
EUROVIS 2024/ C. Tominski, M. Waldner, and B. Wang Short Paper

Matrix Snap&Go: Visualization of Paths on Matrices

Z. Huang1 , D. Archambault2 , R. Borgo3 , and A. Kerren1,4

1Linköping University, Sweden 2Newcastle University, United Kingdom 3King’s College London, United Kingdom 4Linnaeus University, Sweden

Figure 1: Exploring the matrix representation of a directed graph. Direct neighbors of the currently selected node are drawn close to the
node, with the user’s past interaction history highlighted in red. Screenshot (a) shows an initial path established by previous user interactions;
whereas (b) provides an overview of our Matrix Snap&Go approach, resulting from (a) by clicking one of the adjacent nodes (“next click”).
In (b), left: the adjacency matrix visualization; right: a radial node-link diagram visualizing the same input graph and synchronizing the
same interaction process. The node-link diagram is present on the right only to clarify how to read a path on a matrix using our approach.

Abstract
Matrix representations can be effective for visualizing networks. However, it is very difficult to follow or explore specific paths
in a matrix representation. In this paper, we introduce an interactive method for exploring paths on a matrix, called Matrix
Snap&Go. Our visualization approach relies heavily on interactive exploration, bringing in the local neighborhood of selected
nodes and tracing the path progression through the matrix. We demonstrate the utility of our approach by performing and
analyzing test runs with synthetic input graphs of various node/edge densities as well as by discussing a use case based on the
exploration of citation networks.

CCS Concepts
• Human-centered computing → Graph drawings; Information visualization;

1. Introduction

Matrix visualizations of networks/graphs (we use both terms syn-
onymously in this paper) support many graph reading tasks and
offer advantages over standard node-link diagrams in various sce-
narios. For instance, adjacency matrix representations can address
issues of occlusion and edge clutter common in node-link layouts,
by representing connections through cells at the intersection of a
row (source node) and a column (target node). Consequently, using

matrices to read graphs has become widely used across multiple
research domains [BBHR∗16, MGM∗19]. In social network anal-
ysis, for example, viewing graph data in matrix format has been a
common practice for gaining insights into meso-level statistics of
actors or identifying structural patterns like cliques [HF06, HF07].

However, among many other challenges, matrix representations
of graphs face several common issues. For instance, compared to
node-link layouts, they are often seen as less flexible [BBDW14].

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/evs.20241058 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-3945-1274
https://orcid.org/0000-0003-4978-8479
https://orcid.org/0000-0003-2875-6793
https://orcid.org/0000-0002-0519-2537
https://doi.org/10.2312/evs.20241058

2 of 5 Huang et al. / Matrix Snap&Go: Visualization of Paths on Matrices

Previous research on matrix interaction and animation has focused
on block modeling, with relatively less attention given to other in-
teractive elements in the design space. Moreover, reducing cogni-
tive complexity during matrix exploration—such as locating edges
and preserving the mental map during layout animations—remains
challenging. This leads to an important limitation of a standard ma-
trix visualization, which we address in this paper, which is reading
paths along the graph, as only direct adjacencies are represented by
an adjacency matrix. One way to address this issue is to augment
the visualization of paths within a matrix visualization through in-
teraction, allowing users to explore and visualize the structure of a
path interactively on top of the matrix.

To address the problem of visualizing paths on matrices, we pro-
pose Matrix Snap&Go: an interactive technique to help users create
paths on matrices and visualize the history of that path through a
matrix representation. Matrix Snap&Go makes effective use of spa-
tial position, bringing in the local neighborhood of a node in order
to understand future exploration directions for the path through the
matrix visualization. The history of the path is explored through a
polyline that is able to demonstrate both the nodes and edges that
have been traversed in order to achieve that path. Our contributions
in this paper are as follows:

• a novel interactive, matrix path visualization technique.
• a user-guided reordering interactions on the adjacency matrix vi-

sualization, making the path easier to follow on the matrix.
• a demonstration of the usability of the approach by testing on a

number of real and synthetically generated datasets and show-
ing its advantages and limitations. A live demo can be found at
ivis-tools.itn.liu.se/matrix-snap-and-go.

