Eurographics Conference on Visualization (EuroVis) (2015)
E. Bertini, J. Kennedy and E. Puppo (Editors)

Short Papers

Dynamic Scheduling for Progressive Large-Scale
Visualization

M. Flatken' and A. Berres” and J. Merkel® and I. Hotz! and A. Gerndt' and H. Hagen?
'German Aerospace Center, Germany
2University of Kaiserslautern, Germany

Abstract

The ever-increasing compute capacity of high-performance systems enables scientists to simulate physical phe-
nomena with a high spatial and temporal accuracy. Thus, the simulation output can yield dataset sizes of many
terabytes. An efficient analysis and visualization process becomes very difficult especially for explorative scenar-
ios where users continuously change input parameters. Using a distributed rendering pipeline may relieve the
visualization frontend considerably but is often not sufficient. Therefore, we additionally propose a progressive
data streaming and rendering approach. The main contribution of our method is the importance-guided order of
data processing for block structured datasets. This requires a dynamic scheduling of data chunks on the paral-
lel post-processing system which has been implemented by using an R-Tree. In this paper, we demonstrate the
efficiency of our implementation for view-dependent feature extraction with varying viewpoints.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.1]: Hardware Architecture—
Parallel processing; Computer Graphics [I.3.2]: Graphics Systems—Distributed/network graphics;

1. Introduction

The evolution of high performance computing (HPC) hard-
ware and software enables the simulation of physical phe-
nomena with a very high resolution and accuracy. Simula-
tion solvers carry out parallel algorithms in order to speed-
up the computation. For this purpose, the simulation domain
has to be decomposed in many smaller data chunks, which
can then be distributed among the available processors. After
the simulation is done, the data chunks including simulation
results are often stored in large scale multi-block datasets.
Thus, a multi-block dataset consists of lots of files and each
file includes a grid structure and the simulation results.

These massive datasets imply a significant challenge for
efficient analysis and visualization. Since loading and pro-
cessing of the data on local computers is no longer reason-
able, remote filtering on HPC systems becomes more and
more popular. Although processed in parallel, the time re-
quired to complete a filtering operation and to produce a fi-
nal image is still often too high for interactive exploration.
Therefore, as soon as parts of the extraction data are avail-
able on the back-end, they can be streamed to the front-
end computer to reduce response times considerably. The
requested data can be presented even faster when only data
blocks relevant for the query are processed. And eventually,

(© The Eurographics Association 2015.

DOI: 10.2312/eurovisshort.20151122

most useful information may be visualized first if the order
of processing is importance-guided.

These streaming improvements require dynamic and ef-
ficient scheduling methods. In order to enable importance-
guided processing, an importance function can be introduced
to prioritize the data distribution to parallel processing el-
ements. To retrieve related data blocks effectively, a query
data structure should consider the following aspects (a) Data
query: which data is relevant to the query, (b) Viewing po-
sition: which order allows for an efficient first inspection
while data is progressively added to the view. Our dynamic
scheduling approach is built on an R-Tree data structure. It
supports a wide range of user queries typical for scientific
data exploration. Furthermore, it is especially well-suited for
applications processing large scale multi-block datasets.

2. Related Work

Several distributed post-processing applications and frame-
works have been developed to facilitate interactive data ex-
ploration for large-scale data. The two most common tools
are ParaView [HALO4] and VisIt [CBW*12]. Both of them
rely on the Visualization Toolkit (VTK) [SML96] and make
use of data parallelism to speedup the visualisation process.

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurovisshort.20151122

38 M. Flatken et al. / Dynamic Scheduling for Progressive Large-Scale Visualization

Viracocha is a framework which focuses on interactivity
within virtual environments [GHW*04]. There are many ex-
amples for specific use cases and algorithmic challenges in
distributed and parallel visualization [BCH12]. Ahrens et al.
presented a modular and prioritized data streaming architec-
ture for out-of-core data processing integrated into VTK and
ParaView [ADM*07]. Their ideas are very similar to ours but
do not deal with parallelism. Examples for view-dependent,
occlusion efficient and parallel isosurface extraction can be
found in [LH98] [CFSWO1] [KcC*01] [ZBRO2].

Besides data parallelism and out-of-core processing, I/O
saving methods for query-driven visualization systems are
investigated. Fisher et al. [Fis11] propose to use a database
structure while Atasanov et al. [ASW12] adapt query sets
to a given domain decomposition. Chauduri et al. [CLSP13]
use an integral distribution stored in an octree to respond to
range distribution queries.

