
Scoped: Visualising the scope chain within source code

I. Bacher1, B. Mac Namee2, J. D. Kelleher1

1Dublin Institute of Technology, Dublin, Ireland
2University College Dublin, Dublin, Ireland

Abstract

This paper presents an interactive visualisation tool that encodes the scope chain, and information related to the scope chain,
within source code. The main goal of the tool is to support programmers when dealing with issues related to scope and to
provide answers to questions such as to which scope does a specific variable or function belong to and can I access a specific
variable from the scope I am currently located in. The design guidelines followed during the implementation of the tool, as
well as the design rationale behind the main features of the tool are described. Finally, the results of a pilot user experience
evaluation study are presented where an interesting observation was that the tool seemed to support programmers in verifying
and correcting their assumptions when asked questions about specific scoping issues within a source code document.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

1. Introduction

A major part of the effort invested in software development is
dedicated to understanding source code [Tel15]. Previous stud-
ies [Cor89, KMCA06] show that understanding source code ac-
counts for more than half of the software development effort. This
effort includes understanding the static and dynamic structure of
the code, as well as the many types of relations and hierarchies
that exist within the code. Using visualisations can facilitate source
code understanding. For example, Hendrix et al. [HCM02], Miara
et al. [MMNS83], and Wettle et al. [WLR10] illustrate the effec-
tiveness of a software visualisation in regards to source code un-
derstanding activities through controlled experiments.

A fundamental paradigm that nearly all programming languages
implement is a set of rules that control the visibility and lifetime
of variables, functions, and parameters [Cro13, Sim14]. This set of
rules is called scope. Figure 1 illustrates an example of scope and
the scope chain within a source code fragment. The example con-
tains three nested scopes, where scope 1 encompasses the global
scope and has one identifier in it: foo. Scope 2 encompasses the
scope of foo, which includes the three identifiers: a, bar, and b. Fi-
nally, scope 3 encompasses the scope of bar, and it includes one
identifier: c.

Scope is important to the programmer because it reduces naming
collisions and provides automatic memory management [Cro13].
However, two aspects of scope can be a source of confusion for
programmers. First, each programming language has a slightly dif-
ferent implementation of scope. Second, scope supports nesting.
Therefore, scopes can be nested within each other, meaning that if

an identifier (variable, function, or parameter) cannot be found in
the immediate scope, the corresponding scope chain is traversed,
starting at the next scope-level and continuing until the identifier is
found or until the outermost (global) scope has been reached.

Figure 1: Code example containing three nested scopes [Sim14]

This work presents an interactive visualisation tool, which aims
to support programmers in understanding the scope chain and infor-
mation related to the scope chain during the activities of creating,
understanding, and debugging code. A demo of Scoped, the inter-
active visualisation tool, can be found at: http://tiny.cc/jsscope. The
main contributions of this work are threefold:

• An investigation into the issues programmers face in regards to
the scope chain and information related to the scope chain within
JavaScript source code.

• The design and implementation of Scoped, a novel interactive
visualisation tool aimed at aiding programmers in understanding

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Eurographics Conference on Visualization (EuroVis) 2017 Short Paper
B. Kozlíková, T. Schreck, and T. Wischgoll (Editors)

DOI: 10.2312/eurovisshort.20171143

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurovisshort.20171143


Bacher et al. / Scoped: Visualising the scope chain within source code

the scope chain, as well as information related to the scope chain
within source code documents written in JavaScript.

• A pilot user experience evaluation study which gathered further
design requirements and investigated user behaviour when inter-
acting with Scoped.

The remainder of this paper is structured as follows. Section 2
presents related work in regards to visual representations of source
code in combination with source code editors. Section 3 discusses
comprehension issues programmers face, with particular focus on
issues specific to JavaScript and the scope chain within JavaScript.
Section 4 describes Scoped and the design rationale behind various
aspects of the tool. Section 5 presents findings from a pilot user ex-
perience evaluation study. Finally, section 6 presents implications
for future work.

2. Related work

To the best of our knowledge, there are a limited number of visual
tools aimed at helping programmers understand the scope chain and
information related to the scope chain within source code.