The remainder of this paper is organized as follows: Section 2 in-
troduces related work in matrix visualization and problem defini-
tion. Section 3 describes system design and implementation details.
Section 4 presents cases where Matrix Snap&Go is tested and be-
ing used, as well as discusses limitations and future work. Finally,
Section 5 concludes our work.

2. Background

Matrix visualizations have numerous perceptual advantages espe-
cially for dense graphs [GFC05]. As such, a number of techniques
have been explored for visualizing series of matrices [BPF14] and
comparing differences and similarities [BHRD∗15,VKA∗18]. Per-
forming analytical tasks using these visualizations often requires
advanced interactive techniques. Network visualization incorpo-
rates multiple levels of interaction, including view-level, visual-
structure, and data-level interaction [WEF∗14]. Adjacency matrix
visualization, in particular, relies heavily on interacting with visual
structures, such as cells, columns, and rows [PDF14]. There are
two main objectives for such interactions: navigating and showing
network details or producing block-diagonal patterns. Users can in-
teract with a matrix visualization by manually reordering rows and
columns to change the visual style directly, or by steering exist-
ing reordering algorithms to identify, select, and adjust matrix sub-
structures [BSP20]. However, if the underlying data lacks such in-
herent patterns, many interaction algorithms may struggle to reveal
any significant structure [BTBC∗21, ASA∗22]. As a result, there

is an ongoing challenge in designing alternative interaction tech-
niques that focus on defining and discovering specific statistical,
global, or local patterns.

Pathfinding on matrices Many studies have shown that matri-
ces are ill-suited for pathfinding and its related tasks [GFC05,
MGM∗19]. Unlike node-link diagrams, where the spatial arrange-
ment between nodes can convey additional information, the visi-
bility of paths in a standard matrix depends heavily on the quality
of its ordering. The majority of existing work has approached this
problem by finding the optimal ordering or combined matrices with
node-link diagrams to reveal structural features, such as the shortest
paths [HF07,HFM07,VBW15]. Different from uncovering inherent
path-related structural properties in a graph, we present an interac-
tion technique that allows users to actively or passively create paths
during their exploration of the matrix and visualize the results.

Our title and technique are inspired by Bring&Go, which is a
node-link diagram navigation technique for paths where the local
neighborhoods of networks are brought in around the current node
in the exploration [MCH∗09]. Here, the user selects a destination
node, and an animation smoothly transitions between the current
and destination nodes demonstrating how the path is constructed.
One could view our approach as a similar technique for path ex-
ploration, but for matrix visualizations of networks. Other related
approaches focus on the exploration of multiple networks in differ-
ent views such as Hub2Go [ZSK17]. Probably the closest paper to
our own is that of Shen and Ma [SM07]. In their work, paths are vi-
sualized on top of adjacency matrices through lines. A path is con-
sidered a series of edges, and cells of the matrix—the edges of the
graph—are connected through horizontal and vertical lines. Thus,
multiple paths can be visualized using this technique. In our work,
we focus on user-constructed paths through the adjacency matrix
and the interaction required when creating such a path. Also, in
contrast to the work [SM07], both nodes and edges are visualized
through the use of the diagonal of the matrix representation.

3. Implementation

We have designed and implemented Matrix Snap&Go, a novel vi-
sualization approach for user-centric, matrix-based graph explo-
ration. It provides visual cues and records directional paths of vis-
ited nodes and edges (Figure 1). This section discusses the visual
encoding and interaction details behind the Matrix Snap&Go inter-
face, which takes a generic graph as input but excludes self-loops.

