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Abstract
Hierarchical clustering arrange multi-dimensional data into a tree-like structure, organizing the data by increasing levels of
similarity. A cut of the tree divides data into clusters, where cluster members share a likeness. Most common cutting techniques
identify a single line, either by a metric or with user input, cutting horizontally through the tree, separating root from leaves. We
present a new approach that algorithmically identifies cuts at multiple levels of the tree based on a metric we call robustness.
We identify levels to maximize overall robustness by maximizing the height of the shortest branch of the hierarchical tree we
must cut through. This technique minimizes the variation within clusters while maximizing the distance between clusters. We
apply the same approach to merge trees from computational topology to find the most robust number of connected components.
We apply the multi-level robust cut to two datasets to highlight the advantages compared to a traditional, single-level cut.

CCS Concepts
• Mathematics of computing → Algebraic topology; • Information systems → Clustering and classification;

1. Introduction

The field of data science is continuously evolving to better under-
stand complex, high-dimensional data spaces. Hierarchical cluster-
ing methods establish a formal order in high-dimensional spaces
by identifying a recursive similarity and defining an inherent rela-
tionship between clusters. However, clustered results can be many
levels deep, and determining which levels are most significant for
useful categorization of the data can be challenging. This paper in-
troduces a novel algorithmic approach for identifying the robust cut
of a hierarchically clustered dataset. We define a robust cut as the
identification of a set of multi-level breaks of the hierarchical struc-
ture such that there is minimal variation within the clusters while
maximizing the distance between clusters. The robustness of any
cut is defined as the height of the shortest branch of the hierarchi-
cal tree we cut through. Our method differs from related work as we
do not require the cut to be at the same height across the tree (hence
multi-level). This method is applicable to both classical hierarchi-
cal tree visualizations (e.g. dendrograms, icicle plots, or sunburst
charts) [ZS21], and merge trees, a fundamental concept in compu-
tational topology. More specifically, our method is geared towards
two objectives: the formation of flat clusters from dendrograms to
categorize data into distinct groups, and the determination of the
number of connected components (0th Betti number) in a robust
manner for merge trees.

For hierarchical tree visualizations, our algorithm focuses on the
identification of robust flat clusters. Specifically, we are interested
in groupings of points that exhibit minimal internal variance while
maintaining maximum separation from other groups. In addition,
our method is deterministic so no user input is required.

Our algorithm is also applicable to merge trees, a topologi-
cal representation of the connected components in a dataset. Our
method can be used to robustly quantify the number of connected
components (0th Betti number) in the data by identifying the most
robust cut of the merge tree. This metric is crucial in under-
standing the underlying topological structure, particularly in high-
dimensional spaces where such structures are not readily apparent.
Our approach enhances the robustness of this calculation, mitigat-
ing the influence of noise and outliers, and providing a more accu-
rate representation of the data’s fundamental topological features.

There is a significant overlap between the topological analysis
of data using persistent homology, specifically the 1-skeleton of
the alpha complex [EKS83], and hierarchical clustering [AA18]. In
persistent homology, a set of points P can be connected into a sin-
gle component by iteratively adding branches between two points
when the distance between them is less than the filtration parame-
ter, ε ∈ R+ [EH22]. This can be imagined as in Fig. 1 with ε being
the diameter of balls around the points and a merge occurring be-
tween two points as soon as their balls touch as ε is continuously
increased. The resulting merge tree is a hierarchical representation
of P. This tree is identical to the dendrogram in hierarchical clus-
tering if single-linkage clustering is used as the merging strategy.
Any value of ε defines a horizontal single-level cut of the merge
tree into a set of connected components.

2. Related Work

2.1. Hierarchical Clustering

Hierarchical clustering is a useful technique employed in various
domains such as medical data analysis [RSK∗23,LLZZ23] and ma-
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chine learning [BHA∗23, ZRK∗23]. In hierarchical clustering, flat
clusters are identified using an approach known as tree or branch
cutting. The most widely used method in this process, often re-
ferred to as the ‘static’ tree cut, identifies individual clusters as
contiguous sets of branches below a predetermined cutoff height.
Each of these branch sets, isolated at or below this fixed thresh-
old, is considered a separate cluster [LZH08]. However, the use of
a static cut for cluster determination may not accurately define the
best categorization of the data. This limitation is due to the static
cut’s reliance on a fixed threshold, which might not align perfectly
with the natural divisions within the data, especially if the data is
heterogeneous [VKA∗16, AA18].

