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Abstract

This paper presents an in situ visualization algorithm for neural network training. As each training data item leads to multiple

hidden variables when being forward-propagated through a neural network, our algorithm first estimates how much each hidden

variable contributes to the training loss. Based on linear approximation, we can approximate the contribution mainly based on

the forward-propagated value and the backward-propagated derivative per hidden variable, both of which are available during

the training with no cost. By aggregating the loss contribution of hidden variables per data item, we can detect difficult data

items that contribute most to the loss, which can be ambiguous or even incorrectly labeled. For convolution neural networks

(CNN) with images as inputs, we extend the estimation of loss contribution to measure how different image areas impact the

loss, which can be visualized over time to see how a CNN evolves to handle ambiguous images.

CCS Concepts

• Human-centered computing → Scientific visualization;

1. Introduction

In the high performance computing (HPC) area, HPC applications,
typically scientific simulations, can take days or weeks to run, and
in situ visualization [CAA∗20] aims doing visualization with sim-
ulations together so once a simulation starts, users can immediately
visualize the intermediate result without waiting. As the training of
neural networks is also a time-consuming process, it will be ideal
if the training process can be extensively visualized in situ as well.

While several methods have been presented to visualize the in-
ternal parts of neural networks, it is difficult to apply these methods
in situ. As a neural network is essentially a cascade of multiple op-
erators, to understand how a neural network processes a data sam-
ple or called data item hereafter, it is required to analyze the inter-
mediate results by the operators, which in total can generate thou-
sands or millions of values. These intermediate results are storage-
consuming and difficult to exhaustively examine. Existing visual-
ization techniques [WGSY19,LSL∗17,WGYS18,ZBOT19] require
pre-processing to extract and aggregate related information, which
can be time-consuming. Consequently, running these algorithms in
situ can slow down the training and is thus undesired. Also, exist-
ing visualization techniques might be dedicated to a specific task
like image classification [SCD∗17, ZKL∗16, SVZ14, ZF14], which
is hard to apply to other tasks.

In this paper, we present an in situ visualization algorithm to
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monitor the training process of neural networks. The key idea is
to quantitatively estimate that given a data item, how much its
intermediate results within a neural network, or hidden variables,
contribute to the training loss. As the loss is essentially the differ-
ence between the neural network result and the expected output, if
a hidden variable has high loss contribution, it means that due to
this variable, the result cannot match the expected output. Based
on data items, operators, and parameters that are related to these
highly contributing hidden variables, we can form more effective
visualization.

Since in situ algorithms should not cause too much overhead to
the training process, we aim to re-use existing intermediate results
during the training process as much as possible. For this purpose,
we model the relationship between the calculated hidden variables
per operator and the final training loss as a linear model. By ex-
tending the linear assumption, we can approximate the relationship
mainly based on the forward-propagated value and the backward-
propagated derivative per hidden variable, both of which are al-
ready computed by the training process.

Based on the loss contribution in the level of hidden variables,
we can estimate the loss contribution in the level of data items
by aggregating the contribution of corresponding hidden variables.
This allows us to select difficult data items that contribute most to
the training loss. Furthermore, if the data are images and the neural
networks involve convolution operators, meaning that each hidden
variable can correspond to a specific image area, we can estimate
how much each image area contributes to the loss.
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Figure 1: Modeling the relationship from a hidden variable h to

the final loss L as a function L = Lh(h).

To verify our algorithm, we extend a public tensorflow-based li-
brary TF-Slim [Ser16] with our algorithm and tested various image
data sets. Our tests show that our algorithm can detect difficult data
items to train, which could be very ambiguous to process or even
with incorrect labels. Also, we can monitor how the neural network
is evolved to enhance its processing ability on ambiguous cases.
We also analyze the computation overhead and discuss further di-
rections to optimize.

2. Method

Background We first review terminologies involved in the train-
ing of neural networks, which is also illustrated in Figure 1. Given
a batch of data items Ii, each of which has an expected result Yi or
called a label, we can use them to train a neural network by alternat-
ing between forward propagation (FP) and backward propagation

(BP). Here we assume that the neural network is a cascade of K

operators OP1 . . .OPK . Each OP j has its parameters Pj , which will
be updated during the training. FP computes each item Ii though
the operators, and each OP j generates an intermediate result called
hidden variables h j,i, which will be the input for the next operator.
Once the output hk,i of the last operator OPk is computed, the train-
ing process computes the loss, essentially the sum of differences
between the value of hk,i and Yi of all items. Then it applies BP

to compute the derivatives △L
△Pj

of all parameters Pj, followed by
gradient descent to update the parameter values.

