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Abstract

Faithfulness metrics measure how faithfully a visualization displays the ground truth information of the data. For example,
neighborhood faithfulness metrics measure how faithfully the geometric neighbors of vertices in a graph drawing represent the
ground truth neighbors of vertices in the graph. This paper presents a new dynamic neighborhood change (DNC) faithfulness
metric for dynamic graphs to measure how proportional the geometric neighborhood change in dynamic graph drawings is
to the ground truth neighborhood change in dynamic graphs. We validate the DNC metrics using deformation experiments,
demonstrating that it can accurately measure neighborhood change faithfulness in dynamic graph drawings. We then present
extensive comparison experiments to evaluate popular graph drawing algorithms using DNC, to recommend which layout
obtains the highest neighborhood change faithfulness on a variety of dynamic graphs.

1. Introduction

Evaluation has been established as an important research area in
graph drawing. Quality metrics, called aesthetic criteria, such as
edge crossings, area, bends, edge lengths, angular resolution, and
crossing angles, have been presented for quantitative evaluation of
graph drawings [BETT99]. However, most traditional metrics only
measure the readability of graph drawings (i.e., how humans un-
derstand the graph drawing).

Recently, faithfulness metrics have been presented for evalu-
ating large complex graph drawing, to measure how faithfully
a drawing D represents the ground truth structure of a graph
G [EHKN15, MHEK19, MHEK20]. In particular, neighborhood
faithfulness metrics [NHE17] measure how faithfully the geomet-
ric neighborhood of vertices in a drawing displays the ground truth
neighborhood of vertices of a graph.

Dynamic graphs present significant challenges for visualization
and evaluation [BBDW17]. Namely, a dynamic graph drawing
should be faithful to the ground truth of the graph at each time
slice, but also faithfully displays the ground truth change in dy-
namic graphs. Change faithfulness metrics measure how propor-
tional the geometric change in a dynamic graph drawing is to the
ground truth change in a dynamic graph, such as cluster and dis-
tance change faithfulness metrics [MHE20]. However, neighbor-
hood change faithfulness metric has not been presented.

To fill in this gap, we present new Dynamic Neighborhood

† This research was supported by an ARC grant (DP190103301).

Change (DNC) faithfulness metrics for dynamic graphs to mea-
sure how proportional the change in the geometric neighborhood of
vertices in a dynamic graph drawing is to the ground truth neigh-
borhood changes of vertices in a dynamic graph. We validate the
DNC metrics using deformation experiments, demonstrating that
it can effectively measure the neighborhood change faithfulness of
dynamic graph drawings.

We then evaluate popular graph drawing algorithms using
DNC, to recommend which layouts can produce better neigh-
borhood change faithful drawings, using a variety of real-world
and synthetic dynamic graphs. Overall, tsNET [KRM∗17] per-
forms the best, followed by multi-level layouts (FM3 [HJ05] and
sfdp [Hu05]), the Backbone layout [NOB14] and the Stress Ma-
jorization layout [GKN05].

2. Related Work

2.1. Faithfulness Metrics for Static Graph Drawings

Faithfulness metrics measure how faithfully graph drawings dis-
play the ground truth information of graphs. For example,
stress [BETT99] is a distance faithfulness metric, measuring how
proportional the Euclidean distance of vertices in a drawing D is
to the graph-theoretic distance of vertices in a graph G. Shape-
based metrics [EHKN15] measure how faithfully the “shape” (i.e.,
proximity graph) of D represents the ground truth structure of G.
Similarly, the cluster faithfulness metrics [MHEK19] measure the
similarity between the geometric clustering of a drawing D and the
ground truth clustering of a graph G. The symmetry faithfulness
metrics [MHEK20] measure the similarity between symmetries in
D and the ground truth automorphisms of a graph G.
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In particular, the neighborhood faithfulness metrics [NHE17]
measure how faithfully the geometric neighborhood of vertices in
a drawing displays the graph-theoretic neighborhood of vertices
in a graph. Namely, the metric is defined using dNNG (degree-
sensitive nearest neighborhood graph), a variation of the kNNG (k-
nearest neighborhood graph), based on the degree of a vertex (i.e.,
k = d(v), where d(v) is the degree of a vertex v). More specifically,
the neighborhood faithfulness metrics are defined using the similar-
ity between the neighbors of vertices in a graph G and the dNNG
of vertices in a drawing D of G.

