
EUROVIS 2018/ J. Johansson, F. Sadlo, and T. Schreck Short Paper

Visual Analysis of Parallel Interval Events

J. Qi, C. Liu, B.C.M. Cappers, and H. van de Wetering

Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands

Abstract
System logs typically contain lines with time stamps that each describes an event. Where these events semantically form start
and end events, they can be combined into interval events. For visual event analytics, the analysis of interval events is more
complex than that of point events, since not only the order of events, but also temporal overlaps have to be taken into account.
To address this increased complexity and for the purpose of system understanding and analysis, we present SELE, a domain-
independent tool for visualizing parallel interval events. SELE is intended to be used on a single long trace of events. A visual
technique named strata timeline is developed to handle visual scalability issues. Finally, a multi-core parallel graph searching
algorithm is analyzed to demonstrate SELE.

CCS Concepts
•Human-centered computing → Visual analytics; Visualization systems and tools; •Information systems → Data analytics;

1. Introduction

For many systems (e.g. software systems and network traffic sys-
tems), tasks of system comprehension, maintenance, and perfor-
mance evaluation are typically goal-oriented and highly related to
actual system behavior during executions [Bal99]. Therefore, these
tasks benefit from analyzing system logs. However, system log
analysis may be challenging; not only due to the size of the log,
but also due to the complexity of the system. In this paper, we ap-
ply visualization to assist users in exploring a log in order to make
discoveries and identify problems.

System events can be categorized into two groups, point events
and interval events; they differ in whether the logger considers the
events to occur on a single time point or during a period of time.
Interval events are more difficult to visualize than point events, be-
cause not only the temporal order but also temporal overlap has
to be taken into account. Furthermore, systems nowadays are quite
often inherently parallel, resulting in more overlapping events, and
consequently more visualization challenges.

In this paper, we introduce a domain-independent visualization
tool named SELE (System Event Log Explorer) for visually explor-
ing parallel interval event logs. By applying SELE, users working
on an unfamiliar system are expected to quickly understand the sys-
tem for further problem addressing. Also, we develop a novel visual
technique, strata timeline to handle visual scalability issues.

The remainder of this paper is organized as follows. User tasks
and the data are described in Section 2 and Section 3, respectively.
Section 4 briefly reviews related work. Section 5 explains our visual
design. Section 6 presents a use case and elaborates on the user
tasks. Conclusions and future work are presented in Section 7.

2. User Tasks

With this work, we particularly target domain experts who may
work on unfamiliar systems and need to address higher-level con-
cerns, by identifying lower-level problems. For example, for net-
work attack prevention, abnormal network behaviors should be first
detected and then resolved. Hence, we expect SELE to assist in:

• Task 1: understanding the basics of the system, and
• Task 2: identifying problems.

Table 1: Typology of the User Tasks; words in italics indicate task
descriptions as used in [BM13].

Why Discover → Explore → {Summarize the basics of
the system (Task 1), Identify problems (Task 2)}.

How Encode + Select + Navigate + Arrange + Change +
Filter.

What Input: system execution logs; Output: timeline vi-
sualizations, statistical information of the system,
temporal patterns, abnormal behaviors.

The user tasks are further elaborated based on the multi-level ty-
pology of abstract visualization tasks introduced by M. Brehmer
et al., by answering three questions: why the task is performed,
how the task is performed, and what the task input and output
are [BM13]; see Table 1. In Section 6, we present a use case as
a real example of our user task.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/eurovisshort.20181074

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurovisshort.20181074


J.Qi, C. Liu, B.C.M. Cappers, H. van de Wetering / Visual Analysis of Parallel Interval Events

Figure 1: An event in our sample input data

3. The Data

Input data for SELE is a long trace of interval events that are col-
lected from a parallel system. Figure 1 shows a sample of events in
the input dataset used in our use case in Section 6. The data is for-
matted by the XES (eXtensible Event Stream) standard [Gün09].

In this work, an interval event e = (τ,α) consists of two parts:
an interval τ indicating the time duration, and an attribute vector α

containing further attributes, depending on the system that recorded
the log. While the interval information is obligatory, there are no
requirements for α. In that sense, SELE is domain-independent.

We call two events disjoint if their intervals are disjoint, other-
wise, they are called parallel. For two parallel events, if the in-
terval of one of them is a subset of the interval of the other, we
call these events fully parallel, otherwise partially parallel. In some
related work, limited visual scalability occurs, particularly for par-
tially parallel events. We further discuss this point in Section 5.