Hidden variables During this process, hidden variables play sev-
eral important roles. Given the j-th operation, hereafter we denote
the concatenated form of hidden variables h j,i of all items as h.
First, as hidden variables h are the output of j-th operator OP j, BP

needs to compute the derivative △L
△h

first so it can apply the chain

rule to compute the derivative △L
△Pj

= △L
△h

△h
△Pj

. Second, hidden vari-
ables also represent the intermediate state of each input data item.
If the hidden variables of any data items contain unusual patterns,
it might indicate sub-optimal or even incorrect processing within
the neural network, and consequently, the neural network fails to
generate the expected output. Thus the goal of our in situ visualiza-
tion is to detect and display data items that cause high training loss
on the fly. We also want to indicate the relevant parts in their input
and related operators in the neural network that make these items
difficult.

Loss contribution of hidden variables To achieve our goal, our
approach models the relationship between the hidden variable h of

each operator and the training loss L as a linear function. Given a
hidden variable h, we denote its forward-propagated result as fh,
and consider the operators after h till the computation of training
loss L as a function L= Lh( fh), which are enclosed by the black box
in Figure 1. While h is typically a multi-dimensional tensor, without
loss of generality, here we consider h as a vector of m elements,
and we aim to detect which elements of h contribute most to the
outcome Lh.

Loss contribution estimation Our approach estimates the contri-
bution by approximating the function Lh as a linear function in
Equ. 1:

Lh(h = fh)∝ 〈 fh,wh〉= ∑
m

i=1 fh[i]×wh[i] (1)

Here wh is a vector of the same length of fh where element wh[i]
represents the weight for the i-th element of h. If such a linear re-
lationship exists, how much each element i of h contributes to the
sum is related to fh[i]×wh[i].

Contribution approximation To linearly approximate Lh(h = fh),
we can first apply Taylor expansion to expand Lh. Equ. 2 shows
the Taylor expansion of Lh with respect to a vector 0h, meaning m

elements with all zeros:

Lh(h = fh) = Lh(0h)+ 〈 fh,
△Lh(h = 0h)

△h
〉+ . . . (2)

By dropping the constant term Lh(0h) and the higher order terms,
we can obtain a form that is similar to Equ 1. Nevertheless, this

will involve an extra calculation of △Lh(h=0h)
△h

. As each layer h has

its 0h, computing △Lh(h=0h)
△h

for all layers can increase the training
time and is thus undesired.

In situ approximation Our approach resolves this issue by further
approximating Equ. 2 with the following assumption: if the func-
tion Lh(h) can be linearly approximated between h= 0h and h= fh,
we assume that the function Lh(h) between h and Lh can be mod-
eled as a hyperplane. Since the derivative on a hyperplane is iden-

tical everywhere, △Lh(h=0h)
△h

should be close to △Lh(h= fh)
△h

. Thus

we can replace △Lh(h=0h)
△h

in Equ. 2 by △Lh(h= fh)
△h

, which leads to

Equ. 3. By denoting △Lh(h= fh)
△h

as bh, meaning the backward propa-
gated derivative at h, we can simplify Equ. 3 to Equ 4, our equation
to estimate the loss contribution in situ:

Lh(h = fh)∝ 〈 fh,
△Lh(h = 0h)

△h
〉 ≈ 〈 fh,

△Lh(h = fh)

△h
〉 (3)

= 〈 fh,bh〉 (4)

Data-wise aggregation Based on the element-wise loss contribu-
tion in Equ. 4, we can further estimate the loss contribution per
input data item. Given the i-th data item with hidden variable hi in
the layer h, we can estimate its loss contribution by aggregating the
contribution of all elements of hi. A straightforward approach is to
sum the contribution together, as shown in Equ 5:

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

2



T.-Y. Lee / Loss-contribution-based in situ visualization for neural network training

Figure 2: Hidden variables of the i-th image within a CNN. Here

we split fh and bh based on the channel dimension c. In fh and bh,

points with same 2D coordinates (xh,yh) of all channels c represent

the same area in the input image, as illustrate by the white boxes.

∑ j∈hi
fh[ j]×bh[ j] (5)

Convolution neural networks Our estimation of loss contribution
can be applied to convolution neural networks (CNN) [LBD∗89],
which are neural networks with convolution operators and com-
monly used to process images. When training a CNN, the batch of
input images is often modeled as a 4D tensor I[i,x,y,c] where i, x,
y, and c represent the image, horizontal coordinate, vertical coordi-
nate, and color, respectively, and the hidden variable h will be a 4D
tensor h[i,xh,yh,c] too. Here the last dimension c is also called a
channel, and each layer h can have its number of channels Nh. Fig-
ure 2 illustrates the hidden variables of a layer within CNN. The
forward-propagated fh[i,xh,yh,c] per channel c is also a 2D map,
which is also called a feature map. The corresponding backward-
propagated bh[i,xh,yh,c] has the same shape as fh. The same 2D
location (xh,yh) of fh[i,xh,yh,c] and bh[i,xh,yh,c] of all channels
c correspond to the same area in the i-th input image, which is il-
lustrated by the white boxes in f and b blocks and the input image
I.