Our work combines data parallel processing using dis-
tributed resources with an R-tree data structure to select rel-
evant data and to define an optimized order for processing.

3. Dynamic Scheduling for Large-Scale Data

A common way to process large-scale datasets is to ex-
ploit data and task parallelism. However, parallelism alone
is not sufficient to achieve interactive exploration. Dy-
namic scheduling approaches combined with progressive
data streaming can help to improve the system response time
(time expired until first results are visible). This gain in per-
formance results from discarding unnecessary data and from
processing data in an order which is dependent on an im-
portance function. We achieved the described goals by inte-
grating a dynamic scheduling approach into the Viracocha
framework [GHW*04].

The Viracocha framework is based on the master/slave
paradigm to distribute workload for parallel processing. The
master process (referred to as scheduler) splits a job request
into small independent work items. These work items are
then distributed to slave (referred to as worker) processes.
Until now this scheduling order has been static and did not
change during a job request, e.g., change of viewing perspec-
tive. Enabling an efficient and dynamic scheduling order re-
quires a data structure with the following features:

1. Spatial filtering: select the blocks of a multi-block dataset
based on spatial information to decrease the 1/O load,
which is often a bottleneck when interactivity is required

2. Importance filtering: select the block of a multi-block
dataset, which is most important (multi-dimensional) e.g.
the block with the highest turbulence

3. Efficiency: fast construction for block counts typical in
CFD simulations, and fast replies for queries to guarantee
parallel efficiency and scalability

Data Structure For the dynamic scheduling approach, we
need a data structure to manage the blocks of a multi-block
dataset. Thereby, each data block is described by its 3-
dimensional bounding box and optional importance values.
These importance values are either given in the dataset (e.g.
the scalar ranges) or can be calculated on-the-fly. Tree-based
data structures are an efficient way to represent spatial parti-
tions and hierarchies. Since typical block counts are in range
of a few thousand the performance of different tree variants
should be nearly identical. It is more important that the data
structure can deal with overlapping bounding boxes and sup-
ports multiple dimensions for future enhancements.

Octrees [Mea82] are well-suited for axis-aligned bound-
ing boxes, but they are not suited for a multi-dimensional
space. In contrast, binary space-partitioning methods, such
as kD-trees [OMSd87], are much more suited for multi-
dimensional data. However, they are designed for point data
and require adaptation to bounding boxes. Hence we employ
a bounding volume hierarchy, namely an R-Tree (rectangle
tree) [Gut84], as our data structure. An R-Tree consists of
nested bounding volumes (rectangles in 2D, cuboids in 3D).
Beckmann et al. [BKSS90] introduce R*-Trees, a variation
of R-Trees with different insertion and splitting strategies.
R*-Trees have improved query efficiency at slightly more
costs for construction. R-Trees are dynamic data structures
and can be constructed either gradually by progressive inser-
tion of blocks, or en-bloc using the sort-tile-recursive (STR)
algorithm [LLE97].

In addition of being perfectly suited to store the bounding
boxes of a multi-block dataset, R-Trees are always height-
balanced and support dynamic insertion and deletion of
nodes. These features make them particularly well-suited for
our dynamic scheduling. Additionally, it allows indexing of
multi-dimensional information.

Workflow In a pre-processing step, an initial 3-dimensional
R-Tree is generated for each time step of a multi-block
dataset (Figure 1). These constructed R-Trees are then en-
coded and stored to disc for subsequent queries.

When a user query is received, all data blocks matching
the spatial request are stored in a selection. Currently our
system supports the following spatial requests:

e Intersection with a plane: All blocks whose bounding box
intersect with the plane are stored in a worklist.

e Intersection with a volume: All blocks whose bounding
box lie partially or fully inside the defined volume are
stored in a worklist.

Based on the selection within the worklist, a new set of
3-dimensional R-Trees (one per time step) is generated on-
the-fly. Optionally a set of importance values per block can
be used to build multi-dimensional R-Trees. An example for
importance values are the min. and max. pressure value per
block. The scheduler now uses these R-Trees as data struc-
ture to distribute the workload among the workers for paral-

(© The Eurographics Association 2015.