Microprints [DLR05] is a visualisation technique which builds
on the code-map metaphor [BMK17] and encodes the structure of
source code. The technique can be used to show information related
to state changes, method control flow, and method invocations. The
authors propose three variations of the technique, specialised on
each of these aspects. Each variation uses a different colour map-
ping to encode information. For example when dealing with state
changes, assignments are displayed in red, method arguments in
purple, the self variable in blue, instance variables in cyan, and
global variables in yellow.

Bacher et al. [BMK16b, BMK16a] present two visualisation
tools that use tree visualisation techniques to encode the various
hierarchies within a source code. The first tool [BMK16b] uses an
icicle tree [HBO10b] in combination with a source code editor to
encode the hierarchical structure of the nested elements (tags) in
HTML documents. The second tool [BMK16a] incorporates ici-
cle trees, node-link trees, and circular tree maps in combination
with a source code editor, to encode the control structure and scope
chain within source code. Both of the visualisations are linked to
the source code editor. Moving the cursors to a different element,
control structure, or scope within the code will update the visuali-
sations accordingly.

Cross et al. [CHM98] introduce the control structure diagram
(CSD), which augments indented program text in order to make
the nesting and scope of source code more explicit [Die07]. The
authors state that many programmers consider the source code to
be the only trusted specification of the software, therefore, the vi-
sualisation adds graphical constructs to the code, without disrupt-
ing its familiar appearance. For example, vertical lines are drawn
over the code in order to show the extent of code blocks, and ver-
tically stretched oval lines are used to show the extent of loops.
Furthermore, diamond glyphs are used to indicate the alternatives
of conditional statements. The primary purpose of the CSD is to
reduce the time required to comprehend source code by clearly de-
picting the control constructs and control flow at all relevant levels
of abstraction. In a controlled experiment, the authors show that

CSD has a positive effect on program understanding in regards to
shortening response times and increasing correctness [HCM02].

It is also worth mentioning that modern browsers such as Google
Chrome and Mozilla Firefox provide developers with a set of web
authoring and debugging tools. These tools can be used to set
JavaScript breakpoints, which enable the user to pause the exe-
cution of a program on a specific line of code. While paused, a
pane can be used to view the values of variables in the local, ances-
tor, and global scopes. However, the code must first be executed to
achieve this and no visual overview of the scope chain is provided.

3. Code comprehension issues

It is difficult to consider visualisation without also considering the
task it is meant to support. It is unlikely that any single visualisa-
tion tool can address all issues related to source code understand-
ing simultaneously. In order to design and develop an interactive
visualisation tool that facilitates understanding a scope chain and
information related to it, we must first examine the comprehension
difficulties associated with source code understanding, specifically
those related to scope.

LaToza and Myers [LM10] surveyed 179 professional develop-
ers about hard-to-answer questions they asked during the process
of creating, debugging, and understanding code, in order to get a
better understanding of a developer’s information needs. The au-
thors were able to synthesise 94 distinct questions which could be
split into 21 categories. Interesting questions in the context of scope
issues include: Where (in which scope) was a specific variable de-
fined and where in the code can a global variable be changed. Fard
and Mesbah [FM13] propose a list of code smells for applications
written in JavaScript. Code smells are patterns in source code that
indicate potential comprehension and maintenance issues. Once de-
tected, code smells need to be re-factored to improve the design
and overall quality of the code [FM13]. The list is composed of
13 code smells, where 7 are existing well-known smells adapted
to JavaScript, and 6 are specific JavaScript code smells, collected
from various JavaScript development resources. The smells related
to scoping issues include: this keyword usage, variable naming con-
flicts, scope chaining, nested callbacks, and excessive global vari-
ables.