2.2. Faithfulness Metrics for Dynamic Graph Drawings

A dynamic graph is defined by a sequence of static graphs
G1,G2, . . . ,Gl with l time steps, where Gi is a time slice of
the graph at time step i [BBDW17]. The most well-known cri-
teria for dynamic graph drawings focus on preserve the mental
map [MELS95], which can be modeled using orthogonal order-
ing, clustering, topology and distances [Bra01, DG02]. Relatedly,
dynamic stability is defined as the minimization of geometric dis-
tance between successive drawings [TBB88, BBDW17].

Change faithfulness metrics measure how faithfully the ground
truth change in dynamic graphs is displayed as the geometric
change in the dynamic graph drawings. For example, the clus-
ter change faithfulness metrics [MHE20] measure how propor-
tional the ground truth change in the clustering of a dynamic graph
is displayed as changes in geometric clustering of the dynamic
graph drawing. Similarly, the distance change faithfulness met-
rics [MHE20] measure how proportional the ground truth change in
graph-theoretic distance in a dynamic graph is displayed as changes
in the geometric distance in the dynamic graph drawing.

3. Dynamic Neighborhood Change Faithfulness Metrics

This section presents a new change faithfulness metric DNC to
measure how proportionally the ground truth change in the neigh-
borhood of vertices in dynamic graphs is represented as a change
in the geometric neighborhood of vertices in the drawing.

Figure 1 shows the DNC metric framework, which can be com-
puted by the following steps:

1. Compute drawings D1 and D2 of two time slices of a dynamic
graph G1 = (V1,E1),G2 = (V2,E2) using a graph layout.

2. Compute the degree-sensitive nearest neighborhood graphs
dNNG1 = (V ′

1 ,E
′
1) (resp., dNNG2 = (V ′

2 ,E
′
2)) of the point set

P1 of D1 (resp., P2 of D2), corresponding to V1 (resp., V2).
3. Compute ∆(dNNG1,dNNG2), the change between dNNG1 and

dNNG2.
4. Compare how proportional ∆(dNNG1,dNNG2) is to the ground

truth change in dynamic graphs, ∆(G1,G2).

We use the Jaccard Similarity index [Jac12] to compute
∆(dNNG1,dNNG2) and ∆(G1,G2). Specifically, the normalized
Jaccard similarity index JS(G,G′) computes the similarity between
two graphs G and G′ as follows:

JS(G,G′) =
1
|V | ∑

v∈V

|N(v)∩N′(v)|
|N(v)∪N′(v)|

Figure 1: The neighborhood change faithfulness metric frame-
work.

where N(v) (resp., N′(v)) is the set of neighbors of a vertex v in G
(resp., G′). A higher JS(G,G′) ∈ [0,1] means higher similarity.

For Step 4, we define the ratio of difference (rd):

rd =
|JS(G1,G2)− JS(dNNG1,dNNG2)|

max(JS(G1,G2),JS(dNNG1,dNNG2))

where rd ∈ [0,1] is ensured by dividing by the maximum value of
JS(G1,G2) and JS(dNNG1,dNNG2), and a lower value is better.

Note that rd on its own does not consider the static neighborhood
faithfulness at each time slice. However, dynamic graph drawings
should not only display a change proportional to the ground truth
change between the two time slices, but also the drawing at each
time slice should faithfully display the structure of the time slice.
Therefore, we define two variations of DNC with different ways to
incorporate static neighborhood faithfulness.

The first metric averages the rd with the neighborhood faithful-
ness of each time slice, to give both equal weight:

DNC1 =
1
2
((1− rd)+avg(JS(G1,dNNG1),JS(G2,dNNG2)))

The second metric uses a multiplier instead, to be more sensitive
in measuring differences in neighborhood change faithfulness:

DNC2 = (1− rd) ·avg(JS(G1,dNNG1),JS(G2,dNNG2))

DNC values range between 0 and 1, where a higher value means
better neighborhood change faithfulness.