M. Flatken et al. / Dynamic Scheduling for Progressive Large-Scale Visualization 39

Dynamic Processing of Simulation Data

Raw Data

User Query

R-Tree

Selection

Scheduler Worker 1

Worklist R-Tree Worker 2
> i Worker ...

Worker n

Figure 1: An initial set of R-Trees is generated once for the raw data. These R-Trees are used to select relevant data for a user
query. From this selection, a new set of trees is generated and used by the scheduler to define a processing order.

lel processing. In case of view-dependent processing, it lo-
cates the block closest to the camera position and forwards
data and algorithm parameters to the workers. The tree node
is then dynamically removed and the scheduler continues
with the closest block in the next tree. This round robin pro-
cess continues until no nodes are left in the trees. Whenever,
a worker has finished its algorithm on a data block, the result
e.g. a portion of an isosurface is transferred to the front-end
application to be progressively updated and rendered.

4. Results

To benchmark our dynamic scheduling approach we
have used a small remote HPC system consisting of
four workstations. Each of these workstations has two
Intel®Xeon®X5670 hexa-core processors, and 48 GB
main memory. The interconnect between the nodes is a 40
Gbit QDR-Infiniband network. The connection to the visu-
alization front-end is 1 Gbit Ethernet.

We used a compressor turbomachinery computational
fluid dynamics (CFD) dataset for our evaluation. This un-
steady multi-block simulation dataset consists of 1792 time
steps. Each of these time steps is composed of 1679 blocks.
The data set is 2.2 TB large including all scalar and vector
fields. For this work, 50 time steps were used resulting in
83950 data blocks to be scheduled for processing.

Tree Parameters Before comparing our dynamic process-
ing to static-order processing, we conducted preliminary
tests to optimize the tree parameters. As outlined in Sec-
tion 3, different strategies for node insertion can be used.
Therefore, R-Trees can be constructed en bloc using the STR
algorithm, or through progressive insertion of nodes. We var-
ied the node capacity, leaf capacity, node insertion methods,
and construction methods. Finally, we measured the total
time required to build all R-Trees, schedule and process all
data, and render the extracted isosurface. Table 1 presents
the results of our measurements. As depicted, the first row
performs best among all combinations. Therefore, all further
benchmarks utilize this configuration.

Plane and Volume Extraction When intersecting a cutting
plane or region-of-interest with the entire dataset, it makes a

(© The Eurographics Association 2015.

node cap. | leaf cap. | insert | construction | duration
10 10 | linear | STR 67.556s

100 10 | linear | STR 69.941s

10 10 | quad. | progr. insert 78.541s

10 10 | quad. | STR 70.541s

5 10 | R* STR 70.687s

10 10 | R* progr. insert 69.072s

100 100 | R* progr. insert 106.223s

Table 1: Comparison of processing times for different inser-
tion/construction strategies with varying node/leaf capacity.

significant difference whether all blocks or only a selection
of relevant blocks is processed. Table 2 depicts a compari-
son between processing pre-selected blocks using the spatial
filtering (see Figure 1) and processing all blocks. The num-
ber of selected blocks to be processed with our method was
reduced to approximately 12% for the plane and 14% for the
defined volume. This spatial filtering operation reduced the
1/0 load massively. The time required to extract a slice was
reduced to less than 7% and for the volume to 16% of the
time required to process all blocks.

Slice Extraction | Volume Extraction
data blocks 8507 12154
total time without pre-selection 43.73s 124.23s
total time with pre-selection 2.96s 20.39s

Table 2: Pre-selecting relevant blocks has a big impact on I/O
and computation costs due to discarding unnecessary data.

Scalability Analysis We have evaluated how our schedul-
ing approach scales with an increasing numbers of workers.
In Table 3, we compared average assignment time and to-
tal computation time. The assignment time using dynamic
scheduling is dominated by the time needed to locate the
data blocks closest to the camera. The overhead for travers-
ing the tree compared to gather blocks from a list (static
scheduling) is in range of microseconds and does not sig-
nificantly influence the scaling. As depicted, increasing the
number of workers speeds up the computation, but the rela-
tion between number of workers and processing speed is not
linear. The main bottleneck is caused by I/O performance as
data is stored on a remote file system accessed via Ethernet.