Feature maps in CNN An important property of CNN is that each
feature map of the hidden variables represents the result of a se-
quence of convolution operators over the corresponded image. As
a result, visualizing the feature maps can indicate how the CNN
processes each area [LSL∗17,WGYS18,ZBOT19,ZKL∗16]. As in
situ algorithm cannot afford to dump and show all feature maps,
we aim to efficiently aggregate the feature maps into representative
ones.

Loss contribution and reduction Our current approach aggregates
the feature maps into two maps. Given a layer h with spatial dimen-
sions (xh,yh), one map indicates how much each area in the feature
maps contributes to the loss by aggregating only positive loss con-
tribution of all channels, as shown in Equ 6:

Ch(xh,yh) = ∑
Nh

c=1 max( fh[i,xh,yh,c]×bh[i,xh,yh,c],0) (6)

The other map indicates how much each area in the feature maps
reduces the loss by aggregating only negative loss contribution of
all channels, as shown in Equ 7:

Rh(xh,yh) =−∑
Nh

c=1 min( fh[i,xh,yh,c]×bh[i,xh,yh,c],0) (7)

Hereafter the two maps Ch and Rh are called loss contribution map

and loss reduction map, respectively. Section 4.2 and the supple-
mentary video describe examples to use both Ch and Rh to see how
a CNN is evolved during the training.

3. Implementation

We implemented a prototype with our in situ algorithm by extend-
ing the tensorflow-based library TF-Slim [Ser16], which provides
various pre-defined neural networks and optimization algorithms,
and supports several public data sets. Besides TF-Slim’s original
parameters, our prototype needs the following extra parameters:

Hs: Name of a hidden layer to guide the selection of data items. At
each iteration of the training process, after forward- and backward-
propagation, we compute the loss contribution at layer Hs per data
item and select data items with highest loss contribution.

Ns: Number of data items to select based on the loss contribution
of layer Hs. Note that as the training of neural network often splits
the training data into multiple batches, Ns is the number of items
to select from the entire data set, not just from an individual batch.
Our prototype uses a priority queue to maintain at most Ns data
items during the training.

Hm: A set of hidden layers to monitor during training. For each of
the selected data items, we compute and store the loss contribution
at these layers. If a hidden layer h has spatial dimensions xh and yh,
we also compute its loss contribution map Ch and loss reduction
map Rh.

For the visualization part, as TF-Slim already uses Tensor-
Board [WSW∗18] to monitor the training process, our prototype
extends TensorBoard by rendering the visualization to images and
saving these images into the log files used by TensorBoard. Once
the training starts, users can use TensorBoard to open the log files
to see our in situ visualization. Section 4 describes our visualization
with use cases to demonstrate its effectiveness, and we recommend
to check the supplementary video to see more description about our
enhanced TensorBoard.

4. Use cases

4.1. Ambiguous training data detection

The first part of our in situ visualization is called Selection View,
which displays the Ns selected images during the training. Once
all batches have been trained once, which is called an epoch, our
prototype displays the selected images as an array of icons to the
TensorBoard.

In this experiment, we trained an image classifier CNN called
cifarnet [Kri09], as illustrated in Figure 3 (a). Given an input image,
an image classifier estimates the probabilities of pre-defined object
classes. We trained cifarnet with a data set CIFAR10 [Kri09], which
was proposed with cifarnet and contains 60000 color icons of 32×
32 pixels of ten object classes. In cifarnet, we used layer Logit as Hs

and layers pool1 and pool2 as Hm, which are marked as blue cells
in Figure 3 (a). We used the same training parameters provided by
the sample script to train CIFAR10 in TF-Slim [Ser16].

Figure 3 (b) shows the Selection View after 10 epochs, which
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Image conv.

max. pooling

pool1 conv.

max. pooling

pool2 FC FC

Logits

softmax Class Prob.

