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Abstract
Mental workload is a cognitive effort felt by users while solving tasks, and good visualizations tend to induce a low mental work-
load. For better visualizations, various visualization techniques have been evaluated through quantitative methods that compare
the response accuracy and performance time for completing visualization tasks. However, accuracy and time do not always rep-
resent the mental workload of a subject. Since quantitative approaches do not fully mirror mental workload, questionnaires and
biosignals have been employed to measure mental workload in visualization assessments. The electroencephalogram (EEG) as
biosignal is one of the indicators frequently utilized to measure mental workload. Since everyone judges and senses differently,
EEG signals and mental workload differ from person to person. In this paper, we propose a mental workload personalized
estimation model with EEG data specialized for each individual to evaluate visualizations. We use scatter plot, bar, line, and
map visualizations and collect NASA-TLX scores as mental workload and EEG data. NASA-TLX and EEG data as training data
are used for the mental workload estimation model.

CCS Concepts
• Human-centered computing → Visualization design and evaluation methods; • Computing methodologies → Supervised
learning by classification;

1. Introduction

Mental workload is a cognitive effort felt by users while solv-
ing tasks. To evaluate the mental workload from visualization, re-
searchers ask users to solve visual analytics tasks through visual-
izations. Many researchers say that visualization can be evaluated
with accuracy and response time because good visualization makes
successful completion of given tasks [Loh97, SML∗17]. Neverthe-
less, it is difficult to achieve both high accuracy and low response
time at the same time [Pla04]. Therefore, it is necessary to use
additional metrics along with response time and accuracy to mea-
sure mental workload in visualization evaluation. Generally, ques-
tionnaires such as NASA Task Load Index (NASA-TLX) [AH21]
have been utilized to measure mental workload. However, partici-
pants have the hassle of repeating the evaluation session every time
after performing each task during entire the experiment to mea-
sure the mental workload. Therefore, researchers examine biosig-
nals such as electroencephalogram (EEG) to avoid questionnaires
in the evaluation process [GTL∗21,CXL20]. However, as far as we
know in visualization evaluation, there is only one study. Ander-
son et al. [APM∗11] study visualization evaluation using mental
workload. They employ Extraneous Cognitive Load (ECL) calcu-
lated with alpha and the frequency bands in the EEG. Their study is
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similar to our approach in that the visualization is evaluated using
EEG. They estimate mental workload with mathematical analysis
on EEG data and evaluate only the boxplot visualization. However,
we apply deep learning on EEG data to estimate mental workload
and evaluate the scatter, bar, line, and map visualizations. In this
paper, we study the mental workload estimation model using EEG
in the visualization evaluation. Since there is a difference in in-
dividual mental workload when extracting information from data
visualizations [LKK17], we propose a mental workload estimation
model with EEG data specialized for each individual to evaluate
visualizations. We have participants perform visualization tasks to
collect EEG data and NASA- TLX scores. After performing the
visualization tasks, the participants answer the NASA-TLX ques-
tionnaires. In the preprocessing, band power data of EEG are ex-
tracted as train data, and the NASA- TLX scores as labeled data
are converted to a 10-point Likert workload level using a weighted
matrix. Then, we train the model with the train data and label data
for mental workload estimation.

2. Experiment Design

In this section, we present the experiment for data collection to
train our mental workload estimation model as visualization eval-
uation. In the experiment, we showed four visualization types, in-
cluding scatter plot, bar chart, line chart, map for R datasets and
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Figure 1: Experiment procedure. 6 practice tasks and 72 experi-
ment tasks are presented to the participants.

geographic datasets [pro, osI, PAPB19]. The experimental proce-
dure is demonstrated in Figure 1. The participant is presented with
a visualization and a visualization task at the same time. The par-
ticipant uses the visualization to answer the visualization task and
records the answer. While the participant performs the visualization
task, the response time is collected. Afterward, the participant takes
a NASA-TLX survey and takes a break. After the rest, the next set
of visualization and visualization task is given newly. The partici-
pant performs a total of 78 visualization tasks, including 6 practice
tasks and 72 experiment tasks. During the experiment, EEG data
and NASA-TLX score were collected. Since our study is to create
a specialized model for each individual, one participant is suffi-
cient for the validation. Nevertheless, we recruited 7 participants to
demonstrate that our model works for diverse EEG data from nu-
merous participants, including three male students and four female
students. Among the participants, three major in data visualization
(Ph.D., MS), and four are undergrads who took a data visualization
class.