The system interface (Figure 1b) consists of two main compo-
nents: an action bar with customization options at the top and a
matrix view on the left showing the core interaction features of
Matrix Snap&Go which is our technique. A radial node-link view
on the right provides training on how to read our technique. The
layout is optimized for directed graphs while also accommodating
undirected graphs. Both the left and right panels represent the same
input graph. They are synchronized to display a user’s present and
past selections and their exploration path. The proposed adjacency
matrix visualization aligns with how people typically interpret such
representations (Figure 1a) [GFC05]. If an edge exists from node
a to node b, the cell at the intersection of row a and column b will
be marked in a dark grey color to show the connectivity com-
pared to unconnected cells. Since the diagonal of the matrix

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

ivis-tools.itn.liu.se/matrix-snap-and-go

Huang et al. / Matrix Snap&Go: Visualization of Paths on Matrices 3 of 5

Figure 2: Eleven matrices arranged in alphabetical order from (a) to (k). They capture the evolution of the matrix layout through a sequence
of five user interactions. The figures are arranged to highlight changes with minimal space, resulting in a compact, irregularly overlapping
horizontal layout. Vertically, the top subfigures depict the matrix in its default state, using colors to mark node statuses; while the bottom
subfigures show reordering phases, with selected neighbors pulled closer (a larger version is available as supplementary material).

represents nodes connecting to themselves, we treat these cells as
individual nodes rather than self-loops.

Matrix Snap&Go maintains consistent color encodings across
both the matrix and node-link diagram representation of the under-
lying graph. We use the color red to denote the path between two
selected nodes, as shown in Figure 1. Selected nodes are marked
on the matrix diagonal with a icon, with the first node in the in-
teraction sequence more distinguishable with . The non-diagonal
cells of the matrix represent links between nodes. Upon selecting a
node, its outgoing links are highlighted with darker blue , while
incoming links are indicated with a lighter blue color . User in-
teraction is further constrained, as one can click on outgoing links

to navigate forward, but in most cases cannot move backward
against the link direction to ensure a cohesive user experience
that aligns with the link directionality in a directed graph. Addition-
ally, a lighter red color indicates when a link’s target or source
node has been previously selected. We also introduce to mark
all links connected to nodes that were “snapped” into focus, which
will be explained next.

3.1. Matrix Snap&Go Algorithm

Initialization Users choose a starting node to initiate the explo-
ration process by selecting a diagonal cell in the graph’s ad-
jacency matrix (Figure 2a). The selection is restricted to diagonal
cells to ensure a single exploration path is established.

Algorithm phases Figure 2(c–h) presents a decomposed version
of our proposed interaction technique. Matrix Snap&Go consists
of three straightforward steps, with animations integrated. 1. Snap:
When a user selects a node, the links connected to this node are
highlighted and moved next to the current selection (Fig-
ure 2(b–c)). The term “snapped” refers to this highlighting and
reordering process. 2. Go: Clicking an outgoing link (non-
diagonal cells) shifts the focus from the initial node to the target
node of the clicked link, while still acknowledging the initial selec-
tion. The focus moves to the target node, which is now considered
the current selection. During this phase, as shown in Figure 2(d–f),
the currently selected cell reverts to its original, default diagonal
position, indicating the target node it directs to. Concurrently, in
(e), the adjacent nodes previously “snapped” revert to their starting

positions as shown in Figure 2a. 3. Pathfinding: This step creates
a visual path connecting the previously selected node with the cur-
rent selected node, and also passing through (or representing) the
selected edge in between (Figure 2(f–g)). The path direction is in-
dicated by red chevrons, which guide the selection from one node
to the next, corresponding to the sequence of those selections (Fig-
ure 2(h–k)).

In the following, we provide a more detailed discussion of our
design decisions taken with respect to these three phases.

Layout simulation of the neighborhood After the initial se-
lection, edges connected to the selected node are highlighted in
blue , indicating their connection to the focus node (Fig-
ure 2b). Subsequently, these highlighted edges are moved closer
to the focus node as shown in Figure 2c). To ensure consistency,
the neighbors are ordered according to their original sequence in
the columns/rows (as in Figure 2a). One advantage of this specific
representation for a directed graph is that, it enhances readability
to differentiate between incoming links, positioned vertically to the
focus node , and outgoing links, positioned horizontally . Espe-
cially in sparse matrices without other pre-defined reordering algo-
rithms, pulling neighbors closer reduces the cognitive load in iden-
tifying paths and finding neighboring nodes for creating potential
paths. Additionally, when the matrix becomes larger and occupies a
large portion of the screen space, identifying what each cell repre-
sents becomes more challenging. Thus, this rearrangement process
enforces the user’s attention on local neighborhoods.

