pixel-based techniques,
glyphs, and Parallel Coordinate Plots (PCP) [BBK∗18] can be used.
PCPs are useful in visualizing HD data due to their ability to reveal
patterns spanning across multiple dimensions in the data and rela-
tionships between dimensions. A PCP consists of several vertical
axes, which correspond to the dimensions in the data. Data points
are then represented by polylines that are connected along the di-
mension axes and represent feature values in terms of intersections.
However, the effectiveness of PCPs highly depend on the ordering
of their axes, and different orderings result in different patterns.

Previous work provided different reordering methods for PCP.
These methods typically look at properties of individual PCP or-
derings, such as visually emphasizing clusters [TAE∗09] or out-
liers [PWR04]. Also, reduction of clutter and overlap [ED07] are
typical criteria to guide the reordering. However, most approaches
only consider the quality of a single PCP view. In this paper, we
consider the simultaneous reordering of a set of PCPs, which show
different groups in data in a small multiple fashion. We want to
jointly reorder the plots such as to support the comparison of the
groups, i.e., find the distribution of values among the axes that are
in agreement and that differentiate between the data groups. This

is a specialization of the reordering problem of a single PCP show-
ing all groups in the data in one plot. We aim to reorder such that
the aggregate pairwise visual difference between all plots in the set
is maximized. We assume that as the visual difference gets larger,
it becomes easier to compare and contrast the different groups (or
clusters) in the data. We present and implementation of this idea,
and results of applying it on data sets with success.

2. Related Work

PCPs are frequently used to for a wide range of analytical tasks
and have been continuously expanded over recent years [YGX∗09,
CvW11]. Heinrich and Weiskopf [HW13] have presented a classi-
fication of common PCP tasks to the estabilshed KDD taxonomy
by Fayyad et al. [FPSS96]. To accomplish these tasks, Behrisch
et al. [BBK∗18] introduced four visual patterns: grouping, correla-
tion, outlier and trend. Furthermore, they named three major chal-
lenges for creating reasonable PCP views: (1) By increasing the
number of data records, available patterns may vanish due to over-
plotted lines; (2) The perception of patterns in PCPs heavily de-
pends on the ordering of the dimension axis; (3) A large number
of dimensions limits the exploration and screen space between two
axes, and may result in cluttered views. To tackles these issues,
quality metrics may be defined to objectively measure qualities and
characteristics of a certain view and determine how good, for exam-
ple, a PCP is and in which areas it can be improved. In [BBK∗18],
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different quality metrics are indicated to tackle these issues. For ex-
ample, Ellis and Dix [ED07] introduced a set of clutter reduction
techniques that estimate the occlusion of lines in PCPs. The pro-
posed methods consider (1) overplotting (percentage of pixels with
more than one plotted point), (2) overcrowded display (percentage
of pixels with more than one existing point), and (3) hidden patterns
(percentage of plotted points hidden due to overplotting).

Depending on the axis orderings, different patterns are revealed,
and can be made more (or less) visually prominent. Quality mea-
sures also allow to compare different axis orderings and find an
optimal ordering for displaying the data based on a certain task.
In [JJ09] an interactive reordering approach is proposed that is
based on user-defined and weighted quality metrics. The metrics
consider user-defined weighting for multiple data spaces including
dimension correlations, outlier, and cluster detection. Another re-
ordering approach by Lu et al. [LHZ16] uses nonlinear correlation
coefficient and singular value decomposition algorithms to mea-
sure the contribution of each dimension and reduces computational
complexity. In [ARI20], a smart mutation operator for evolutionary
algorithms is used to enhance the views of PCPs. The goal is to
reduce the line intersections between neighboring coordinates by
swapping the two axes that have maximum crossing line values.

Hu et al. [HCX∗21] use reinforcement learning to tackle a sim-
ilar problem than we. They search for optimal ordering of star
glyphs to maximize visual difference. First, they extract features
of the star glyph set using an encoder network, and then perform
reinforcement learning on the features using a distance measure
as a reward function to compare orderings. Then they evaluate the
performance by conducting user studies, as well as test for gener-
ality of the solution by varying the properties different data sets.
While this may not give the optimal solution, they show it to be
successful in computing orderings that noticeably improve visual
difference. In essence, this method tries to solve the same problem
we set out to do: optimize for visual difference in visualization of
high-dimensional data where dimension order is important. As a
result, this method can be likely extended to our problem in the
area of parallel coordinates, as well as to other high-dimensional
visualizations where dimension order is important.

3. Our Approach

We describe how we compute aggregate visual dissimilarity among
a set of PCPs, and use this to simultaneously reorder the set.

