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Figure 1: Visual exploration of a neural network model library composed of 13,000 separately trained models. Left: UMAP embedding of the
weight space where each neural network is represented using a 1024 dimensional model-invariant weight distribution (MI-WD) descriptor.
Colors illustrate the test accuracies of the individual models, normalized on a per-dataset basis to be comparable between models trained
using different datasets. Right: Analysis of a high-performing cluster, where parallel coordinates show the combinations of hyper-parameters
that are characteristic for the selected cluster. The example MI-WD descriptors show how different architectures generate similar but not
equal representations, while the mean and standard deviation MI-WD descriptors illustrate overall cluster properties and variations. We
refer to Fig. 5 and the related discussion for an analysis of the different cluster selections.

Abstract
We present a neural network representation which can be used for visually analyzing the similarities and differences in a large
corpus of trained neural networks. The focus is on architecture-invariant comparisons based on network weights, estimating
similarities of the statistical footprints encoded by the training setups and stochastic optimization procedures. To make this
possible, we propose a novel visual descriptor of neural network weights. The visual descriptor considers local weight statistics
in a model-agnostic manner by encoding the distribution of weights over different model depths. We show how such a repre-
sentation can extract descriptive information, is robust to different parameterizations of a model, and is applicable to different
architecture specifications. The descriptor is used to create a model atlas by projecting a model library to a 2D representation,
where clusters can be found based on similar weight properties. A cluster analysis strategy makes it possible to understand the
weight properties of clusters and how these connect to the different datasets and hyper-parameters used to train the models.

1. Introduction
With the vast number of neural networks trained every day, meth-
ods for visualizing the relations between them has become increas-
ingly important. A meaningful visualization of the differences and
similarities of a highly diverse set of neural networks can be used

for, e.g., explainable AI, providing cues on how different datasets,
architectures, and hyper-parameters relate to each other in terms of
trained models, and as a general purpose visual analytics tool for
conveying large numbers of trained models.

In this paper, we focus on constructing a tool for screening the
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space spanned by a large-scale library of trained neural networks.
At the heart of the tool is the method used to represent neural net-
works, which can be used for measuring meaningful distances be-
tween models. For this purpose, we introduce a novel descriptor
that can extract relevant information suitable for measuring net-
work similarity. Although similarity between layers of different
networks can be defined using network activations from some rep-
resentative set of input samples [RGYSD17, MRB18, KNLH19],
this is 1) computationally demanding, 2) cannot be directly used
for comparing networks with different architectures, and 3) re-
quires explicit access to architecture specification and represen-
tative data. On the other hand, recent work has demonstrated
how the trained weights locally encode a wealth of informa-
tion [EJR∗20, UKG∗20], and that learned weight information gen-
eralizes to unseen architectures and datasets [UKG∗20]. However,
due to the symmetric nature of neural networks, where the same
model can be described with widely different parameterizations,
it is not possible to directly compare weights of different mod-
els [NSA∗23, ZYJ∗23]. Thus, we formulate a weight descriptor
based on local statistics of the trained weights of a network. This
does not rely on access to data or architecture specification, i.e. can
be applied to a black-box model with no auxiliary information, and
provides a representation that is robust to different parameteriza-
tions of the same model.

Through experiments, we demonstrate promising properties of
the proposed descriptor, showing how it can successfully untangle
information related to how a network is trained. Then, we demon-
strate the visually represented model library that we construct for
exploration of a diverse set of neural networks, Fig. 1, and dis-
cuss how this can be used to extract knowledge on how hyper-
parameters shape the neural network weight space.

Related work: There are many attempts at providing an un-
derstanding of neural networks by leveraging activations at dif-
ferent levels within a network. For example, the similarity be-
tween different layers can be formulated by comparing activa-
tions [RGYSD17, MRB18, KNLH19, BJR22], and many methods
exploit activations in different ways [ZF14, MV15], also for the
embedding of many networks using concatenated activation vec-
tors [ECBV10]. Tools for visual analysis using this type of informa-
tion have seen rapid developments over the last years [LRBB∗23,
RFFT17, KAKC17, PHVG∗17, HKPC18, WTS∗20, CL18]. Distill-
ing information from direct analysis of weights, however, is less
explored, and mostly limited to understanding learning trajecto-
ries [GD97,ASD18,SB20]. There are also some attempts at under-
standing neural networks by learning from large numbers of sam-
pled weight instances [EJR∗20, UKG∗20, NSA∗23, ZYJ∗23]. Pre-
vious work has focused on visualization of individual or few net-
works, and to our knowledge, there are no previous methods that
have successfully visualized the relations between large quantities
of diverse neural networks purely based on their weights.

2. Method

The central part of our visual exploration tool is the format used
to represent each model. We first describe the proposed statistical
approach for this purpose, followed by an outline on how this is
used to construct a visual model library.
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Figure 2: Descriptors with B = 32 histogram bins and evaluated
at S = 32 local windows of trained weights. The information on the
top lists the dataset, optimizer, activation function and initialization
scheme, respectively, used for training the individual networks.