When edges are shifted, their original positions may become
empty (for example, the bottom part of the second column in Fig-
ure 2c). However, it is often the case that the target position next
to the focus node is already occupied by an unhighlighted cell, in-
dicating no direct connection between the focus node and the node
at the other end of the link the cell represents . In such cases, the
unconnected cell is adjusted slightly upwards and rightwards. This
creates an offset, making it seem as though the cells are layered,
resembling two cards stacked on top of one another .

Layout transformation for a new edge selection To illustrate
the transition from the first node to the second via the selected edge,
we first animate resetting the previously highlighted neighboring
links of the first node (Figure 2(d–e)), then animate the transition of

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

4 of 5 Huang et al. / Matrix Snap&Go: Visualization of Paths on Matrices

the selected edge to the newly focused node (Figure 2(e–g)). Since
diagonal positions represent nodes, the cell selection changes its
representation meanings from links to nodes so it shifts to the diag-
onal. Then the neighbors of the newly selected node are snapped,
and the algorithm iterates upon each user selection (Figure 2(c–h)).
Additionally, a different color is used to mark all links that have
been snapped closer to highlight that they have received more at-
tention from the user than other connected cells.

Path drawing By visualizing a thread touching all visited edges
and nodes through the diagonal, the exploration history of a user
can be recorded. In most cases, we draw straight lines between two
cells based on the Manhattan distance with minimal turns. How-
ever, a trade-off exists between identifiable paths that minimize
overlap and the precise alignment with the selected edge, so ad-
ditional considerations for rerouting are introduced. If two cells are
diagonally neighbors, an “s” shape path is drawn instead of a
Manhattan path with one turn . Otherwise, there is a complete
overlap of the path with itself. In a matrix visualization, cells sym-
metrical to the diagonal indicate connections between the same pair
of nodes with opposite directionality. By default, paths are drawn
in the upper triangular matrix . However, the choice of drawing
either in the upper or lower triangular depends on which path
minimizes the overlapping pixels of the existing paths (Figure 2).

Node-link diagram Alongside the matrix, users can choose to
optionally view a force-directed or radial node-link diagram to help
them learn the snap&go concept applied to alternative graph repre-
sentations (Figure 1b). With each node selection, the radial node-
link diagram animates, pulling neighboring nodes closer to the cho-
sen node then returning them to their original positions. Afterward,
the newly selected node is positioned adjacent to the previously se-
lected one, making the selection sequence path distinct to read.

4. Usage Scenarios and Discussion

Matrix Snap&Go can be applied for various use cases besides syn-
thetic graphs, including integrating into an existing visual analyt-
ics pipeline. Figure 3 showcases the system for tracking the ex-
ploration history of papers based on their citation network (data
from [IHK∗17]). It is currently set to a zoomed-in view of the ma-
trix visualization with the browser window auto-locating to every
new selection, and users can zoom out to obtain an overview of the
existing path at any time. We applied the k-core algorithm [BZ03]
to extract a subset of IEEE vis papers that frequently cite one an-
other. The system displays information like paper titles and DOIs
when the mouse hovers over the cells. Matrix Snap&Go captures
the process of finding a paper to read, reading one of its citations,
and then recording the snowballing process as an exploration path
on a matrix. We enabled clicks on both incoming and outgoing
links of a node to accommodate users’ interest in exploring both
cited and citing papers. This click restriction can be customized as
needed. One might also use filtering or subgraph extraction tech-
niques to get subsets for specific tasks or combine other matrix or-
dering techniques [BBHR∗16] to customize the layout.