While multi-level cut methods do exist, we are not aware of any
publication that employs robustness as a metric for multi-level cuts.
Some examples of multi-level methods include cuts by inconsis-
tency (the deviation of a particle’s distance from the center over the
average across the cluster), or by recursively splitting sub-clusters
based on characteristic patterns [LZH08]. Obulkasim et al. point
out that the fixed-height cuts do not provide good enough clusters
in biomedical data [OMvdW15]. They suggest a semi-supervised
piece-wise snipping that allows a flexible-height cut instead. Their
algorithm incorporates external data, such as the life expectancy
in DNA and mRNA datasets, to decide on the suggested cut. Vo-
gogias et al. provide an interactive interface in which the user can
select places to cut the tree taking data characteristics into ac-
count [VKA∗16]. They support the user with global (‘static’) and
local automatic partition techniques. Alcaide and Aerts support in-
teractive cuts with community finding algorithms from graph the-
ory [AA18]. They aggregate nodes based on degree centrality and
use the Infomap algorithm, which is based on random walks, for
community detection [RB08].

The python package scipy.cluster.hierarchy [Sci23] allows the
user to define linkage, and extract flat clustering based on incon-
sistency, number of clusters, static height, and hybrid methods, but
the determination of flat clusters is only possible at a single height.

2.2. Persistent Homology

There is a noteworthy overlap between topological data analy-
sis (TDA) and hierarchical clustering, explicitly pointed out by Al-
caide et al. [AA18], but perceivable in many other works.

Delfinado and Edelsbrunner [DE95] describe how Betti numbers
on triangulations up to three dimensions can be computed in almost
linear time using two Union-Find algorithms [Tar75] to mark sim-
plices that belong to the same cycle. Union-Find is also used in
classical hierarchical clustering to compute the tree structure.

Related publications explore different complexes used to derive
filtrations. Edelsbrunner et al. [ELZ00] suggest generating a filtra-
tion from scattered data using the alpha complex [EKS83]. Since
it is homotopy equivalent to the distance field, it is an excellent
tool for assessing the topological structure of a discrete point dis-
tribution. Ghrist [Ghr08] states that the Czech complex has the
same homotopy type as the union of closed balls about the point
set while the Rips complex, which can be computed faster, does
not. However, he states that using the Rips complex and the bar-
code is justified because a Czech complex can be approximated by
two Rips complexes through inclusion maps. When reduced to the

1-skeleton, i.e., to only points and edges without triangles, tetra-
hedra, or higher-dimensional simplices, these three complexes all
produce the same filtration, which coincides with the ordering of
adding smallest to largest edge used in hierarchical clustering with
the single-linkage strategy. Siu et al. suggest a filtration function
that takes the local density into account such that it becomes scale-
invariant, i.e., the persistence diagrams of a pattern and its scaled
version are identical [SSYY22]. They use an average instead of a
minimum to be more robust against noise. In some ways, this is
similar to the presented method because the robust cut is also scale
invariant whereas most traditional single-level cut methods are not.

Barcodes, persistence plots, merge trees, and hierarchical tree
drawings, like dendrograms, are related in that they all encode the
births and deaths of features in data. The barcode [KMM04] is a
visualization with a line for each feature stacked on top of each
other such that the beginning of the line is its birth and the end is
its death. The persistence plot is similar. Edelsbrunner et al. distin-
guish noise from feature through persistence, i.e., a feature’s life
span in persistent homology [ELZ00]. A merge tree is a sub-graph
of the contour tree [CSA03], which in turn coincides with the Reeb
graph for simply connected domains [Ree46]. A merge tree is sim-
ilar to the barcode of the 0th Betti number if the individual lines are
connected based on the merges that caused their deaths. They are
more commonly used for the visualization of the topology of scalar
fields, where the filtration is generated from the scalar values at data
points instead of distances [EH22]. A split tree is similar [CSA03].

We will use the topological concept of persistence, the life span
of a feature, from TDA to mathematically motivate the robust cut to
form flat clusters in hierarchical trees whether they originate from
topology or from hierarchical clustering.