4. DNC Validation Experiment

We validate the effectiveness of DNC metrics, using deformation
experiments on graphs with synthetic dynamics to control the ex-
tent of the ground truth change in dynamic graphs. We use different
types of graphs: mesh graphs [DH11]; black-hole graphs with glob-
ally mesh-like structures and locally dense clusters [ENH17]; and
real-world benchmark graphs [KAB∗19, New01]. The graphs have
number of vertices |V | ∈ [135,2851] and density ∈ [2.33,20.28].

We start with good neighborhood faithful drawings D1 and D2
of two time slices of a dynamic graph G1 and G2 (i.e., number of
vertices and/or edges may change between time slices), such that
dNNG1,dNNG2 are very similar to G1 and G2, and as such the
change between dNNG1 and dNNG2 is similar to the ground truth
change between G1 and G2.
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(a) D1 (b) D2 (St. 0)

(c) D2 (St. 3) (d) D2 (St. 5)

(e) D2 (St. 9) (f) Average DNC

Table 1: (a)-(e) Example of the deformation steps; (f) Average
DNC over all data sets. Both metrics decrease with deformation
steps, confirming H1, and DNC2 performs better than DNC1.

We then gradually perturb the position of vertices in D2 to make
the change in the neighborhood graphs gradually become more
disproportionate to the ground truth change in dynamic graphs.
Specifically, we perform nine steps of deformation on D2, where
in each step, the coordinate of each vertex from the previous step is
randomly perturbed by a value in the range [0,δ], where δ is the size
of the drawing area multiplied by a value in the range [0.02,0.09].
We hypothesize: H1: DNC decreases as D2 is deformed.

Table 1(a)-(e) shows an example of the deformation steps, and
Table 1(f) shows the DNC metrics averaged over all validation data
sets. Clearly, both DNC1 and DNC2 decrease with the deformation
steps, and the decreasing pattern is consistent throughout all vali-
dation data sets, demonstrating that they can effectively capture the
neighborhood change faithfulness, supporting H1.

Furthermore, DNC2 is more sensitive than DNC1, as seen in Ta-
ble 1(f). In addition, the drawing at step 9 is very far from the
original neighborhood faithful drawing, and therefore DNC value
should be very small. However, DNC1 is still relatively high at step
9, while DNC2 is much lower. Therefore, DNC2 more effectively
measures the neighborhood change faithfulness, and we use DNC2
for layout comparison experiments.

5. Layout Comparison Experiment

Experiment Design. To evaluate the performance of various graph
layouts on neighborhood change faithfulness, we conduct layout
comparison experiments using DNC2. We select nine popular graph
layouts with various optimization criteria:

• Force-directed layouts: Fruchterman-Reingold (FR) [FR91] and
Organic (OR) layout [WEK01].

• Multi-level graph layouts: FM3 [HJ05] and sfdp [Hu05].

(a) Mesh (b) Black-hole (c) Scale-free (d) Real-world

Figure 2: Average DNC2 for (a) mesh graphs; (b) black-hole
graphs; (c) scale-free graphs; and (d) real-world dynamic graphs.

Figure 3: Average DNC2 across all data sets. tsNET performs the
best, followed by sfdp, FM3, SM and BB.

• Backbone (BB) [NOB14], to untangle hairballs in a drawing.
• LinLog (LL) [Noa04], a force-directed layout showing clusters.
• Pivot MDS (PMDS) [BP07], a fast multi-dimensional scaling-

based layout.
• Stress Majorization (SM) [GKN05] to minimize the stress.
• tsNET [KRM∗17], based on t-SNE [vdMH08].

We expect neighborhood faithful layouts for static graphs would
be neighborhood change faithful for dynamic graphs based on the
results for previous change faithfulness metrics [MHE20]. Since
tsNET is designed for neighborhood preservation, and FM3 shows
good performance on dNNG on static graphs, we hypothesize: H2:
tsNET obtains the highest DNC2, and multi-level layouts (FM3 and
sfdp) perform well on DNC2.

We use graphs with simulated dynamics (i.e., add/delete ver-
tices/edges) based on different types of static graphs: mesh
graphs [DH11]; black-hole graphs [ENH17]; and real-world scale-
free graphs [LK14]. We also use real-world dynamic graphs with
naturally occurring dynamics [GVF∗15, FB14, GBC14, SVB∗11].
The graphs have |V | ∈ [59,6367] and density ∈ [1.5,23.28].