Limitations and future work We reviewed the proposed tool,
Matrix Snap&Go, using various directed graphs generated by the
Erdős-Rényi model [ER∗60]. Figure 1 illustrates the system layout
given a directed Erdős-Rényi graph with 25 nodes and 0.2 proba-

Figure 3: Matrix Snap&Go applying zoomed-in layout with auto-
relocation, and visualizing a citation network of 70 nodes.

bility for edge creation. Through trying different numbers of nodes
and graph densities, we found that the system performs best with
a graph density between 0.05 and 0.5. It becomes relatively less
effective for dense graphs, because the visibility of snapped cells
decreases when many adjacent nodes are connected. Previous stud-
ies have indicated that matrices are not efficient for representing
sparse graphs [OJK18], but for this case our system provides in-
teractive methods to highlight neighboring nodes adequately. Ma-
trix Snap&Go is designed to simplify the immediate exploration
of connections by displaying all available next steps within a ma-
trix layout. And it enables the possibility of introducing new panels
in future work to show additional contextual information to guide
users in choosing a path.

Our current visualization prototype is web-based and designed
to handle graphs with 10 to 100 nodes to ensure timely responses.
Although it can manage more nodes, response times may increase
depending on the browser’s capacity. Future work to enhance scal-
ability could involve summarizing the matrix cells into blocks, re-
ordering a block of nodes/links rather than a single link, and pro-
viding details on demand to zoom in on specific communities. In
addition to scalability, the evaluation of Matrix Snap&Go is an-
other direction of future work. While we presented a use case of
citation networks where favoring matrix representations over node-
link diagrams provides a better reading of the directionality of a
chosen ego network, it would be valuable to conduct formal user
studies across various usage scenarios to compare and evaluate the
readability and efficiency of this Snap&Go interaction with differ-
ent visual representations over different data distributions.

5. Conclusion

In this paper, we presented Matrix Snap&Go, a visualization of
exploration paths on adjacency matrices. Our animated interaction
technique supports users in exploring matrices by offering proper
guidance, which provides a good starting point for future work.
We have also demonstrated the usefulness of Matrix Snap&Go and
discussed its advantages and limitations.

Acknowledgements The authors wish to thank Kostiantyn
Kucher for his detailed and valuable comments on the visualiza-
tion design and paper structure. This work was partially supported
through the ELLIIT environment for strategic research in Sweden.
We thank Dagstuhl Seminar #23051 “Perception in Network Vi-
sualization” for initial discussions on this paper [KKR∗23]. For
the purpose of open access, the authors have applied a Creative
Commons Attribution (CC-BY) license to any Author Accepted
Manuscript version arising from this submission.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

Huang et al. / Matrix Snap&Go: Visualization of Paths on Matrices 5 of 5

References

[ASA∗22] ABDELAAL M., SCHIELE N. D., ANGERBAUER K.,
KURZHALS K., SEDLMAIR M., WEISKOPF D.: Comparative evaluation
of bipartite, node-link, and matrix-based network representations. IEEE
Transactions on Visualization and Computer Graphics 29, 1 (2022),
896–906. doi:10.1109/TVCG.2022.3209427. 2

[BBDW14] BECK F., BURCH M., DIEHL S., WEISKOPF D.: The state
of the art in visualizing dynamic graphs. In EuroVis - STARs (2014),
The Eurographics Association. doi:10.2312/eurovisstar.
20141174. 1

[BBHR∗16] BEHRISCH M., BACH B., HENRY RICHE N., SCHRECK
T., FEKETE J.-D.: Matrix reordering methods for table and network
visualization. Computer Graphics Forum 35, 3 (2016), 693–716. doi:
10.1111/cgf.12935. 1, 4

[BHRD∗15] BACH B., HENRY-RICHE N., DWYER T., MADHYASTHA
T., FEKETE J.-D., GRABOWSKI T.: Small multipiles: Piling time to ex-
plore temporal patterns in dynamic networks. Computer Graphics Forum
34, 3 (2015), 31–40. doi:10.1111/cgf.12615. 2