Examining the literature related to comprehension difficulties as-
sociated with source code understanding was a starting point for
obtaining information requirements for the design and implementa-
tion of Scoped. To gather further information requirements, specif-
ically ones related to scoping issues, an analysis of the 50 most
popular stack overflow questions was conducted. The question re-
trieved were tagged with the keywords “scope” and “JavaScript”
and were categorised into 4 broad categories: Identifiers (36%), this
context (36%), design issues (17%), and other (17%). The identi-
fiers category deals with issues regarding the declaration, accessi-
bility, and state of an identifier (variable, function, and parameter).
The this context category is concerned with issues relating to the
this keyword associated with each individual scope, as the use of
the keyword within source code has specific behaviour associated
with it. The design issues category includes issues corresponding to
design decisions programmers make during the process of writing

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

116



Bacher et al. / Scoped: Visualising the scope chain within source code

and modifying code. Finally, the other category includes the usage
of specific methods and frameworks.

In this work we will concentrate on the first category (identifiers)
and information related to this category. This choice is supported by
the literature presented earlier in this section, as it shows that many
maintenance and comprehension issues are due to the poor under-
standing of scope. Therefore, Scoped should aid programmers in
answering questions such as: in which scope is an identifier de-
clared, can an identifier be accessed from the current scope, and
is an identifier that has already been defined within the parent or
global scope being overwritten?

4. Design

Following [CFM05, Die07, HPS14, PQ06] we describe the system
under the following principles: target users, language specific, nat-
ural mapping, and link to the code.

Target users: Over fifty thousand programmers participated in
the stack overflow 2016 survey [Sta16], which asked questions re-
lated to preferred technology, experience, and occupation. Out of
all of the participants, only 7% identify as “rockstars” (expert pro-
grammers). Furthermore, 59% are under the age of 29 and 50.3%
have less than 5 years of programming experience. Using this in-
formation and the assumption that expert programmers do not have
any difficulties in regards to scope, the presented tool is targeted
towards non expert programmers. We define non expert program-
mers as programmers that do not use JavaScript on a day to day
basis and have less than 5 years of experience using the language.

Language specific: Scope rules are implemented differently in
different programming languages, and so some programming lan-
guages are more prone to cause scope comprehension issues than
others [KMCA06]. For this work the programming language of
choice is JavaScript, as the syntax of the language makes false
promises that can lead to errors [Cro13,Sim14]. This choice is sup-
ported by the comprehension issues presented in Section 3, as it
shows that many maintenance and comprehension issues are due to
the poor understanding of scope within JavaScript source code.

Natural mapping: Scope can be described as a series of neatly
nested “bubbles” that each act as a container, in which identi-
fiers are declared [Sim14]. Building on this metaphor, we believe
that a tree visualisation technique which shows parent child re-
lations using containment is best suited for the task of visual-
ising the scope chain hierarchy within a source code document.
These tree visualisation techniques include treemaps [JS91], cir-
cular treemaps [WWDW06], icicle trees [HBO10a], and sunburst
trees [SCGM00]. Each of these techniques have their pros and cons,
however, we believe that the circular treemap is well suited for
encoding the scope chain hierarchy of a source code document,
as the hierarchical structure is explicitly shown and the technique
strictly follows the “bubbles” metaphor used to explain the concept
of scope. For the next version of Scoped, an interesting user study
would be to investigate the effectiveness of each of these tree vi-
sualisation techniques, as to date, we do not have data on which
technique is optimal for the visualisation of a scope chain within a
source code document.

Link to code: Developers become ‘code-centric’ when working

with code, therefore visual representations of source code need to
clearly link the encoded information to the code, especially when
tasks involve source code manipulation [CFM05]. Programmers
want and need information to be provided in the context of their
working environment, which is a source code editor. Cordy [Cor03]
states that to achieve success, tools must present information in the
context of source code and provide strong coupling between code
and the visualisations.

Figure 2 shows a screenshot of Scoped. The tool consists of
three main components: A) An overview visualisation encoding the
scope chain within source code. B) The identifier (variable, func-
tion, and parameter) information panel. C) a source code editor.
Colour is used to link each of the components. Within the overview
visualisation, green is used to show in which scope the cursor is
currently located in within the source code editor. Blue is used to
represent the parent and ancestor scopes which the currently se-
lected scope can access, and grey is used to represented the re-
maining scopes that cannot be accessed. Additionally, the type of
scope (function or block) is encoded using solid or dashed lines.
The identifier information panel presents variables, functions, and
parameters that can be accessed in the currently selected scope.
Colour is used to show local identifiers (green) and identifiers be-
longing to parent or ancestor scopes (blue). The globe icon repre-
sents identifiers that belong to the global scope. Within the source
code editor the currently selected scope is highlighted in green (as
shown in the Figure 2), parent and ancestor scopes are highlighted
in blue, and scopes which cannot be accessed are highlighted in
grey, when hovering over an identifier in component B) or a node
within component A).

