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Abstract
Color coding is a fundamental technique for mapping data to visual representations, allowing people to carry out
comprehension-based tasks. Process tomography is a rapidly developing non-invasive imaging technique used in various fields
of science due to its effective flow monitoring and data acquisition [KŁS∗19]. To study how well colormaps can support visual
comprehension of tomographic data, we conduct a feasibility evaluation of 11 widely-used color schemes. We employ the same
segmentation tasks characterized by Microwave Tomography (MWT) on each individual chosen colormap, and then conduct a
quantitative assessment of those schemes. Based on the insight gained, we conclude that autumn, viridis, and parula colormaps
yield the best segmentation results. According to our findings, we propose a colormap design guideline for practitioners and
researchers in the field of process tomography.

CCS Concepts
• Human-centered computing → Visualization design and evaluation methods;

1. Introduction

Color coding plays a critical role in a wide range of visualization
tasks which are pervasively used in miscellaneous application sce-
narios. Appropriate color scheme usage in graphs, images, and an-
imations contributes to better expressiveness and persuasiveness
among visual representations. Color is a retinal variable which is
conventionally determined by hue, saturation and brightness (HSB)
as dimensions in perception-based applications [SWTS05]. Re-
search has proven that using different colormaps can cause differ-
ing interpretations, depending on how the visualization is perceived
by the human eye [SGS∗18]. That is, the selection of colormaps
significantly influences a person’s visual comprehension of data.

Tomography is a widely-used imaging technique in medical
and industrial contexts. Microwave tomography (MWT) is a
specific type of tomography with non-ionizing properties that
is commonly used in industrial process applications [WW17].
MWT can significantly contribute to a more sustainable process
industry by reducing the use of energy and material. A critical
problem in leveraging these benefits is achieving a more accurate
control of the heating process. MWT images–offering information
that can be visualized using colormaps–are key in controlling
the heating process. For example, Figure 1 presents the set of 8
MWT image samples used in our study. Each sample was acquired
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from a confined microwave foam drying, revealing post-process
moisture levels. An operator’s comprehension of an MWT image
is key in recognizing those moisture levels on images. In this short
paper, we implement a systematic study followed by a quantitative
evaluation to develop a colormap design guideline for supporting
visual comprehensibility for MWT images.

Colormap design and selection has received attention over recent
decades. Bergman et al. explore a rule-based tool to help choose
the best colormap for isomorphic, segmentation, and highlighting
tasks [BRT95]. Schulze-Wollgast et al. exploit an enhanced auto-
matic color coding framework by encapsulating metadata extrac-
tion, colormap adaptation, and color legend creation [SWTS05].
Tominski et al. have developed a color coding function to choose
color scales according to particular tasks [TFS08]. Similarly, Mit-
telstädt et al. [MJSK15] propose a guided tool for selecting suit-
able colormaps for combined analysis tasks. By conducting sev-
eral hands-on crowdsourcing experiments with appropriate partici-
pants, Reda et al. [RNAK18] have designed a guideline indicating
that rainbow scheme or diverging colormaps afford superior accu-
racy for tasks requiring gradient perception. Likewise, Turton et
al. [TWSR17] also leverage a crowdsourced tool called Ware color
key to assess various colormaps.

In this paper, we concentrate on colormap design for visual com-
prehension of MWT images based on a segmentation task. To bal-
ance energy effectiveness, material flow, and safety aspects, it is
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Figure 1: The 8 MWT image samples in our study. Different colors
represent different foam moisture levels; blue is the desired color,
representing lower moisture levels.

crucial that humans – or computers – accurately interpret such im-
ages. As an extension of recently presented work [ZMO∗19], we
implement a more extensive study focusing on a segmentation task.
The main contributions of this paper are investigating how various
colormaps affect task accuracy in the context of MWT and propos-
ing a design guideline for selecting colormaps yielding accurate
visual understanding.

2. Methodology

There is a total of 8 MWT images included in this study obtained
from 8 different and independent industrial microwave foam dry-
ing processes, as shown in Figure 1. Different colors displayed on
the images imply different foam moisture levels. To judge the suc-
cess of the designated drying processes, it is crucial to measure the
low moisture areas and levels by inspecting the MWT images. Typ-
ically, the preferred color to show low moisture level in an MWT
image is blue.

The MWT image reconstructed from a microwave foam drying
process possesses an intrinsic continuous colormap throughout be-
ing handled in MATLAB, which is denoted as parula. Thus, all
the 8 images in our study are presented in this colormap. In addi-
tion, we choose another 10 commonly-used continuous colormaps
(listed and elaborated in Figure 2) which are able to reveal the
useful information in MWT according to different categories, with
which we deploy the same segmentation task, in total 11.

Figure 2: The illustration of 11 chosen colormaps.

2.1. Colormaps

In the following sections, we investigate whether the commonly
adopted colormaps varying the degrees in luminance and hues dif-
fer the efficiency and effectiveness in the same segmentation task.
The selection of colormaps is based on recently published colormap
design papers, composing following 5 (4+1) design strategies.