[BPF14] BACH B., PIETRIGA E., FEKETE J.-D.: Visualizing dynamic
networks with matrix cubes. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (2014), CHI ’14, Association
for Computing Machinery, p. 877–886. doi:10.1145/2556288.
2557010. 2

[BSP20] BEHRISCH M., SCHRECK T., PFISTER H.: GUIRO: User-
guided matrix reordering. IEEE Transactions on Visualization and Com-
puter Graphics 26, 1 (2020), 184–194. doi:10.1109/TVCG.2019.
2934300. 2

[BTBC∗21] BURCH M., TEN BRINKE K. B., CASTELLA A., PETERS
G. K. S., SHTERIYANOV V., VLASVINKEL R.: Dynamic graph explo-
ration by interactively linked node-link diagrams and matrix visualiza-
tions. Visual Computing for Industry, Biomedicine, and Art 4, 1 (2021),
1–14. doi:10.1186/s42492-021-00088-8. 2

[BZ03] BATAGELJ V., ZAVERSNIK M.: An o(m) algorithm for cores
decomposition of networks. arXiv:cs.DS/0310049 (2003). 4

[ER∗60] ERDŐS P., RÉNYI A., ET AL.: On the evolution of random
graphs. Publications of the Mathematical Institute of the Hungarian
Academy of Sciences 5, 1 (1960), 17–60. 4

[GFC05] GHONIEM M., FEKETE J.-D., CASTAGLIOLA P.: On the read-
ability of graphs using node-link and matrix-based representations: A
controlled experiment and statistical analysis. Information Visualization
4, 2 (2005), 114–135. doi:10.1057/palgrave.ivs.9500092.
2

[HF06] HENRY N., FEKETE J.-D.: MatrixExplorer: a dual-
representation system to explore social networks. IEEE Transactions
on Visualization and Computer Graphics 12, 5 (2006), 677–684. doi:
10.1109/TVCG.2006.160. 1

[HF07] HENRY N., FEKETE J.-D.: MatLink: Enhanced matrix visual-
ization for analyzing social networks. In Human-Computer Interaction
– INTERACT 2007 (2007), Springer Berlin Heidelberg, pp. 288–302.
doi:10.1007/978-3-540-74800-7_24. 1, 2

[HFM07] HENRY N., FEKETE J.-D., MCGUFFIN M. J.: NodeTrix:
a hybrid visualization of social networks. IEEE Transactions on Vi-
sualization and Computer Graphics 13, 6 (2007), 1302–1309. doi:
10.1109/TVCG.2007.70582. 2

[IHK∗17] ISENBERG P., HEIMERL F., KOCH S., ISENBERG T., XU P.,
STOLPER C., SEDLMAIR M., CHEN J., MÖLLER T., STASKO J.: vis-
pubdata.org: A metadata collection about IEEE visualization (VIS) pub-
lications. IEEE Transactions on Visualization and Computer Graphics
23, 9 (2017), 2199–2206. doi:10.1109/TVCG.2016.2615308. 4

[KKR∗23] KLEIN K., KOBOUROV S., ROGOWITZ B. E., SZAFIR D.,
MILLER J.: Perception in Network Visualization (Dagstuhl Seminar
23051). Dagstuhl Reports 13, 1 (2023), 216–244. doi:10.4230/
DagRep.13.1.216. 4

[MCH∗09] MOSCOVICH T., CHEVALIER F., HENRY N., PIETRIGA E.,
FEKETE J.-D.: Topology-aware navigation in large networks. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (2009), CHI ’09, Association for Computing Machinery,
p. 2319–2328. doi:10.1145/1518701.1519056. 2

[MGM∗19] MCGEE F., GHONIEM M., MELANÇON G., OTJACQUES
B., PINAUD B.: The state of the art in multilayer network visualiza-
tion. Computer Graphics Forum 38, 6 (2019), 125–149. doi:https:
//doi.org/10.1111/cgf.13610. 1, 2

[OJK18] OKOE M., JIANU R., KOBOUROV S.: Revisited experimental
comparison of node-link and matrix representations. In Graph Draw-
ing and Network Visualization (2018), Springer International Publishing,
pp. 287–302. doi:10.1007/978-3-319-73915-1_23. 4