3.1. Representation with Feature Signatures and Total
Distance Score

We presume the data is min-max normalized and class labels exist
for grouping. First, we compute a feature signature representation
(FS) for each group of data. This in turn serves to compute an ag-
gregate visual difference measure between the PCPs of a set, called
total distance score (TDS). We implemented the following three
feature signatures, which have increasing descriptive information:
FS1: a vector of data means for each dimension, FS2: the mean
and respective standard deviation of each dimension, and FS3: a
histogram with 5 bins for each dimension. All these feature signa-
tures are candidates to use (Fig. 1 illustrates).

As the feature signature represents the data, it is also a proxy
of the visual appearance of the PCPs created from it. We require
an appropriate distance function to compute the visual differences.
Computing e.g., Minkowski distances like L2 or L1 between fea-
ture signatures is not suitable, as they are invariant regarding the
ordering of the dimensions of the data (respectively the PCPs). We
require a distance function that takes into account, for each dimen-
sion, also the neighboring dimensions, as these are responsible for
the visual properties provided by the PCPs.

The quadratic form distance (QFD), which is typically used in
shape or multimedia retrieval achieves this, as it can compare all
dimensions from one vector with all dimensions of the other vector,
according to a weight matrix. It is formulated in vector notation as:

QFD(FSa,FSb) =
√

di f f (FSa,FSb) ·W ·di f f (FSa,FSb)T

with di f f a vector of difference values between feature signa-
tures FSa and FSb of two data groups a and b, and W a weight
matrix indicating the influence of each pair of dimensions from the
feature signatures to the overall quadratic form distance.

We define di f f depending on the type of feature signature used.
For FS1 (vector of data means) absolute differences between the
dimensions can be used. FS2 (mean and standard deviation) and
FS3 (histogram) are multidimensional vectors, where each dimen-
sion consists of the mean and variance measure, or bins of the his-
togram. For these, we compute a difference value for each dimen-
sion as the Earth Mover Distance [RTG00].

We define the weight matrix W heuristically as

Wij = 1− (di j/(D−1)) ∀i, j where di j = |i− j|

indicating that the influence of a pair of dimensions gets lower, as
the dimension indices in their feature signatures are farther apart.

Finally, we compute the Total Distance Score (TDS) for a set
of PCPs as the weighted average of all pairwise differences mea-
sured by QFD. The weights are set proportional to the size of the
respective data group.

3.2. Reordering the PCPs

To reorder a set of PCPs, we create all possible reorderings, then
compute their TDS, and then select the one with the highest TDS.
We note this is an exhaustive search approach with high computa-
tional complexity, and hence works for data sets with limited num-
bers of dimensions and groups. We apply it here for feasibility and
evaluation purposes. For larger data sets, speed-up techniques will
be required (cf. Section 5).

4. Experimental Results

We present qualitative and quantitative experimental results to char-
acterize and compare the effects of our set-based reordering for the
three defined feature signatures.
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(a) FS1: Mean (b) FS2: Mean and Standard deviation (c) FS3: Histogram

Figure 1: Feature signatures are the basis for computing visual dissimilarity between PCPs for groups of data. We implemented feature
signatures based on mean, mean and standard deviation, and histogram.

4.1. Analysis Goals

First, we want to visually inspect the reorderings of highest and
lowest TDS scores, to validate the general functionality. Then, we
want to analyze the relationship between the TDS scores of reorder-
ings and two established PCP quality measures: polyline length
and average correlation of adjacent dimensions in the PCP. Poly-
line length is a proxy for the complexity of the polyline shape, with
lower complexity supposed to be easier to visually grasp. Correla-
tion between dimensions is a key data analysis goal, hence it is also
proxy for PCP quality.

4.2. Data Sets

We experimented with several data sets (#records, #classes and #di-
mensions in brackets): Iris [Fis88] (150, 3, 4), Cars [Qui93] (398, 3,
7), Cars_year [Qui93] (398, 6, 6), Wine [For91] (178, 3, 8), Seeds
[CNK∗12] (210, 3, 7), Glass [Ger87] (205, 5, 7), Ecoli [Nak96]
(336, 8, 5), and 2C_6_mod [BZP∗20] (245, 5, 5). For the wine
and 2C_6_mod data sets, only a subset of the original number of
dimensions was used to keep computation times reasonable. The
cars_year data set is a modification of the original cars data set (the
classes of the cars_year data set were changed to be the year the
car was released.) Due to size limitations we only present exem-
plary results in detail, and give a generalization afterwards.

4.3. Cars Data Set with Mean Feature Signature (FS1)

Fig. 2 (top row) shows the reorderings of the Cars data set with low-
est (left) and highest (right) TDS scores, respectively, using feature
signature FS1. We observe the PCPs with lowest TDS are visually
similar, especially the zig-zag shapes of the blue and green plots.
The PCPs with hightest TDS, on the other hand, show more dissim-
ilarity between the blue and green plots. They also show more com-
plex PCP patterns among the first three dimensions. In addition, the
red plot overall shows more discernible patterns (fan, correlation).
In that, the TDS-based reordering may improve the visual analysis
potential when using this reordering.