– Sequential: Change in lightness and often incremental satura-
tion of color, often using a single hue; should be used for repre-
senting information that has ordering.

∗ Sequential 1: Perceptually uniform, with each new color
equally perceptually distinct from the previous and follow-
ing colors.

∗ Sequential 2: Lightness values monotonically increase.
∗ Sequential 3: In the lightness function space, there will be a

plateau, or the function may go both up and down.
∗ Sequential 4: In the lightness function space, there are some

kinks in the function.

– Diverging: Change in lightness and possibly saturation of two
different colors that meet in the middle at an unsaturated color;
used in information being plotted has a critical middle value,
such as topography or when the data deviates around zero.

The design strategy for each colormap is elaborated as follows.

∗ parula: The default colormap in MATLAB.
∗ viridis: The default blue-green-yellow colormap in Matplotlib,

a nice sequential colormap [Mor09, Bre94].
∗ magma: Another perceptually-uniform black-purple-pink col-

ormap [Mor09, Bre94].
∗ Greys: Simple grayscale color bar [SGS∗18].
∗ Blues: Simple blue color bar [SGS∗18, RNAK18].
∗ cool: Cyan-magenta color map; based on colormap of the same

name in Matlab [BRT95].
∗ autumn: Sequential increasing shades of red-orange-yellow

[SGS∗18].
∗ hot: Sequential black-red-yellow-white, to emulate blackbody

radiation from an object at increasing temperatures [SGS∗18].
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Figure 3: Top-down image processing pipeline (arrow): each of the 11 colormaps (1st row) is applied to the same MWT image sample
resulting in (2nd row), and yielding corresponding segmented images (3rd row). Due to limited space, here we randomly choose one sample
from our whole 8 samples.

∗ copper: Sequential increasing shades of black-copper [Bre94].
∗ Spectral: Diverging, multi-hue encompassing a subset of the

rainbow with a yellow middle [RNAK18].
∗ coolwarm: Diverging blue-gray-red, meant to avoid issues with

3D shading, color blindness, and ordering of colors [Mor09,
RNAK18].

2.2. Quantitative Evaluation

After selection, we convert our MWT images with the chosen col-
ormaps by using OpenCV. Thus, we are able to observe each col-
ormap in segmenting the the desired low moisture areas (blue parts
on the images in parula colormap). Following such implementa-
tion, we have acquired the underlying ability of the selected 11 col-
ormaps in context of the MWT segmentation task (Figure 3). The
segmentation with each colormap is conducted by the same auto-
matic method proposed in [ZMO∗19]. From the preliminary re-
sults, we are able to infer that parula, viridis, cool, hot, and autumn
schemes are capable to visualize the blue parts from the source im-
age in segmentation. To validate the outcome acquired, we adopt
three data-driven metrics to quantitatively assess the performance
of the colormaps by following [ZMO∗19] as well. We employ
Jaccard index, Dice coefficient, and false positive as assessments
(Equations 1–3). Source denotes the source MWT image to be seg-
mented while segmentation represents the segmented image.

Jaccard index =
|Source∩Segmentation|
|Source∪Segmentation| (1)

Dice coefficient = 2× |Source|∩ |Segmentation|
|Source|+ |Segmentation| (2)

False positive =
|Segmentation|− |Source∩Segmentation|

|Source| (3)

3. Result

As mentioned in the introduction, this study allows us to find the
colormaps which best facilitate visual comprehension for MWT in
segmentation tasks. We pick the whole 8 MWT image samples then
implement the same segmentation for them with each of the 11 col-
ormaps. By the three metrics on all sample and colormap combina-
tions, we obtain the output shown in Tables 1-3 and Figures 4-6.

Table 1: Jaccard index data: Comprehensive performance compar-
ison between 11 colormaps for 8 samples.

1© 2© 3© 4© 5© 6© 7© 8©
parula 0.942 0.938 0.950 0.976 0.985 0.986 0.986 0.932
viridis 0.995 0.981 0.990 0.928 0.993 0.971 0.987 0.950
magma 0.325 0.374 0.332 0.378 0.368 0.657 0.282 0.527
Greys 0.687 0.703 0.683 0.664 0.694 0.534 0.624 0.733
Blues 0.497 0.393 0.390 0.388 0.699 0.692 0.391 0.393
cool 0.797 0.793 0.780 0.796 0.795 0.792 0.895 0.895
hot 0.897 0.793 0.785 0.796 0.795 0.798 0.839 0.884
autumn 0.997 0.993 0.990 0.908 1.0 0.995 1.0 0.995
copper 0.607 0.636 0.664 0.631 0.675 0.781 0.602 0.749
Spectral 0.396 0.193 0.287 0.198 0.192 0.321 0.174 0.268
coolwarm 0.297 0.288 0.281 0.299 0.199 0.285 0.195 0.256

For Jaccard index and Dice coefficient, the higher value represents
the better performance while vice versa in false positive values.