5. User experience evaluation

A pilot user experience evaluation study [LBI∗12] was conducted
to probe for further design requirements and to understand user be-
haviour when interacting with Scoped. Five participants took part
in the evaluation study which lasted for approximately 45 minutes
for each participant. The majority of the participants were post-
graduate students and none used JavaScript on a day to day basis.
In regards to using students, Kitchenham et al. [KPP∗02] state that
“using students as subjects is not a major issue as long as you are
interested in evaluating the use of a technique by non-expert users”.

The evaluation followed a think aloud protocol [Nie94], where
participants were encouraged to verbalise their thoughts as they
moved through the user interface to complete the given tasks. Each
participant was first given a short introduction to the visualisation
tool, where the main features and functionality of the tool were
explained. Next, each participant worked through a 15 minute tu-
torial together with the observer. After the tutorial, the participants
were given 2 tasks to complete. The first task involved answering a
series of questions related to scope issues in the context of the iden-
tifier category presented in Section 3. The questions included ask-
ing which identifiers (variables and functions) belonged to a spe-
cific scope, moving the cursor to a specific line in the code and
answering in which scope the cursor is currently located in, as well
as moving the cursor to a specific line in the code and answering
whether a certain identifier was accessible from that line. The sec-
ond tasks involved finding a bug within a source code fragment,

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

117



Bacher et al. / Scoped: Visualising the scope chain within source code

Figure 2: Scoped: A) Scope chain visualisation, B) Identifier information view, C) Code editor. Colour highlighting is used to link the
three components, where green represents the currently selected/local scope, blue represents scopes that can be accessed from the currently
selected scope, and grey represents scopes that cannot be accessed from the currenlty selcted scope.

where the bug was composed of a local variable using the same
name as a variable defined within the parent scope. After the par-
ticipants completed both of the tasks, they were asked to fill out a
short survey, which included questions relating to their experience
with the tool.

All of the participants frequently interacted with the visualisa-
tions within Scoped when attempting to answer the questions dur-
ing the first task. When answering the question of which identi-
fiers belong to the global scope, none of the participants investi-
gated the source code. Instead they moved the cursor to the global
scope within the source code editor or clicked on the circle rep-
resenting the global scope within the scope chain visualisation and
then investigated the identifier information panel in order to answer
the question. A participant commented “This is easier than looking
through the code, all I have to do is click on a circle or move the
cursor to a function and then I can find the information I am look-
ing for within the list view”. When asked to which scope a specific
variable belonged, the majority of the participants used the visuali-
sation first, and then looked at the code. An interesting observation
was that the participants seemed to use the visualisations to verify
their assumptions before answering the questions.

During the second task the participants mainly focused on the
code in order to understand its functionality. After the participants
understood how most of the code worked, they attempted to look
at the code in order to find any lines that might seem suspicious.
When a suspicious line was found, the participants glanced at the
visualisations within the tool in order to investigate which identifier
belonged to which scope and if an identifier could be accessed from
the currently selected scope.

The participants brought several issues to our attention. For ex-

ample, one participant stated that the identifier list view should sup-
port changing lines within the source code editor (e.g. navigating
to a specific line of code where a specific variable is declared or
accessed). While another participant stated that the link between
the source code editor and the identifier information panel could
be improved by adding a mechanism to highlight which variable is
currently of interest to the user. Most participants also stated that
it would have been helpful if labels were present within the scope
chain visualisation. We plan to use the feedback provided by the
participants in the next design iteration of the tool.