We also observe the TDS-based reorderings do well on PCP
quality measures. Fig. 2 (bottom row) shows the correlation be-
tween TDS scores, and the per-axis correlation of the PCPs (left)
and the average polyline length (right). It indicates that higher-
ranked reorderings according to our TDS score provide also higher

quality in terms of PCP axis-correlation (as a key analysis target),
and shorter average polyline lengths (as lower plot complexity).
The correlation strength is moderate with R2 of 0.23 and 0.36.

Figure 2: Cars data set, FS1

4.4. Glass Data Set with Mean and Standard Deviation
Feature Signature (FS2)

Fig. 3 (top row) shows the reorderings of the Glass data set with
lowest (left) and highest (right) TDS scores, respectively, using fea-
ture signature FS2. Both sets of reorderings appear similar among
and between them. The numeric differenc between the TDS scores
is low (0.72 and 0.83, respectively). However, the groups in the re-
orderings with hightest TDS (top right) appear more crisp. Specif-
ically, the red, blue and green plots (right) show a tighter bundling
of the PCP polylines.

For this data set, the reorderings show only weak relationships
to the two observed quality measures, correlation score (left) and
polyline length (right). The trend seems at first glance to contra-
dict the relationship of the preceding example, but R2 seems too
low for validation (0.05 and 0.13, respectively). It indicates that
our reordering strategy may not relate to these quality measures for
certain data sets like this.
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Figure 3: Glass data set, FS2

4.5. Seeds Data Set with Histogram Feature Signature (FS3)

Fig. 4 shows the results for the Seeds data set, using the feature
signature FS3. We observe the reordering of highest TDS score (top
row, right) produces a flattening effect, amounting to low average
polyline length, leading to lower visual complexity than the longer
polylines in the reordering with lowest TDS (left). The dependency
between TDS scores and PCP axis correlation (left) and polyline
length (right) are positive and negative, respectively, like in the Cars
data set example (Sect. 4.3) albeit at lower R2.

Figure 4: Seeds data set, FS3

4.6. General Observations

Considering all our results, we observe that orderings with high-
ter TDS score tend to have smoother curves compared to the more
jagged shape of orderings with smallest distance score (flattening
effect). While this appears to occur most often when the FS1 mean

feature signature type is used, the effect also occurs for FS2 and
FS3. A negative correlation of TDS with polyline length indicates
the visually observed flattening effect: As curves are smoothed, the
average line length decreases. Not all data sets have PCP orderings
that flatten it or that are significantly visually different. When the
approach works well in terms of lower polyline length and visual
differences, it works comparably so for all FS types. Overall, the
TDS score is moderately to weakly related to the PCP axis corre-
lation quality metric. We observed cases of rather low numeric dif-
ferences between smallest and largest TDS scores, which we found
also to correspond to small visual differences in the PCP sets. It
may indicate some data sets are hard to reorder for strongly notice-
able differences.

5. Discussion

More analysis should be done to compare our reorderings with
other established PCP quality measures. We considered a selection
of data sets and two selected quality measures. From the corre-
lation scatter plots, we see that reorderings of similar TDS values
may have a larger spread in terms of axis-wise correlation and poly-
line length. This indicates we might select not just the reordering
of the highest TDS, but a comparably high TDS value which may
improve a quality measure. To this end, an interactive exploration
of the distribution of TDS scores might be interesting to select the a
good reordering for contrastive comparisons.A computational lim-
itation of this method is that it does not scale to data sets with a
large number of dimensions, due to the brute force search of re-
orderings. Improvements could be done by sampling reorderings,
or applying optimization e.g., by genetic algorithms. Also, parti-
tioning of the dimensions is possible, where either the user or a
subspace search method selects groups of dimensions to sort sepa-
rately, and then concatenate. In general, visual difference is subjec-
tive and not easy to quantify. User preferences could be obtained
to guide the reordering strategies. Also, the user might want to fix
certain dimensions to keep in place for the mental map. Eventu-
ally, a user study could compare our approach for time and error in
solving PCP-based analysis tasks.

6. Conclusions

We provide a novel reordering approach for sets of PCP plots. We
reorder such as to maximize the visual difference between PCPs
of a data set. PCPs are represented by feature signatures and a
quadratic form distance between all pairs of PCPs is computed.
This resulted often in orderings where the PCPs were smoothed
which allows for differences between them to be more quickly
identified. Also, in some cases more subtle PCP patterns could be
brought out, and the PCP plots each showed more bundled. The ap-
proach has extension possibilities, e.g., improving scalability and
adapting to user preferences.
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