Some visualizations, like EventFlow [MLL∗13], visualize col-
lections of short traces. However, we focus on visualizing a single
long trace collected from a parallel system. Hence, the input for
SELE is an event log that typically consists of more than 100,000
events from a single system execution.

4. Related Work

In this section, we mostly review related work based on the visu-
alization technique applied: UML sequence diagram, Gantt chart,
stacked timeline, and 2D projection approach (Figure 2). For a gen-
eral review of time-oriented data visualization, we refer to the sur-
vey of W. Aigner et al. [AMST11].

UML sequence diagram is a widely used technique in this scope
[OMG07]. As Figure 2a shows, events are rendered in a multi-
timeline layout, where events are distributed over different time-
lines based on a reasonable attribute, such as object ID or thread ID

Figure 2: Existing approaches: (a) UML sequence diagram, (b)
Gantt chart, (c) stacked timeline, (d) 2D projection approach.
F1∼F3 indicate different timelines, while e1∼e4 represent events.

in software execution. Interactions between timelines are presented
by arrows. Timelines are typically displayed vertically. Some pre-
vious research focuses on improving the efficiency and usability
of UML sequence diagrams. W. De Pauw et al. introduced a more
efficient layout that partially merges different timelines without in-
volving temporal overlap [DPLVW98]. S. Xie et al. simplified the
encoding of events within a single timeline [XKS∗09]. Addition-
ally, interactive techniques were developed to improve the space
usage of UML sequence diagrams [SR05].

Gantt charts also employ the multi-timeline layout, but are ren-
dered horizontally and typically without arrows [CPT52]; see Fig-
ure 2b. Among others, the shape, color, and thickness of the bars are
used to encode properties of the events. For example, C. Plaisant
et al. employed the thickness of the bars and additional icons
[PSM98]. There are some variations of the layout. J.C. De Ker-
gommeaux et al. added arrows back for important interactions only
[DKdOS00]. S. Luz and M. Masoodian introduced an approach of
rendering Gantt charts called temporal mosaic that displays concur-
rent events by allocating a fixed drawing area to time intervals and
partitioning that interval by the number of parallel events in that
interval [LM10]. J. Jo et al. introduced an interactive schedule for
Gantt charts that aggregates similar nearby events to improve visual
scalability [JHP∗14]. Some authors also varied the type of data.
N.W. Kim et al. introduced TimeNet that improved Gantt charts es-
pecially for genealogical data [KCH10]. L. Chittaro and C. Combi
introduced approaches mainly focusing on relations between tem-
poral intervals [CC03].

A disadvantage of a multi-timeline layout is the limited visual
scalability, resulting from the inefficient usage of visual space. With
increased data sizes, the number of timelines can increase sharply
and the charts can easily get very large but sparse. In contrast,
stacked timelines render events stacked one by one in a single time-
line (Figure 2c). Stacked timelines with a more compact layout are
used by P. André et al. [AWR∗07] to visualize music history; see
Figure 4b. However, the vertical dimension no longer shows the
temporal order of the events. Sometimes, there are special relations
between events, such as interplays between software threads visual-
ized by B. Karran et al. [KTD13], and the software method calling
relations visualized by J. Trümper et al. [TBD10].

All the techniques above project the time component of events
in a one-dimensional space. However, some techniques project the
time component to a two-dimensional space. For instance, Y. Qiang
et al. introduced a triangular model to visualize interval events, see
Figure 2d, where the y-axis represents the half event length and the
x-axis represents time [QDV∗12]. Start and end time of events are
projected sideways to the time dimension by 45 and 135 degrees.
Differently, J.F. Rit introduced an approach named SOPOs (Set Of
Possible Occurrences), where the two dimensions correspond to the
possible start and end time of events [Rit86]. 2D projection ap-
proaches usually tend to be less intuitive, due to the unfamiliarity
with the chosen mapping.

Concluding, we consider stacked timelines more suitable for our
case, because they have better visual scalability than UML se-
quence diagrams and Gantt Charts. Also, they render events more
intuitively than 2D-projection approaches.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

32



J.Qi, C. Liu, B.C.M. Cappers, H. van de Wetering / Visual Analysis of Parallel Interval Events

Figure 3: SELE shows a running log of a multi-core searching algorithm containing 205,272 events. (a) The control panel contains basic
settings for the visualization. (b) The selection view lets users generate selections from the whole data based on domain knowledge and tasks.
(c) The main view displays events from the overview and detailed angles. (d) The pattern view shows visual pattern matches.