Mesh graphs. Figure 2(a) shows the average DNC2 on mesh
graphs. tsNET, BB, FM3, SM and sfdp performs the best, support-
ing H2. Table 2(a) shows a layout comparison of a mesh graph
3elt. Most layouts, except FR and LL, perform well by not only un-
tangling the mesh to ensure neighbors are close together and non-
neighbors (e.g., vertices separated by the “holes”) are far apart, but
also showing the change in structure faithfully. The exceptions are
FR, which fails to untangle the mesh, and LL, which unnecessarily
clusters vertices despite the mesh not having locally dense clusters;
this is reflected by much lower DNC2 than other layouts.

Black-hole graphs. Figure 2(b) shows the average DNC2 on black-
hole graphs. Overall, tsNET performs the best, followed by FM3,
sfdp and PMDS, supporting H2. Moreover, BB and SM also per-
form well. Table 2(b) shows a layout comparison of a black-hole
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(a) BB FM3 FR LL OR PMDS sfdp SM tsNET

G1

G2

(b) BB FM3 FR LL OR PMDS sfdp SM tsNET

G1

G2

(c) BB FM3 FR LL OR PMDS sfdp SM tsNET

G1

G2

(d) BB FM3 FR LL OR PMDS sfdp SM tsNET

G1

G2

Table 2: Layout comparison on DNC2. (a) 3elt (mesh), (b) Cycle896 (black-hole), (c) facebook (scale-free) and (d) InVS (real-world
dynamic).

graph Cycle896. tsNET shows the global change in structure faith-
fully without excessive overlap inside the dense blobs (i.e., neigh-
bors are close together, but non-neighbors are further apart). On the
other hand, FR performs the worst, failing to untangle the global
cycle-like structure.

Scale-free graphs. Figure 2(c) shows the average DNC2 on scale-
free graphs. Clearly, tsNET outperforms other layouts, and sfdp
and LL also perform well, mostly supporting H2. Table 2(c) shows
a layout comparison of a scale-free graph facebook. tsNET, sfdp,
and LL show the clusters most distinctly, resulting close neighbors
drawn close together, and non-neighbors drawn far apart.

Real-world dynamic graphs. Figure 2(d) shows the average
DNC2 on real-world dynamic graphs. Clearly, tsNET performs the
best, followed by sfdp, partially supporting H2. The real-word dy-
namic graphs are relatively small, and most layouts produce draw-
ings with similar quality, resulting in similar neighborhood change
faithfulness. Table 2(d) shows a visual comparison of a real-world
dynamic graph InVS.

Discussion and Summary. Figure 3 shows the average DNC2 over
all data sets, where tsNET performs the best, followed by FM3

and sfdp, confirming H2. This result is consistent with our expec-
tation, since tsNET is specifically designed to maximize neigh-

borhood preservation, and therefore achieve high neighborhood
change faithfulness. Meanwhile, multi-level graph layouts (i.e.,
FM3 and sfdp) recursively use clustering to reduce the size of
graphs, leading to neighboring vertices, which are most likely in
the same clusters, drawn close together.

Moreover, BB and SM also perform well on average. Since BB
aims to untangle hairballs, it can reduce non-neighbors drawn too
close together. Meanwhile, SM aims to minimize stress, i.e., faith-
fully represents the graph-theoretic distances in the drawing, which
also helps perform well on neighborhood change faithfulness.

Note that while LL obtains relatively high DNC2 for scale-free
graphs, it obtains the lowest DNC2 on mesh graphs. Since LL fo-
cuses on showing clusters, it can perform well on scale-free graphs
containing locally dense clusters. However, for mesh graphs with-
out dense clusters, it may introduce unnecessary clusters, resulting
in non-neighboring vertices drawn too close together. Furthermore,
FR performs the worst on average, consistent with all data types.

In summary, DNC layout comparison experiments show that on
average tsNET performs the best, followed by FM3, sfdp, BB and
SM. Specifically, we recommend tsNET, BB, FM3, sfdp, SM for
mesh graphs, and tsNET, LL, sfdp for scale-free graphs.
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