6. Conclusion

This work presented Scoped, an interactive visualisation tool to
support a programmer’s understanding of the scope chain and infor-
mation related to the scope chain within a source code document.
Additionally, the design rationale behind the main features of the
tool and the issues the tool aims to address were presented. In the
future we plan to integrate the feedback from the user experience
evaluation study in order to improve the design of Scoped. We also
plan on conducting further empirical evaluations to gather qualita-
tive and quantitative data on the usability and usefulness of combin-
ing source code editors with compact visual representations encod-
ing the complex properties of source code. Due to the positive feed-
back received from the user experience study, we believe that pro-
grammers are open to adopting visual tools during the process of
working with source code, given that the visualisations within the
tools clearly link the source code and that the source code clearly
links to the visual representations. A demo of the tool can be found
at: http://tiny.cc/jsscope.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

118



Bacher et al. / Scoped: Visualising the scope chain within source code

References

[BMK16a] BACHER I., MAC NAMEE B., KELLEHER J. D.: On us-
ing Tree Visualisation Techniques to support Source Code comprehen-
sion. In 2016 IEEE 4rd Working Conference on Software Visualization,
VISSOFT 2016 - Proceeding (2016), no. Figure 2. doi:10.1109/
VISSOFT.2016.8. 2

[BMK16b] BACHER I., MAC NAMEE B., KELLEHER J. D.: Using icicle
trees to encode the hierarchical structure of source code. In Proceedings
of EG/VGTC Conference on Visualization (EuroVis 2016) (2016), no. 2.
doi:10.2312/eurovisshort.20161168. 2

[BMK17] BACHER I., MAC NAMEE B., KELLEHER J. D.: The code-
map metaphor - a review of its use within software visualisations. In
Proceedings of the 12th Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (2017). 2

[CFM05] COX A., FISHER M., MUZZERALL J.: User perspectives on a
visual aid to program comprehension. In Proceedings - VISSOFT 2005:
3rd IEEE International Workshop on Visualizing Software for Under-
standing and Analysis (2005), pp. 70–75. doi:10.1109/VISSOF.
2005.1684308. 3

[CHM98] CROSS J. H., HENDRIX T. D., MAGHSOODLOO S.: Con-
trol Structure Diagram: An overview and initial evaluation. Empiri-
cal Software Engineering 3, 2 (1998), 131–158. doi:10.1023/A:
1008085415145. 2

[Cor89] CORBI T. A.: Program understanding: Challenge for the 1990s.
IBM Systems Journal 28, 2 (1989), 294–306. doi:10.1147/sj.
282.0294. 1

[Cor03] CORDY J. R.: Comprehending reality - Practical barriers to in-
dustrial adoption of software maintenance automation. Proceedings -
IEEE Workshop on Program Comprehension 2003-May (2003), 196–
205. doi:10.1109/WPC.2003.1199203. 3

[Cro13] CROCKFORD D.: JavaScript: The Good Parts, vol. 53.
2013. arXiv:arXiv:1011.1669v3, doi:10.1017/
CBO9781107415324.004. 1, 3

[Die07] DIEHL S.: Software visualization: Visualizing the structure,
behaviour, and evolution of software. 2007. doi:10.1007/
978-3-540-46505-8. 2, 3

[DLR05] DUCASSE S., LANZA M., ROBBES R.: Multi-level method
understanding using microprints. In Proceedings - VISSOFT 2005: 3rd
IEEE International Workshop on Visualizing Software for Understand-
ing and Analysis (2005), pp. 33–38. doi:10.1109/VISSOF.2005.
1684300. 2

[FM13] FARD A. M., MESBAH A.: JSNOSE: Detecting javascript code
smells. IEEE 13th International Working Conference on Source Code
Analysis and Manipulation, SCAM 2013 (2013), 116–125. doi:10.
1109/SCAM.2013.6648192. 2

[HBO10a] HEER J., BOSTOCK M., OGIEVETSKY V.: A Tour through
the Visualization Zoo A survey of powerful visualization techniques
, from the obvious to the obscure. Communications of the ACM
53, 5 (2010), 59–67. URL: http://cat.inist.fr/?aModele=
afficheN{&}cpsidt=22906879, doi:10.1145/1743546. 3

[HBO10b] HEER J., BOSTOCK M., OGIEVETSKY V.: A tour through
the visualization zoo. Commun. Acm 53, 6 (2010), 59–67. 2