5. Visual Design

In this section, we motivate the visual design of SELE. Figure 3
shows the graphical user interface of SELE. The main view con-
tains a minimap, showing the context, and a number of detailed
views showing different facets of events. The main view lays in
the middle to attract the most attention, with the control panel, the
selection view, and the pattern view surrounding it.

A core decision is to choose the visual technique employed in
the main view (Figure 3c), which can significantly affect the per-
formance of users. In Section 4, we conclude that stacked timeline
can be a better choice than the other techniques. However, visual
scalability issues still remain, particularly for visualizing partially
parallel events, which are considered to be typical in our case. As
Figure 4a and 4b show, visual space can be easily wasted in stacked
timelines. Space formed by partially parallel events cannot be effi-
ciently filled by events coming later. To overcome this limitation,
we develop strata timeline as a visual technique for efficiently ren-
dering partially parallel interval events.

Strata timelines are similar to stacked timelines in the sense that
events are rendered as lines along the temporal dimension. The
main difference is the way of rendering partially parallel events.
Strata timelines result in a more compact layout than that of either
stacked timelines or compact stacked timelines; compare Figure 4
a, b, and c. By design, the vertical order in strata timelines cor-
responds to the temporal order of events. We claim that this im-
proves readability, especially for visualizing many parallel events.
To achieve both compactness and maintain temporal order, strata
timelines bend partially parallel events to nestle up to the fluctua-
tion below, instead of being further rendered as a straight line. This
approach is named strata timelines because of its visual similar-
ity to strata, geological layers of sedimentary rock that are visually
distinguishable from adjacent layers.

Additionally, we employ an accordion-like design to improve the
scalability of the minimap. The minimap is divided into segments,

Figure 4: Comparing stacked timelines with strata timelines in
case of visualizing partially parallel events. Horizontal linked dot
lines represent events. Yellow areas show the total space occupa-
tions and red areas show the wasted space: (a) a stacked timeline,
(b) a compact stacked timeline, and (c) a strata timeline.

where only one segment at a time can be expanded. Also in each
of the segment, a stacked histogram shows distributions of selected
events and patterns: see Figure 3c. As explained in Figure 5c, the
minimap benefits from this "focus+context" design for showing a
handier sliding window while keeping a considerable length of the
map. The idea was inspired by the accordion drawing introduced by
J. Slack [SHMJ04]. Also, R. Kincaid introduced SignalLens show-
ing the efficiency of this accordion-like design [Kin10].

Figure 5: Alternative designs of the minimap. Blue bars represent
the map and the yellow bars represent the sliding windows. (a) The
map fits the screen but leads to a too narrow sliding window and
a distorted minimap. (b) The minimap is clearly recognizable but
may be too long to fit the screen. (c) The accordion-like minimap,
with 5 segments, allows reasonable width of both the map and the
sliding window, while keeping the readability of the minimap.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

33



J.Qi, C. Liu, B.C.M. Cappers, H. van de Wetering / Visual Analysis of Parallel Interval Events

Since our tool is designed to be domain-independent, the ab-
sence of domain knowledge could lead to difficulties in solving
domain-specific problems. Therefore, we involve a selection view
that enables users to select and individually visualize subsets of
data. Those smart selections reflect users’ domain knowledge. In
this sense, our tool becomes domain-aware. Furthermore, a visual
pattern matching function is provided. Patterns are visually selected
by range selectors in the main view, while matches are highlighted
in separate views. Currently, exact matching of temporal order of
events is employed. Some more details are presented in Section 6.

6. Use Case

We conduct a use case for demonstrating the functionality of
SELE and illustrating our user tasks. A video showing this use
case is provided as supplementary material. This use case fea-
tures 205,272 events from an actual log. The program mainly real-
izes a randomized multi-core depth-first search algorithm for par-
allel decomposition of graphs in strongly connected components
(SCCs) [BLvdP16]. The user wants to improve the program perfor-
mance by preventing unnecessary thread blocking. However, the
user has little knowledge about the algorithm. Also, thread block-
ing is hardly observable within source code. In this case, the user
tasks are abstracted as : (Task 1) basically understanding the pro-
gram, and (Task 2) detecting potential thread blocking in a log file.