From the output shown, we note that all colormaps perform uni-
formly across all examples. In both Jaccard index and Dice coef-
ficient, autumn scheme reaches very a high value, even approach-
ing 1.0 in some cases, which demonstrates excellent performance.
Similarly, it yields considerably low false positive assessment over
the whole samples. Colormaps viridis and parula obtain brilliant
performance consistently among the three metrics assessment. By
observing the tables and diagrams, it is noteworthy that colormaps
Spectral, coolwarm, and magma have the low evaluation outcomes
(low Jaccard index and Dice coefficient values but high false pos-
itive values) corresponding to initial results (In Figure 3, those 3
colormaps are not able to visualize the blue parts correctly). By
combining the complete results, it is fair to conclude that autumn,
viridis, and parula schemes appear to be the most desirable choices.

4. Discussions and Guideline

Firstly, inspired by the previous studies, we intend to investigate
which colormaps are viewed as the most accurate in supporting a
comprehension-based MWT segmentation task. Secondly, the 11
selected colormaps are chosen based on different design strategies
to verify our hypothesis. Our integrated quantitative evaluation sug-
gests that autumn, viridis, and parula are the most appropriate color
schemes. Our study also suggests that some colormaps are not ap-
plicable in the context of MWT. This is because diverse colormaps
perform differently in computer vision related tasks due to they
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Table 2: Dice coefficient data: Comprehensive performance com-
parison between 11 colormaps for 8 samples.

1© 2© 3© 4© 5© 6© 7© 8©
parula 0.976 0.994 0.975 0.988 0.991 0.997 0.977 0.956
viridis 0.992 0.990 0.977 0.929 0.941 0.985 0.993 0.973
magma 0.361 0.387 0.354 0.389 0.284 0.678 0.291 0.605
Greys 0.656 0.753 0.815 0.723 0.645 0.507 0.695 0.703
Blues 0.498 0.596 0.595 0.494 0.699 0.696 0.305 0.396
cool 0.798 0.696 0.695 0.798 0.797 0.782 0.827 0.857
hot 0.788 0.696 0.692 0.798 0.795 0.789 0.879 0.897
autumn 0.998 0.996 0.995 0.926 0.915 0.997 1.0 0.976
copper 0.593 0.5676 0.667 0.667 0.633 0.738 0.648 0.756
Spectral 0.198 0.296 0.233 0.199 0.179 0.386 0.174 0.189
coolwarm 0.198 0.194 0.250 0.199 0.187 0.397 0.157 0.206

Table 3: False positive data: Comprehensive performance compar-
ison between 11 colormaps for 8 samples.

1© 2© 3© 4© 5© 6© 7© 8©
parula 0.084 0.083 0.081 0.068 0.064 0.077 0.085 0.085
viridis 0.075 0.065 0.077 0.075 0.076 0.085 0.087 0.080
magma 0.468 0.570 0.471 0.474 0.472 0.172 0.569 0.437
Greys 0.158 0.160 0.161 0.174 0.257 0.262 0.352 0.264
Blues 0.302 0.306 0.357 0.355 0.304 0.184 0.504 0.506
cool 0.142 0.186 0.177 0.124 0.153 0.164 0.124 0.134
hot 0.162 0.186 0.137 0.121 0.165 0.161 0.130 0.135
autumn 0.039 0.065 0.075 0.095 0.094 0.045 0.049 0.046
copper 0.344 0.345 0.346 0.344 0.354 0.147 0.343 0.150
Spectral 0.503 0.436 0.507 0.501 0.610 0.450 0.632 0.482
coolwarm 0.502 0.406 0.427 0.499 0.566 0.570 0.572 0.505

possess own luminance and hues. Since human perception differs
individually [HT62] of colors and images, the determination for
specific colormaps is somewhat subjective. While the quantitative
assessment validates the objectivity of our findings, it also supports
the robustness of our work. Hence, we select these three colormaps
autumn, viridis, and parula as benchmarks for a design guideline.

• Guideline: For comprehension-based segmentation scientific
analysis for MWT, we recommend the colormaps autumn,
viridis, and parula as the most suitable color schemes. For the
same context of use, we do not suggest Spectral, coolwarm or
magma schemes.

5. Conclusions

MWT can strongly contribute to a more sustainable process indus-
try including reduced energy and material consumption. To lever-
age such gains, it is key to enable process operators to accurately
perceive MWT images in order to control the process. This partly
relies on the design and choice of colormaps. This paper presents
the results of a study to assess alternative colormaps for their capac-
ity to support visual comprehension in the context of an MWT seg-
mentation microtask [BBA15], verified by a data-driven evaluation
of those colormaps using three objective metrics. According to our
findings, we present a design guideline that recommends hot and
cool schemes for operators and researchers in process tomography

Figure 4: Jaccard index evaluation of 11 colormaps over 8 sam-
ples.

Figure 5: Dice coefficient evaluation of 11 colormaps over 8 sam-
ples.

applications and research. In future work, a higher number of sam-
ples and more specific tasks could be examined. Finally, when map-
ping process tomography data to visual representations [CWR∗16],
there is need for deeper understanding of combining human per-
ception factors and quantitative approaches as well as the corre-
sponding user studies. Our future work will be focusing on such an
emerging area of research.
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Figure 6: False positive evaluation of 11 colormaps over 8 sam-
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