[HCM02] HENDRIX D., CROSS J. H., MAGHSOODLOO S.: The effec-
tiveness of control structure diagrams in source code comprehension ac-
tivities. IEEE Transactions on Software Engineering 28, 5 (2002), 463–
477. doi:10.1109/TSE.2002.1000450. 1, 2

[HPS14] HUANG W., PARSONS P., SEDIG K.: Handbook
of Human Centric Visualization. 2014. URL: http:
//link.springer.com/10.1007/978-1-4614-7485-2,
doi:10.1007/978-1-4614-7485-2. 3

[JS91] JOHNSON B., SHNEIDERMAN B.: Tree-maps: a space-filling
approach to the visualization of hierarchical information struc-
tures. Proceeding Visualization ’91 (1991), 284–291. URL: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=175815, doi:10.1109/VISUAL.1991.175815. 3

[KMCA06] KO A., MYERS B., COBLENZ M., AUNG H.:
An Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance
Tasks. IEEE Transactions on Software Engineering 32, 12
(2006), 971–987. URL: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4016573,
doi:10.1109/TSE.2006.116. 1, 3

[KPP∗02] KITCHENHAM B. A., PFLEEGER S. L., PICKARD L. M.,
JONES P. W., HOAGLIN D. C., EL EMAM K., ROSENBERG J.:
Preliminary guidelines for empirical research in software engineer-
ing. IEEE Transactions on Software Engineering 28, 8 (2002),
721–734. URL: http://ieeexplore.ieee.org/xpl/
freeabs{_}all.jsp?arnumber=1027796{%}5Cnhttp:
//dl.acm.org/citation.cfm?id=636196.636197,
doi:10.1109/TSE.2002.1027796. 3

[LBI∗12] LAM H., BERTINI E., ISENBERG P., PLAISANT C., LAM H.,
BERTINI E., ISENBERG P., PLAISANT C., EMPIRICAL S. C., LAM H.:
Empirical Studies in Information Visualization : Seven Scenarios. IEEE
Transactions on Visualization and Computer Graphics (2012) (2012). 3

[LM10] LATOZA T. D., MYERS B. A.: Hard-to-answer ques-
tions about code. Evaluation and Usability of Programming
Languages and Tools on - PLATEAU ’10 (2010), 1–6. URL:
http://portal.acm.org/citation.cfm?doid=1937117.
1937125, doi:10.1145/1937117.1937125. 2

[MMNS83] MIARA R. J., MUSSELMAN J. A., NAVARRO J. A., SHNEI-
DERMAN B.: Program Indentation and Comprehensibility. Com-
munications of the ACM 26, 11 (1983), 861–867. URL: http://
portal.acm.org/citation.cfm?doid=182.358437, doi:
10.1145/182.358437. 1

[Nie94] NIELSEN J.: Usability engineering. Elsevier, 1994. 3

[PQ06] PETRE M., QUINCEY E. D.: A gentle overview of soft-
ware visualisation. PPIG News Letter, September (2006), 1 – 10.
URL: http://www.labri.fr/perso/fleury/courses/
PdP/SoftwareVisualization/1-overview-swviz.pdf,
doi:10.1.1.127.6350. 3

[SCGM00] STASKO J., CATRAMBONE R., GUZDIAL M., MCDONALD
K.: An evaluation of space-filling information visualizations for depict-
ing hierarchical structures. International Journal of Human-Computer
Studies 53, 5 (2000), 663–694. doi:10.1006/ijhc.2000.0420.
3

[Sim14] SIMPSON K.: You Don’t Know JS: Scope & Closures. 2014. 1,
3

[Sta16] [online]2016. URL: http://stackoverflow.com/
research/developer-survey-2016 [cited 02.02.17]. 3

[Tel15] TELEA A. C.: Data Visualization: Principles and Practice. 2015.
doi:10.1002/9780470417409.ch2. 1

[WLR10] WETTEL R., LANZA M., ROBBES R.: Empirical validation
of CodeCity: A controlled experiment. USI Technical Report Series in
Informatics (2010). URL: http://doc.rero.ch/lm.php?url=
1000,42,6,20110309110626-OX/ITR1005.pdf. 1