2.1. Model-invariant weight descriptors
We consider the neural network weights θ ∈ RN , represented as a
sequence of vectorized and concatenated weight matrices and bi-
ases, including batch normalization weights (similar to [EJR∗20]).
We extract features purely based on the distributions of weights in
localized neighborhoods of θ. This is to some extent similar to his-
tograms of oriented gradients (HOG) [DT05], which are popular
for image recognition.

If we denote the weight at location i by θi, for i = {1, ...,N},
we can evaluate histograms on chunks of weights θi0:i1 , between
indices i0 and i1. We define S non-overlapping windows using
i0 = ⌊N(s−1)/S⌋+1 and i1 = ⌊Ns/S⌋, for s = {1, ...,S}. For each
window, we evaluate the local normalized histogram with B bins
and arrange the histograms as rows in an S×B matrix. This forms
a 2D descriptor describing the local distribution of weights for dif-
ferent depths of a network, with depth increasing towards the lower
part of the matrix. Some examples of descriptors are illustrated in
Fig. 2, visualized both using plots for each local histogram as well
as color-mapped image representations. We can see that the local
weight distribution is often similar across depths, but this is not
always the case, especially in the early and deep layers (top and
bottom, respectively, in the descriptor matrix).

The benefit of our descriptor definition is that it can be applied
on θ of different sizes N without knowledge of how different layers
are defined. The only requirement is to have θ constructed consis-
tently, with different layers in increasing order. Since the descriptor
relies only on the distribution of weights it is likely to be robust to
different formats of exported weights, e.g., if weight matrices are
stored in row- or column-wise order. As default, we use S =B= 32,
for a representation described with K = 1024 dimensions, but we
also test other dimensions in our experiments. For the evaluation
of histograms, we define bins between weight values −5 and 5. On
average, this corresponds approximately to the 5th and 95th per-
centiles of a weight vector θ, making the descriptor robust against
extreme values.

2.2. A model library for visual exploration
While MI-WD descriptors have the potential to be used in many
different contexts, we focus on the problem of visualizing the rela-
tions between a large number of neural networks.
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Figure 3: Linear SVMs trained for hyper-parameter classification
of different weight representations. Error bars show standard devi-
ation over a 5-fold cross-validation. Except for the global statistics,
representations have been tested with 64, 256, and 1024 dimen-
sions (left, middle, and right bars, respectively) for each method.

Model atlas: The base for the method is a UMAP embed-
ding [MHSG18] for visually screening the space of available mod-
els, formulating the projection f : RS×B → R2 from the K = SB
dimensional MI-WD space (where each descriptor is first vector-
ized). With the resulting atlas of 2D coordinates, it is possible to
find clusters with similar weight properties, see Fig. 1(left).

Cluster analysis: To build an understanding of the cluster charac-
teristics, we implement a selection-based summary of properties,
illustrated in Fig. 1(right). The summary allows for exploring the
MI-WD descriptors of a cluster, providing both visual comparisons
of the individual descriptors as well as the descriptor mean and
standard deviation over the cluster. As the descriptors describe the
distributions of weights over different model depths, it is possible to
pinpoint where and how much the models typically differ within a
cluster. This focuses on direct understanding on what distributions
of weights form the cluster, as well as the variations between mod-
els. As a means of indirect understanding of similarities and varia-
tions between models in terms of the datasets and hyper-parameters
that were used in training, we connect a parallel coordinate repre-
sentation that shows this information for the models in the cluster.
Fig. 1(right) shows an example, where a selection of six parameters
have been plotted, including the test accuracy of the models.

Pipeline: The tool for model library exploration can be composed
as: 1) Construct MI-WD descriptors for each model in the library.
2) Perform UMAP projection on the collection of vectorized de-
scriptors, and present the 2D embedding result, e.g. colorized to
convey test accuracy of individual models. 3) Based on chosen ar-
eas of interest in the embedding, present information on a) individ-
ual descriptors together with mean and standard deviation over the
selected area, and b) parallel coordinates plot for fast visual feed-
back on the combination of hyper-parameters used in training.

We emphasize that the model library embedding does not require
any knowledge of the architecture, training data, or parameters used
by the different networks, i.e. it could also relate incoming black-
box models to an already existing library. However, for the analysis
of cluster configurations, we link information on training setup to
the visualization pipeline, to enable an understanding of how hyper-
parameters indirectly shape the relations between network weights.
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Figure 4: UMAP embeddings of different weight representations,
color coded to visualize the initialization schemes used in training.

3. Results
We verify the quality of the MI-WD descriptors and compare to a
selection of baseline methods. We then demonstrate the visual ex-
ploration of a model library. For additional examples and analysis
of the descriptors, e.g. in terms of invariance to different parame-
terizations of a network, we refer to the supplementary material.