[PDF14] PERIN C., DRAGICEVIC P., FEKETE J.-D.: Revisiting Bertin
matrices: New interactions for crafting tabular visualizations. IEEE
Transactions on Visualization and Computer Graphics 20, 12 (2014),
2082–2091. doi:10.1109/TVCG.2014.2346279. 2

[SM07] SHEN Z., MA K.-L.: Path visualization for adjacency matrices.
In Eurographics/ IEEE-VGTC Symposium on Visualization (2007), The
Eurographics Association. doi:10.2312/VisSym/EuroVis07/
083-090. 2

[VBW15] VEHLOW C., BECK F., WEISKOPF D.: The State of the Art in
Visualizing Group Structures in Graphs. In Eurographics Conference on
Visualization (EuroVis) - STARs (2015), The Eurographics Association.
doi:10.2312/eurovisstar.20151110. 2

[VKA∗18] VOGOGIAS A., KENNEDY J., ARCHAMBAULT D., BACH
B., SMITH V. A., CURRANT H.: Bayespiles: Visualisation support for
bayesian network structure learning. ACM Transactions on Intelligent
Systems and Technology 10, 1 (2018). doi:10.1145/3230623. 2

[WEF∗14] WYBROW M., ELMQVIST N., FEKETE J.-D., VON LAN-
DESBERGER T., VAN WIJK J. J., ZIMMER B.: Interaction in the vi-
sualization of multivariate networks. In Multivariate Network Visual-
ization: Dagstuhl Seminar #13201, Dagstuhl Castle, Germany, May 12-
17, 2013, Revised Discussions (2014), Kerren A., Purchase H. C., Ward
M. O., (Eds.), Springer International Publishing, pp. 97–125. doi:
10.1007/978-3-319-06793-3_6. 2

[ZSK17] ZIMMER B., SAHLGREN M., KERREN A.: Visual analysis of
relationships between heterogeneous networks and texts: An application
on the IEEE VIS publication dataset. Informatics 4, 2 (2017). doi:
10.3390/informatics4020011. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1109/TVCG.2022.3209427
https://doi.org/10.2312/eurovisstar.20141174
https://doi.org/10.2312/eurovisstar.20141174
https://doi.org/10.1111/cgf.12935
https://doi.org/10.1111/cgf.12935
https://doi.org/10.1111/cgf.12615
https://doi.org/10.1145/2556288.2557010
https://doi.org/10.1145/2556288.2557010
https://doi.org/10.1109/TVCG.2019.2934300
https://doi.org/10.1109/TVCG.2019.2934300
https://doi.org/10.1186/s42492-021-00088-8
https://doi.org/10.1057/palgrave.ivs.9500092
https://doi.org/10.1109/TVCG.2006.160
https://doi.org/10.1109/TVCG.2006.160
https://doi.org/10.1007/978-3-540-74800-7_24
https://doi.org/10.1109/TVCG.2007.70582
https://doi.org/10.1109/TVCG.2007.70582
https://doi.org/10.1109/TVCG.2016.2615308
https://doi.org/10.4230/DagRep.13.1.216
https://doi.org/10.4230/DagRep.13.1.216
https://doi.org/10.1145/1518701.1519056
https://doi.org/https://doi.org/10.1111/cgf.13610
https://doi.org/https://doi.org/10.1111/cgf.13610
https://doi.org/10.1007/978-3-319-73915-1_23
https://doi.org/10.1109/TVCG.2014.2346279
https://doi.org/10.2312/VisSym/EuroVis07/083-090
https://doi.org/10.2312/VisSym/EuroVis07/083-090
https://doi.org/10.2312/eurovisstar.20151110
https://doi.org/10.1145/3230623
https://doi.org/10.1007/978-3-319-06793-3_6
https://doi.org/10.1007/978-3-319-06793-3_6
https://doi.org/10.3390/informatics4020011
https://doi.org/10.3390/informatics4020011