Task 1 After loading a log file, the main view is activated. Users
can choose a segment on the minimap and explore the data by drag-
ging the sliding window. Also, details are shown in a tooltip while
hovering over an event in the detailed view. After right-clicking on
the whole-dataset selection shown in the section view by default, a
widget pops up to show basic information about the data. For ex-
ample, in this use case, there are 9 methods involved in the data,
where the most frequently called one is FIND; see the demo video
and Figure 6. By using this widget, users can also create selections
based on their domain knowledge. In this use case, events in threads
1 and 2 are selected and colored green and red, respectively. The ex-
ecution of these two threads can be observed within the context of
the whole dataset or observed individually (Figure 3c).

In this use case, the program functionality is abstracted from the
log by visually detecting frequent event patterns. As shown in Fig-
ure 3, the blue and yellow boxes highlight two patterns that indicate

Figure 6: A pop-up widget for showing basic data information and
creating selections by users.

Figure 7: Potential thread blocking indicated by the abnormal be-
havior of the red thread, where only one event of the red thread
exists during a long time

the forward-searching and backward-tracking of the algorithm, re-
spectively. Meanwhile, a list of the pattern matches is shown for
comparison of matches; see the bottom half of Figure 3d.

Task 2 With the stacked histogram on the minimap, the potential
thread blocking can be easily observed. As Figure 7a shows, there
are segments containing much fewer red events than others. As ev-
idence, it can be seen in Figure 7b that many other threads (e.g. the
green thread) work more actively. In contrast, there is only one red
event running on the bottom. This abnormal behavior is considered
an indicator of potential thread blocking.

7. Conclusion

In this paper, we address the challenge of visualizing parallel inter-
val events. We summarize our contributions as follows:

• A domain-independent visualization tool named SELE for ana-
lyzing parallel interval events within a long trace of events. This
tool aims at assisting domain experts to quickly understand sys-
tems and identify lower-level problems for solving higher-level
concerns. We also demonstrate the usage of SELE with a use
case involving a real dataset.

• A visual technique named strata timeline that overcomes the lim-
ited visual scalability of existing approaches.

For further research we consider the following steps.

• Evaluation of SELE and especially the strata timeline: Since
SELE is designed to be domain-independent, it needs evaluation
with users and use cases from different domains. Strata timelines
need to be evaluated in a perception study.

• Improvement of the visual pattern matching to support patterns
containing semantic information: Others have worked on this
already. For instance, temporal relations between events have
been realized in the temporal query searching function of Event-
Flow [MLDO∗13]. However, in many cases, semantic relations
between events are also important to detect and understand the
artifacts in traces. For example, comprehension of programming
structures, like co-recursion and self-reference, is challenging
when using only source code. Visually detecting patterns of re-
cursions on software execution logs might be a good alternative.

Acknowledgement

We thank Vincent Bloemen of the University of Twente for provid-
ing the data. This research was funded by the Dutch 4TU project
"Big Software on the Run".

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

34



J.Qi, C. Liu, B.C.M. Cappers, H. van de Wetering / Visual Analysis of Parallel Interval Events

References
[AMST11] AIGNER W., MIKSCH S., SCHUMANN H., TOMINSKI C.:

Visualization of time-oriented data. Springer Science & Business Media,
2011. 2

[AWR∗07] ANDRÉ P., WILSON M. L., RUSSELL A., SMITH D. A.,
OWENS A., ET AL.: Continuum: designing timelines for hierarchies, re-
lationships and scale. In Proceedings of the 20th annual ACM symposium
on User interface software and technology (2007), ACM, pp. 101–110.
2

[Bal99] BALL T.: The concept of dynamic analysis. In Software Engi-
neering - ESEC FSE (1999), Springer, pp. 216–234. 1

[BLvdP16] BLOEMEN V., LAARMAN A., VAN DE POL J.: Multi-core
on-the-fly SCC decomposition. In Proceedings of the 21st ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(2016), ACM, p. 8. 4

[BM13] BREHMER M., MUNZNER T.: A multi-level typology of abstract
visualization tasks. IEEE Transactions on Visualization and Computer
Graphics 19, 12 (2013), 2376–2385. 1