Baselines: A naive baseline, which we term raw, re-samples the
raw weights θ in K dimensions using linear interpolation. A second
simple baseline considers global statistical features extracted from
raw weights. These are specified as in [EJR∗20], from 8 different
statistical measures of a weight vector: mean, variance, skewness
(third standardized moment), and five-number summary (1, 25, 50,
75, and 99 percentiles). The measures are applied directly on the
weights θ and weight gradients ∇θi = θi+1 − θi, for a total of
16 features. Furthermore, as an example of a commonly used di-
mensionality reduction method we apply PCA on re-sampled raw
weights θ̂∈RN̂ represented in N̂ = 65,536 dimensions, and then use
the K first principal components as a weight representation. Finally,
we also test randomly projecting θ̂ (in 65,536 dimensions as with
PCA) to a K-dimensional space, z = Φθ̂, where Φ is a K× N̂ matrix
populated by normally distributed random numbers (µ = 0,σ = 1).

Dataset: We use the neural weight space (NWS) dataset from
[EJR∗20], which is composed of 13,000 trained CNNs with a wide
variety of architectures, training data, and hyper-parameters. For
the numerical evaluations, we use the curated training dataset of
8,035 models for producing PCA projection and perform evalua-
tions on the 2448 models of the test set. For testing the visual ex-
ploration tool, we include all 13,000 models in a model library.
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Figure 5: Cluster properties of the selections in Fig. 1, with color encoding and parallel coordinate labels as in Fig. 1. As visible from
the color encoding, and the last parallel coordinate axis, the clusters differ in performance of the clustered networks, where A-B are low-
performing, C is medium-performing, and D-F are high-performing. The example descriptors in cluster E demonstrate closely located good
and bad local minima in the visualized weight space.

Untangling hyper-parameters: A common strategy for quality
evaluation of representations is to train a linear classifier in the rep-
resentation space, showing how successful the representation is at
separating/untangling different types of variations. We make a sim-
ilar evaluation using weight descriptors and baselines, by consid-
ering classification of hyper-parameters from the weights. This is
similar to the experiments on raw weights in [EJR∗20], but here
we consider weight representations. The results for five different
hyper-parameter classifications are shown in Fig. 3, where linear
SVMs have been trained with 5-fold cross-validation on the NWS
test set. We also evaluate representations with different dimension-
ality, K = {64,256,1024}. It is clear how the MI-WD descriptors
overall are significantly better than the baseline methods, where
most baselines are incapable of separating the variations.

Embeddings: Given the results in Fig. 3, we expect that MI-WD
descriptors will generate a better structured UMAP embedding for
visualizing the model library. This is also confirmed by comparing
the projections in Fig. 4. Re-sampled raw weights, PCA, and ran-
dom projections generate embeddings with little structure, while
the global statistical features have problems forming meaning-
ful clusters. The weight descriptor embedding, on the other hand,
shows distinct clusters based on differences in network setups.

Model library: To provide an understanding of the relations be-
tween models, Fig. 1 highlights a set of selections that have been
made using the cluster analysis tool. In Fig. 5, we focus on ana-
lyzing the clusters based on the combinations of training settings.
The embedding is colored to show the normalized test performance
of the different networks. Normalization has been done per dataset
according to (pd −min(pd))/(max(pd)−min(pd)), where p are
the performances of models trained on dataset d. With the nor-
malization, it is possible to align model performances for a cross-
dataset comparison. Based on accuracy, we classify clusters A-B
as low-performing, C as medium-performing, and D-F as high-
performing. Clusters A and B use constant initialization (also vis-
ible in Fig. 4), which is highly correlated with low performance.
However, there are low-performing models in clusters C which do
not use constant initialization, and high-performing models in clus-
ter E and F which have models with constant initialization. Cluster
B shows how branches within a larger cluster have different setups

– in this case with Sigmoid activation function and ADAM or RM-
Sprop optimizers. Clusters D-F show good performance with dif-
ferent constellations of parameters. D uses mostly Glorot uniform
or normal initialization together with Sigmoid or TanH activation.
E has many models with constant or random normal initialization,
ADAM or RMSprop initializers, and batch sizes of only 32 or 64. F
uses all but random normal initialization together with ReLU acti-
vation and ADAM or RMSprop optimizers. Neither E or F include
models trained on STL-10.

From inspecting the combination of hyper-parameters of differ-
ent clusters it is possible to see how the embedding has a clear
structure which allows for reasoning around how models relate to
each other. It is also interesting to see how models with similar
statistics can result in very different performances, e.g. in cluster
E, where the illustrated descriptors are both trained on MNIST but
where one has test accuracy 99.0% and the other 19.6%. This points
to how good and bad local minima can be close in the weight space.

4. Conclusion
We have introduced a novel method for comparison of the weight
properties of large quantities of diverse neural networks without ac-
cess to information about their design or training setup. The tool is
built around a descriptor for weight representation, which has been
demonstrated successful for efficient model-invariant comparison
of neural networks. The descriptor has tractable properties in terms
of untangling the variations of the weight space and is robust to dif-
ferent parameterizations of the same model. We have verified that
the proposed descriptor can aid in visual analysis of large quantities
of networks. Future work includes extending the analysis to larger
networks and datasets, as well as exploring possibilities in terms
of visual analytics. With refined visualization and filtering options,
we believe that weight space analysis has the potential to become
a powerful tool for understanding and exploiting the relations be-
tween a wide variety of different models.
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