3. Robust Cut

Given a dataset D that comprises a set of elements E, each element
is associated with a set of properties, ai:

D = {E | E = {a1,a2,a3, ...,an}}.

From these elements and associated properties, we identify the re-
lationship between points through a metric; here we use the Eu-
clidean distance between ai. From this measure, we generate the
corresponding hierarchical tree.

From this hierarchical structure, a single-level flat cut identifies
the height of the tree that results in a set of corresponding clus-
ters, as all connected branches below a cut form a single cluster.
However, finding the best height is not trivial. The most promis-
ing candidate is the height whose cut goes through as few short
branches of the tree as possible. This is because cutting through
a short branch indicates a configuration that is not stable. A small
deviation could result in a different distribution of particles into dif-
ferent categories, making the cut invalid. However, there may not
be a single value that generates a horizontal cut through the longest
branches. A value that is good for one section of the tree may not
be as meaningful in another.

We resolve this by allowing cuts that are not a single straight line.
We only require that the cut goes through the whole tree, such that
each leaf is separated from the root, but the height of the cut may
vary. This allows us to minimize cuts through short branches and
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(a) Data points (black points) and radii that cause merges (gray disks with
luminance increasing with radius).

(b) Corresponding dendrogram and potential cuts for flat clustering.

Figure 1: Toy 1D example data and corresponding dendrogram
with potential cuts (dotted lines) to form flat clusters from the hier-
archy. Regardless of the radius ε or cut height, we pass through a
node of height 100, resulting in the robustness of any cut being less
than 100. The order of points left to right are the same in (a) & (b).

obtain the most robust one-to-one association of particles and con-
nected components. Our algorithm computes this line without re-
quiring optimization or initial guesses. We illustrate our algorithm
on a 1D toy example with six data points at x-coordinates 0, 100,
300, 650, 900, and 1050, in Fig 1a.

The algorithm to define a robust multi-level cut is as follows. If
we cut through an branch of the tree, we must also cut through the
branch of its sibling, and the combined robustness is the minimum
of their individual robustness values. For a sub-tree, the overall ro-
bustness is the maximum of all robustness values down to the leaf.
We therefore first initialize each node with its robustness (death
length minus start length), Fig. 2a. We start by treating all leaf sib-
ling pairs s1,s2 that have only leaf siblings and 1) minimize the
robustness among them m = min(r(s1),r(s2)), Fig. 2b. 2) Going
up, we assign the maximum of that minimum and the robustness of
the parent max(m,r(p)) to each parent of only leaf children. 3) We
then mark the treated leaves as removed, making the parent a leaf.
4) If the leaf siblings originally had descendants di, assign the min-
imum of m and each descendant’s robustness min(r(di),m) down
the whole sub-graph, Fig. 2d. This process is applied iteratively
until the tree has been reduced to the root. Now that we have as-
signed the cutting robustness for the branches leading to all nodes,
we cut the most robust one first, Fig. 3. Upon a cut, we mark its
descendants with the id of the node and its ancestors with a non-id,
e.g., −1 to mark that they are treated. The process is repeated until
all leaves have been assigned. In a tie, the lower node gets cut first.

(a) Initialize nodes with their height. (b) First iteration.

(c) Second iteration. (d) Final iteration with cascade.

Figure 2: Algorithm that assigns cutting robustness values. (a) Ini-
tialization. (b) to (d) iteratively for all unmarked leaf siblings: min-
imize across siblings (blue), maximize for parent (pink), and mark
as removed (transparent).

(a) Dendrogram with the robust cut indicating 4 robust flat clusters.

(b) Data set colored by cluster ID. The dotted lines show the robustness
of each cut. The hollow circles indicate the downward adjustment of the
algorithm across siblings.

Figure 3: Toy example with robust cut forming flat clusters with a
robustness of 150.
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The necessity of step 4 in the algorithm becomes apparent if we
imagine the robustness of the root had been 155. Then, the most ro-
bust cut would go right through it leaving everything in one cluster
for a total robustness of 155. But without the cascading of the 150
down the right half sub-tree, the cutting part would have started at
the 160 lower right value, falsely marking off the 155 value and
resulting in a cut of robustness of only 150.