40
20s

Static

Dynamic

30s

M. Flatken et al. / Dynamic Scheduling for Progressive Large-Scale Visualization

40s complete

Figure 2: Comparison of the rendering progress of an isosurface extracted from a single time step (density 1.3, time step 0)
using dynamic processing vs. static processing. Screenshots were taken at 10s, 20s, 30s, 40s, and of the completed surface.
With dynamic scheduling (row 2), the user gets a detailed visualization more quickly than with static scheduling (row 1).

avg assig t time total time
processes static | dynamic static | dynamic
12 2.445ms | 2.490ms | 205.298s | 209.732s
24 1.258ms 1.293ms | 105.711s | 109.270s
48 0.826ms | 0.831ms 73.617s 70.506s

Table 3: Scalability test for static and dynamic scheduling.

Visual Analysis To visually evaluate our method, we query
and render an isosurface of flow density inside the compres-
sor. We compared the static and dynamic view-dependent
scheduling approach. The computation was started from an
initial perspective which was immediately changed to the
opposite side of the compressor to cause maximal variation
in processing order. To visually measure image progress, we
stopped the animation at the first time step to compare ren-
dering results. As depicted in Figure 2, the time until all
visible parts of the isosurface are rendered is much shorter
for dynamic than for static scheduling. Moreover, the or-
der in which data blocks for the isosurface are processed
and rendered lets the user examine the closest surface part
more quickly. Table 4 depicts a quantitative comparison of
the time-dependent progress each method makes in render-
ing through a pixel-wise comparison to the final image. The
dynamic method finished rendering the visible parts at 42.5 s
whereas the static method takes almost twice as long. As-
suming a random order of blocks during static processing,
this result was expected since approximately half of the data
is occluded behind other surfaces. Additionally, the table de-
picts that 91% of the isosurface are calculated within 20s and
the remaining 10% needs the same time. This is due to an
suboptimal processing order caused by occlusion of blocks.

Strategy 10s 20s 30s 40s final
static 87% | 164% | 46.4% 83.8% || 81.0s
dynamic | 45.5% | 90.6% | 99.4% | 99.99% || 42.5s

Table 4: Pixel-wise comparison between the final isosurface
and the currently rendered part at different timings.

5. Conclusion and Future Work

We have presented a novel and efficient dynamic schedul-
ing method for progressive large-scale data visualization. It
is based on an R-Tree data structure, which incorporates an
importance function to determine the processing order. The
view-dependent streaming technique admits high perfor-
mance exploration of relevant parts before the entire dataset
has been processed. While the user can start almost imme-
diately with the analysis of user-centred regions-of-interest,
the surrounding area is progressively updated. The R-Tree
data structure proves to be very efficient for the filtering of
multi-block datasets. Spatial queries such as cutting planes
or extracting sub-volumes results in a drastic speedups (6-
14x) due to saving of I/O and computation costs. Using the
view-dependent isosurface computation, all relevant parts of
the data are displayed in less than half the time of a static
approach.

In the future, we want to consider other simulation data
types. In general, the R-Tree seems to be very promising.
But there is still space for improvements of the current query
data structure implementation. We also want to investigate
and evaluate the scalability of our approach in greater de-
tail. Therefore, we will analyze the runtime behavior of our
application on larger cluster systems.

(© The Eurographics Association 2015.

M. Flatken et al. / Dynamic Scheduling for Progressive Large-Scale Visualization 41

References

[ADM*07] AHRENSJ. P., DESAIN., MCCORMICK P. S., MAR-
TIN K., WOODRING J.: A modular extensible visualization
system architecture for culled prioritized data streaming. In
Proceedings of the 2007 Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series (Jan. 2007), vol. 6495,
pp. 649501-1 — 649501-12. 2

[ASW12] ATANASOV A., SRINIVASAN M., WEINZIERL T.:
Query-driven parallel exploration of large datasets. In Proceed-
ings of the IEEE Symposium on Large Data Analysis and Visu-
alization (LDAV) (Seattle, Washington, USA, Oct. 2012), pp. 23
-30. 2

[BCH12] BETHEL E. W., CHILDS H., HANSEN C.: High Perfor-
mance Visualization: Enabling Extreme-Scale Scientific Insight,
Ist ed. Chapman & Hall/CRC, 2012. 2

[BKSS90] BECKMANN N., KRIEGEL H.-P., SCHNEIDER R.,
SEEGER B.: The R*-tree: An efficient and robust access method
for points and rectangles. In Proceedings of the ACM Interna-
tional Conference on Management of Data (SIGMOD) (Atlantic
City, New Jersey, USA, 1990), SIGMOD ’90, ACM, pp. 322—
331.2