[WWDW06] WANG W., WANG H., DAI G., WANG H.: Visualization
of large hierarchical data by circle packing. Proceedings of the SIGCHI
conference on Human Factors in computing systems (2006), 517–520.
URL: http://doi.acm.org/10.1145/1124772.1124851,
doi:http://doi.acm.org/10.1145/1124772.1124851. 3

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

119

http://dx.doi.org/10.1109/VISSOFT.2016.8
http://dx.doi.org/10.1109/VISSOFT.2016.8
http://dx.doi.org/10.2312/eurovisshort.20161168
http://dx.doi.org/10.1109/VISSOF.2005.1684308
http://dx.doi.org/10.1109/VISSOF.2005.1684308
http://dx.doi.org/10.1023/A:1008085415145
http://dx.doi.org/10.1023/A:1008085415145
http://dx.doi.org/10.1147/sj.282.0294
http://dx.doi.org/10.1147/sj.282.0294
http://dx.doi.org/10.1109/WPC.2003.1199203
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1007/978-3-540-46505-8
http://dx.doi.org/10.1007/978-3-540-46505-8
http://dx.doi.org/10.1109/VISSOF.2005.1684300
http://dx.doi.org/10.1109/VISSOF.2005.1684300
http://dx.doi.org/10.1109/SCAM.2013.6648192
http://dx.doi.org/10.1109/SCAM.2013.6648192
http://cat.inist.fr/?aModele=afficheN{&}cpsidt=22906879
http://cat.inist.fr/?aModele=afficheN{&}cpsidt=22906879
http://dx.doi.org/10.1145/1743546
http://dx.doi.org/10.1109/TSE.2002.1000450
http://link.springer.com/10.1007/978-1-4614-7485-2
http://link.springer.com/10.1007/978-1-4614-7485-2
http://dx.doi.org/10.1007/978-1-4614-7485-2
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=175815
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=175815
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=175815
http://dx.doi.org/10.1109/VISUAL.1991.175815
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4016573
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4016573
http://dx.doi.org/10.1109/TSE.2006.116
http://ieeexplore.ieee.org/xpl/freeabs{_}all.jsp?arnumber=1027796{%}5Cnhttp://dl.acm.org/citation.cfm?id=636196.636197
http://ieeexplore.ieee.org/xpl/freeabs{_}all.jsp?arnumber=1027796{%}5Cnhttp://dl.acm.org/citation.cfm?id=636196.636197
http://ieeexplore.ieee.org/xpl/freeabs{_}all.jsp?arnumber=1027796{%}5Cnhttp://dl.acm.org/citation.cfm?id=636196.636197
http://dx.doi.org/10.1109/TSE.2002.1027796
http://portal.acm.org/citation.cfm?doid=1937117.1937125
http://portal.acm.org/citation.cfm?doid=1937117.1937125
http://dx.doi.org/10.1145/1937117.1937125
http://portal.acm.org/citation.cfm?doid=182.358437
http://portal.acm.org/citation.cfm?doid=182.358437
http://dx.doi.org/10.1145/182.358437
http://dx.doi.org/10.1145/182.358437
http://www.labri.fr/perso/fleury/courses/PdP/SoftwareVisualization/1-overview-swviz.pdf
http://www.labri.fr/perso/fleury/courses/PdP/SoftwareVisualization/1-overview-swviz.pdf
http://dx.doi.org/10.1.1.127.6350
http://dx.doi.org/10.1006/ijhc.2000.0420
http://stackoverflow.com/research/developer-survey-2016
http://stackoverflow.com/research/developer-survey-2016
http://dx.doi.org/10.1002/9780470417409.ch2
http://doc.rero.ch/lm.php?url=1000,42,6,20110309110626-OX/ITR1005.pdf
http://doc.rero.ch/lm.php?url=1000,42,6,20110309110626-OX/ITR1005.pdf
http://doi.acm.org/10.1145/1124772.1124851
http://dx.doi.org/http://doi.acm.org/10.1145/1124772.1124851