4. Case Studies

4.1. Motor Car

The Motor Trend Car Roads Tests data in this case study is from the
datasets library included in the R Programming Language [R C19].
The data was first published in the 1974 Motor Trend US magazine
and lists 11 numeric attributes of 32 different cars of the time. The
11 attributes are miles per gallon, number of cylinders, displace-
ment in cubic inches, gross horsepower, rear axle ratio, weight in
thousand pounds, time to travel 1/4 mile, engine type (V-shaped or
straight), transmission type (automatic or manual), number of for-
ward gears and number of carburetors. The Euclidean distance be-
tween the 11 attributes of each pair of cars determines their simi-
larity. From the resulting icicle plot [ZS21], we identify the robust
cut, the black dotted line in Figure 4. Our method simplifies the 32
automotive entries into 11 flat clusters, each identified by a unique
color. Grey solid lines delineate the hierarchical structure of the
data. Our multilevel robust cut has a robustness of 16.95, as de-
fined by the height of box a.
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Figure 4: The hierarchical clustering (visualized as an icicle plot)
and robust cut of the 1974 Motor Trend data of 32 different cars.
Each color (except yellow) identifies a cluster as determined by the
multi-level robust cut (black dotted line). Solid grey lines show the
hierarchical tree. The gray dashed line represents the most robust
single-level cut for comparison.

4.1.1. Evaluation

The grey dashed line indicates the most robust single-level cut, i.e.,
the horizontal line where the smallest segment it intersects is max-
imized. The robustness of this cut, defined by the height of box b,
is 16.76. Though the difference in robustness is not large, it’s clear
that the multi-level robust cut results in a much more informative
clustering than the single-level cut. The single-level cut separates
the Maserati Bora from the other cars, which is significant as the
Maserati is the clear outlier in this group of cars. However, it cate-
gorizes everything else into one single group. The multi-level cut,
however, does a much better job separating sports cars from higher-
performing Mercedes and family sedans.

4.2. Birds

This birds simulation models flocking behavior that can be used
to study and predict the real phenomenon, but can also be con-
sidered a swarm intelligence algorithmic optimizer. Similar to
Boids [Rey87], the model encourages particles to move towards
their neighbors, with a small random component added to their
movement. Swarm behavior has previously been studied in persis-
tent homology by Topaz et al. to evaluate the Betti numbers of the
Vietoris Rips complex for simulations of birds and fish [TZH15].

In this example, we look at time 26 from a 100 step simulation.
Particles are seeded randomly at time 0 and allowed to roam. The
robust cut identifies seven clusters in this data, Fig. 5 left. The color
of each cluster corresponds to the particle in Fig. 5 right. Our multi-
level robust cut has a robustness of 0.047, as defined by box a.

b

a

Figure 5: The hierarchical clustering and robust cut (black dot-
ted line) of a flocking simulation show the clustering of 100 parti-
cles about 1/4 of the way through the simulation. Each unique color
(other than yellow) identifies a multi-level robust cluster in both
the tree and the physical particle. Solid grey lines represent the un-
derlying merge tree. The grey dashed line shows the most robust
single-level cut for comparison (defined by the height of box b).

4.2.1. Evaluation

The most robust single-level cut, at a robustness of 0.0365, would
combine the five clusters on the right (green, orange, lavender, pur-
ple, and brown) into a single cluster. This would result in three
clusters: the pink, the red, and everything else. Comparing these re-
sults to the locations of the particles in Fig. 5 right shows that this
is a drastic oversimplification of the data. A visual analysis clearly
shows the separation between particles that are being missed by the
single-level cut. The multi-level cut, however, much more clearly
represents the proximity of particles in this configuration.

5. Conclusions

We have presented an approach to improve the robustness of flat
clusters in hierarchical clustering by softening the restrictions of
the cut from a single line to a multi-line configuration. The result-
ing clusters are more robust and allow semantically more mean-
ingful clustering of data. Additionally, we can use the same algo-
rithm to better analyze the topology of point clouds, as it provides
the most robust number of connected components (0th Betti num-
ber) in computational topology. Moreover, our method computes
the robust multi-level cut without the need for initial guesses or
convergence issues.

However, it’s worth noting that the robust cut has a notable limi-
tation: it cannot be used in applications that need a constant cutting
value for the physical validity of the results. Therefore, it’s crucial
to ensure that the results correspond to a semantic understanding of
the data. We will explore this further in future work.
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