[CBW*12] CHILDS H., BRUGGER E., WHITLOCK B., MERED-
ITH J., AHERN S., PUGMIRE D., BIAGAS K., MILLER M.,
HARRISON C., WEBER G. H., KRISHNAN H., FOGAL T.,
SANDERSON A., GARTH C., BETHEL E. W., CAMP D., RU-
BEL O., DURANT M., FAVRE J. M., NAVRATIL P.: Visit: An
end-user tool for visualizing and analyzing very large data. In
High Performance Visualization - Enabling Extreme-Scale Sci-
entific Insight. Taylor and Francis, Oct 2012, pp. 357-372. 1

[CFSWO01] CHIANG Y.-J., FARIAS R., S1LVvA C. T., WEI B.: A
unified infrastructure for parallel out-of-core isosurface extrac-
tion and volume rendering of unstructured grids. In Proceedings
of the Parallel and Large-Data Visualization and Graphics (Oct
2001), pp. 59-151. 2

[CLSP13] CHAUDHURI A., LEE T.-Y., SHEN H.-W., PETERKA
T.: Efficient range distribution query in large-scale scien-
tific data. In Proceedings of the IEEE Symposium on Large
Data Analysis and Visualization (LDAV) (Atlanta, Ga, USA, Oct
2013), pp. 125-126. 2

[Fis11] FISHER D.: Incremental, approximate database queries
and uncertainty for exploratory visualization. In Proceedings of
the IEEE Symposium on Large Data Analysis and Visualization
(LDAV) (Providence, RI, USA, Oct 2011), pp. 73-80. 2

[GHW*04] GERNDT A., HENTSCHEL B., WOLTER M.,
KUHLEN T., BISCHOF C.: Viracocha: An efficient paral-
lelization framework for large-scale cfd post-processing in
virtual environments. In Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing (Washington, DC, USA, 2004),
SC ’04, IEEE Computer Society, p. 50. 2

[Gut84] GUTTMAN A.: R-trees: A dynamic index structure for
spatial searching. In Proceedings of the ACM International Con-
ference on Management of Data (New York, NY, USA, 1984),
SIGMOD ’84, ACM, pp. 47-57. 2

[HALO4] HENDERSON A., AHRENS J., LAW C.: The ParaView
Guide. Kitware Clifton Park, NY, 2004. 1

[KcC*01] KURC T., CATALYUREK U., CHANG C., SUSSMAN
A., SALTZ J.: Visualization of large data sets with the active
data repository. IEEE Comput. Graph. Appl. 21, 4 (July 2001),
24-33.2

[LH98] LIVNAT Y., HANSEN C.: View dependent isosurface ex-
traction. In Proceedings of visualization (Research Triangle Park,
NC, USA, 1998), IEEE Computer Society, pp. 175 — 180. 2

(© The Eurographics Association 2015.

[LLE97] LEUTENEGGER S. T., LOPEZ M. A., EDGINGTON J.:
STR: A simple and efficient algorithm for R-tree packing. In
Proceedings of the 13th International Conference on Data Engi-
neering (1997), IEEE, pp. 497-506. 2

[Mea82] MEAGHER D.: Geometric modeling using octree en-
coding. Computer graphics and image processing 19, 2 (1982),
129-147. 2

[OMSd87] Oor1 B. C., McDONELL K. J., SACKS-DAVIS R.:
Spatial kd-tree: an indexing mechanism for spatial databases.
In Proceedings of the IEEE International Computer Software
and Applications Conference (COMPSAC) (1987), vol. 11, IEEE
Computer Society, pp. 433-438. 2

[SML96] SCHROEDER W. J., MARTIN K. M., LORENSEN
W. E.: The design and implementation of an object-oriented
toolkit for 3d graphics and visualization. In Proceedings of the
7th Conference on Visualization (Los Alamitos, CA, USA, 1996),
VIS ’96, IEEE Computer Society Press, pp. 93-100. 1

[ZBR02] ZHANG X., BAJA] C., RAMACHANDRAN V.: Paral-
lel and out-of-core view-dependent isocontour visualization us-
ing random data distribution. In Proceedings of the Symposium
on Data Visualisation (Aire-la-Ville, Switzerland, Switzerland,
2002), VISSYM 02, Eurographics Association, pp. 9—f. 2