We employ the NASA-TLX to measure the mental workload.
We estimate the weight array by comparing scores for subscales of
NASA-TLX and adding weights to subscales with higher scores.
After that, the NASA-TLX score is calculated by multiplying the
weight array and the subscale scores.

We collected EEG data using the Emotiv epoc+ device [HSb]
and the API [HSa] provided by Emotiv company. We removed arti-
facts in the EEG data with the Emotive API. We placed the Emotiv
epoc+ sensors on the participants’ heads so that the sensor contact
quality is at least 85% or higher in all channels. The band power
data for each channel include delta (0.5 ∼ 8Hz), theta (4 ∼ 8Hz),
alpha (8 ∼ 12Hz), low beta (12 ∼ 16Hz) ), high beta (16 ∼ 25Hz),
and gamma (25 ∼ 45Hz). Since the band power data has a wide
range of values, it is not suitable for use as an input to a neural net-
work. Therefore, we use MinMax normalization to normalize the
dataset into a range from 0 to 1.

3. Mental Workload Estimation Model for Visualization

In this section, we present our mental workload estimation model
using only EEG data. The proposed model classifies the mental
workload level as 0∼10 with EEG band power data. In the model,

we utilize the EEG data preprocessed in Section 2 as input. We
also convert the NASA-TLX score calculated in Section 2 to men-
tal workload level and utilize the level as a label. Then, we esti-
mate the mental workload level utilizing with various models, in-
cluding Support Vector Machine (SVM), which is the most used
machine learning model in previous studies, and Deep Neural Net-
work (DNN), Convolutional Neural Network (CNN), and Long-
Short Term Memory (LSTM), which are deep learning models.

We perform the classification as a model for estimating mental
workload. Since classification is the task of classifying data into
appropriate labels, the NASA-TLX score calculated in Section 2 is
used as the label. However, the NASA-TLX score is a 100-point
Likert scale, and the range is too broad. Therefore, it is difficult
to achieve good performance because the number of scores corre-
sponding to each label is small. Hence, the NASA-TLX score is
reduced to a 10-point Likert scale, which is used as a label for the
classification. Note that the larger Likert scale indicates more men-
tal workload. We measure the F1-scores when applying the test set
in the models trained using the train set. The mental workload esti-
mation average accuracies of the models for the 7 participants are
26.22% for SVM, 88.57% for DNN, 82.67% for CNN, and 80.76%
for LSTM.

4. Conclusion

In this paper, we proposed a mental workload estimation model
for visualization evaluation using EEG data. EEG data and NASA-
TLX score measured from 7 participants were preprocessed and
used to train models, including SVM, DNN, CNN, and LSTM. The
performances were compared with F1 scores, and the DNN model
produced the best performance. From this study, we believe it is
possible to evaluate visualizations with our proposed model. While
EEG data is collected when a participant performs visualization
tasks, the mental workload is predicted instantly. Since the EEG
signal patterns vary depending on the participants, we trained the
model separately with individual EEG data and obtained satisfac-
tory performances. However, there exist differences in the predic-
tion accuracies. Therefore, we plan a study to improve the predic-
tion accuracy of the model by finding the changing patterns of EEG
data according to mental workload through additional data collec-
tion. Also, we plan to improve the model performance with various
EEG data preprocessing methods, such as the corresponding PSD
analysis and feature extraction. We also examine more diverse vi-
sualization type to distinguish various mental workload levels.
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