LRN

FC

LRN

(a) (b)

Figure 3: The Selection View (b) when training the CNN cifar-
net [Kri09] (a) on the CIFAR10 data set [Kri09]. The enlarged

icon shows one of the selected images. While its label is trucks, this

image actually contains no trucks. Instead, it contains two persons.

displays 64 selected images of CIFAR10. Among these images, we
surprisingly found a potentially incorrectly labeled image. The im-
age is highlighted in the right of Figure 3 (b), which looks like two
persons. CIFAR10, however, does not have labels for persons. In-
stead, this image was labeled as trucks. In such a case, it will be
difficult (and actually meaningless) to train the CNN to classify the
two persons as trucks.

This result clearly demonstrates the benefit of our in situ vi-
sualization. Although CIFAR10 is widely used nowadays, to our
knowledge, this is the first time that this mis-labeled image is iden-
tified. One possible reason is that CIFAR10 contains 60000 icons,
which is difficult to be individually examined. With our algorithm,
users can identify issues like incorrect labeling without waiting for
the training to finish.

4.2. Enhanced monitoring of training

To understand how the neural network is evolved, once encoun-
tering a previously selected image, our prototype organizes its Ch

and Rh into a Monitoring View. Figures 4 (b) and (c) shows the
Monitoring Views of an image in the MNIST data set [LBBH98].
In the Monitoring View, each column represents a hidden layer h

in Hm, and the top and bottom icons show its Ch and Rh, respec-
tively. The two maps use the same color mapping, as shown in the
color bar above. Some extra information are shown in the top of
the column, including the layer name, the output (O), and the label
(L). The rightmost column shows the images before being forward-
propagated through the neural network.

In this experiment, we used the data set MNIST [LBBH98] to
demonstrate the effectiveness of Monitoring Views. MNIST is a
data set for hand-written digit recognition, which contains 60000
icons of 28× 28 pixels of hand-written digits. We trained a CNN
called LeNet, which was proposed with MNIST, to estimate the
probabilities of digits 0 - 9 within an image icon. Figure 4 (a) shows
the architecture of LeNet where we used layer Logit as Hs and lay-
ers pool1 and pool2 as Hm, all of which are marked as blue cells.
We used the same training parameters provided by the sample script
of LeNet in TF-Slim [Ser16].

The image used by Figures 4 (b) and (c) is an ambiguous image
in MNIST, which represents digit 3 but was difficult to classify
at the beginning. Figure 4 (b) shows the Monitoring View when
this image was incorrectly classified as 7. From the top Ch of the

Image conv.

max. pooling

pool1 conv.

max. pooling

pool2 FC FC

Logits

softmax Digit Prob.

(a) (b) (c)

Figure 4: Monitoring Views of an ambiguous digit 3 of the MNIST

data set [LBBH98] when training the CNN LeNet (a) [LBBH98].

Users can use the top slider (i) to see the maps Ch and Rh at differ-

ent iterations. (b): The maps at an earlier iteration when the image

was incorrectly classified as 7. (c): The maps at a later iteration.

Please see texts for the description about markers (ii)-(iv).

middle column, we can see bright spots in the middle (marked by
(ii)), meaning that this area has high loss contribution. In contrast,
in the bottom Rh, the lower part of the digit (marked by (iii)) was
highlighted, meaning that this part helps to reduce the loss. This is
reasonable because digits 3 and 7 have very different lower parts.

In the top of each Monitoring View, there is a horizontal slider
(marked by (i)), which can be used to see the maps at different
iterations. Figure 4 (c), for instance, shows the Monitoring View of
the same image at a later iteration when the neural network began
to correctly classify this image. In the bottom Rh of the middle
row, we can see a bright spot (marked by (iv)) on the top curve
of the digits 3. This implies that in the later stage of the training,
this neural network can also emphasize this part, which helps to
correctly recognize this digit as 3.

5. Discussion

Performance One benefit of our in situ algorithm is that the calcu-
lation is very simple and thus the computation overhead is small.
This is especially apparent on large convolution neural networks
because convolution is slow. To verify, we tested our algorithm per
Equ. 5, Equ. 6 and 7 to the 50 convolution layers of ResNet50
[HZRS15]. With a batch of 16 images of 224 × 224 pixels, the
FLOPS was increased from 337M to 339M, meaning that the over-
head is smaller than 1%.

Comparison with other in situ algorithms As in situ processing
is a broad topic, there could be different types of in situ algorithms,
as reviewed by Child et al. [CAA∗20]. To categorize our algorithm,
the execution is divided by time, as it needs to examine hidden vari-
ables after each iteration of training. It is also application-aware
because we extended TF-Slim’s code that iterates the training pro-
cess.

Future work In the future, we will apply our in situ algorithm
to other tasks like object detection or natural language processing.
While different tasks require different types of loss, our algorithm
is independent to the loss types. Implementation-wise, we would
like to replace TensorBoard by our own user interface so we can
optimize the rendering speed and customize the user interaction.
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