[CC03] CHITTARO L., COMBI C.: Visualizing queries on databases of
temporal histories: new metaphors and their evaluation. Data & Knowl-
edge Engineering 44, 2 (2003), 239–264. 2

[CPT52] CLARK W., POLAKOV W. N., TRABOLD F. W.: The Gantt
Chart. London, 1952. 2

[DKdOS00] DE KERGOMMEAUX J. C., DE OLIVEIRA STEIN B.: Pajé:
an extensible environment for visualizing multi-threaded programs ex-
ecutions. In European Conference on Parallel Processing (2000),
Springer, pp. 133–140. 2

[DPLVW98] DE PAUW W., LORENZ D. H., VLISSIDES J. M., WEG-
MAN M. N.: Execution patterns in object-oriented visualization. In
COOTS (1998), vol. 98, pp. 16–16. 2

[Gün09] GÜNTHER C.: Extensible event stream xes standard definition.
2

[JHP∗14] JO J., HUH J., PARK J., KIM B., SEO J.: LiveGantt: Interac-
tively visualizing a large manufacturing schedule. IEEE transactions on
visualization and computer graphics 20, 12 (2014), 2329–2338. 2

[KCH10] KIM N. W., CARD S. K., HEER J.: Tracing genealogical data
with timenets. In Proceedings of the International Conference on Ad-
vanced Visual Interfaces (2010), ACM, pp. 241–248. 2

[Kin10] KINCAID R.: SignalLens: Focus+context applied to electronic
time series. IEEE Transactions on Visualization and Computer Graphics
16, 6 (2010), 900–907. 3

[KTD13] KARRAN B., TRUMPER J., DOLLNER J.: Synctrace: Visual
thread-interplay analysis. In Software Visualization (VISSOFT), 2013
First IEEE Working Conference on (2013), IEEE, pp. 1–10. 2

[LM10] LUZ S., MASOODIAN M.: Improving focus and context aware-
ness in interactive visualization of time lines. In Proceedings of the 24th
BCS Interaction Specialist Group Conference (2010), British Computer
Society, pp. 72–80. 2

[MLDO∗13] MONROE M., LAN R., DEL OLMO J. M., SHNEIDERMAN
B., PLAISANT C., MILLSTEIN J.: The intervals and absences of tempo-
ral query. In Proceedings of the 2013 Annual Conference Human Factors
in Computing Systems (2013). 4

[MLL∗13] MONROE M., LAN R., LEE H., PLAISANT C., SHNEIDER-
MAN B.: Temporal event sequence simplification. IEEE transactions on
visualization and computer graphics 19, 12 (2013), 2227–2236. 2

[OMG07] OMG O.: Unified modeling language (OMG UML). Super-
structure (2007). 2

[PSM98] PLAISANT C., SHNEIDERMAN B., MUSHLIN R.: An informa-
tion architecture to support the visualization of personal histories. Infor-
mation Processing & Management 34, 5 (1998), 581–597. 2

[QDV∗12] QIANG Y., DELAFONTAINE M., VERSICHELE M.,
DE MAEYER P., VAN DE WEGHE N.: Interactive analysis of time
intervals in a two-dimensional space. Information Visualization 11, 4
(2012), 255–272. 2

[Rit86] RIT J.-F.: Propagating temporal constraints for scheduling. In
AAAI (1986), vol. 86, pp. 383–388. 2

[SHMJ04] SLACK J., HILDEBRAND K., MUNZNER T., JOHN K. S.: Se-
quencejuxtaposer: Fluid navigation for large-scale sequence comparison
in context. In German conference on bioinformatics (2004), vol. 53. 3

[SR05] SHARP R., ROUNTEV A.: Interactive exploration of UML se-
quence diagrams. In Visualizing Software for Understanding and Analy-
sis, 2005. VISSOFT 2005. 3rd IEEE International Workshop on (2005),
IEEE, pp. 1–6. 2

[TBD10] TRÜMPER J., BOHNET J., DÖLLNER J.: Understanding com-
plex multithreaded software systems by using trace visualization. In Pro-
ceedings of the 5th international symposium on Software visualization
(2010), ACM, pp. 133–142. 2

[XKS∗09] XIE S., KRAEMER E., STIREWALT R. K., DILLON L. K.,
FLEMING S. D.: Design and evaluation of extensions to UML sequence
diagrams for modeling multithreaded interactions. Information Visual-
ization 8, 2 (2009), 120–136. 2

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

35


