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Abstract

Recently there has been a growing interest in sketch recognition technologies for facilitating human-computer
interaction. Existing sketch recognition studies mainly focus on recognizing pre-defined symbols and gestures.
However, just as there is a need for systems that can automatically recognize symbols and gestures, there is also
a pressing need for systems that can automatically recognize pen-based manipulation activities (e.g. dragging,
maximizing, minimizing, scrolling). There are two main challenges in classifying manipulation activities. First is
the inherent lack of characteristic visual appearances of pen inputs that correspond to manipulation activities.
Second is the necessity of real-time classification based upon the principle that users must receive immediate
and appropriate visual feedback about the effects of their actions. In this paper (1) an existing activity prediction
system for pen-based devices is modified for real-time activity prediction and (2) an alternative time-based activity
prediction system is introduced. Both systems use eye gaze movements that naturally accompany pen-based user
interaction for activity classification. The results of our comprehensive experiments demonstrate that the newly
developed alternative system is a more successful candidate (in terms of prediction accuracy and early prediction
speed) than the existing system for real-time activity prediction. More specifically, midway through an activity, the
alternative system reaches 66% of its maximum accuracy value (i.e. 66% of 70.34%) whereas the existing system
reaches only 36% of its maximum accuracy value (i.e. 36% of 55.69%).

Categories and Subject Descriptors (according to ACM CCS): H.1.2 [Models and Principles]: User/Machine
Systems—Human information processing H.5.2 [Information Interfaces and Presentation (e.g., HCI)]: User
Interfaces—Input devices and strategies (e.g., mouse, touchscreen)

Keywords: eager activity recognition, sketch recognition, proactive interfaces, multimodal interaction, sketch-
based interaction, gaze-based interaction, feature extraction
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1. Introduction

Typical pen-based interaction consists of stylized and non-
stylized pen inputs. Stylized pen inputs correspond to pre-
defined symbols and gestures. They have characteristic vi-
sual appearances, hence they can be classified with conven-
tional image-based recognition algorithms (Figure 1a). On
the other hand, non-stylized pen inputs correspond to pen
inputs that lack a characteristic visual appearance. Accord-
ingly, for non-stylized pen inputs, appearance alone does
not carry sufficient information for classification purposes.
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For example, the pen trajectories for pen-based manipula-
tion activities such as dragging, resizing, and scrolling have
roughly the same shape (Figure 1b).

There are many approaches in the literature for classify-
ing stylized pen inputs such as symbols and gestures [Rub91,
KS04, HDOS]. However, just as there is a need for systems
that can automatically recognize symbols and gestures, there
is also a pressing need for systems that can automatically
recognize pen-based manipulation activities that yield non-
stylized pen input. Automatic recognition of manipulation
activities is desirable since it potentially eliminates the need
for unnatural and imposed behaviors that must accompany
these activities. For example, when a user wants to drag or
resize an object, s/he must explicitly communicate which ac-
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tivity s/he intends to perform via selecting the intended ac-
tivity from a context menu or via carefully locating prede-
fined regions dictated by the user interface (such as a four-
headed arrow in the middle of an object for dragging, or a
double-headed arrow around the edges of an object for resiz-
ing). These auxiliary behaviors are repeatedly and somehow
habitually performed by users during daily pen-based inter-
action, but in fact go against the philosophy of pen-based
interfaces as a more intuitive interaction alternative.
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(a) Niclcon iconic pen gestures [NWVO08] serve as examples of
stylized pen input. Each gesture has an easily distinguishable
characteristic visual appearance.
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(b) Pen trajectories for virtual interaction tasks [CS15] serve as
examples of non-stylized pen input that do not have characteris-
tic visual appearances and do not lend themselves well to con-
ventional image-based recognition algorithms.

Figure 1: Stylized and non-stylized pen inputs.

The task of classifying manipulation activities is of a more
challenging nature both due to the inherent lack of charac-
teristic visual appearances, and more importantly due to the
necessity of real-time classification. Manipulation activities
must be recognized in real-time in order for the pen-based
interface to actively detect and switch to the currently in-
tended mode of manipulation and provide immediate and
appropriate visual feedback about the effects of user’s ac-
tions [Nor02]. For instance, when the user places the stylus
pointer on an object and starts dragging the object, s/he must
be able to see the change in the object’s position in real-time.

Eye tracking technology has greatly improved in the last
few years, and it is now possible to embed gaze detection
functionalities into portable devices such as tablets and smart
phones [Ble13]. We propose to use eye gaze movements
that naturally accompany pen-based user interaction for real-
time classification of non-stylized pen inputs. To illustrate
our approach, we have adapted an existing gaze-based ac-
tivity prediction system [CS15] to the needs of real-time ac-
tivity prediction. In the rest of the paper, this system will be
referred to as the static system. Furthermore, we have devel-
oped an alternative time-based dynamic system specifically
tailored for real-time activity prediction. We comparatively
evaluate these two systems with respect to prediction accu-
racy and early prediction speed. Our evaluation is focused
on a number of frequently employed pen-based interaction
tasks. These tasks are: drag, maximize, minimize, scroll, and

free-form drawing. Our results show that the dynamic ap-
proach that we propose based on Hidden Markov Models
(HMMs) is more suitable than a static approach based on
Dynamic Time Warping (DTW) for real-time gaze-based ac-
tivity prediction in pen-based devices.

2. Related work

We have presented a gaze-based real-time activity prediction
system for pen-based devices. State-of-the-art related work
falls under two main categories: real-time sketch recogniz-
ers and gaze-based activity predictors. In summary, existing
real-time sketch recognizers only work on stylized pen in-
puts and existing gaze-based activity predictors are able to
detect the performed activity only after the activity ends.

There are many approaches in the literature for classifying
stylized pen inputs such as symbols and gestures [Rub9l,
KS04, HDOS]. All these approaches focus on classifying
fully completed sketches. A more challenging task is auto-
completion, i.e. classifying sketches in real-time before they
are fully completed. Auto-completion of stylized pen in-
puts has also been tackled to some extent. Prominent ex-
amples deal with recognizing primitive geometric shapes
(e.g. circles and squares) [ANOO], complex Chinese charac-
ters [LMSO08], Course of Action Diagram symbols [TYS12],
and multi-touch gestures [SW14] before the drawings are
fully completed. We focus on the even more challenging task
of classifying partially completed non-stylized pen inputs.

One active line of research on gaze-based interaction aims
to predict user activities during interaction with computer-
ized systems. Prominent examples deal with predicting of-
fice activities [BRT11], Google Analytics tasks [CAD*11],
graph-based information visualization tasks [SCC13], and
pen-based virtual interaction tasks [CS15]. All of the exist-
ing studies, however, are able to detect the performed activ-
ity only after the activity ends. Therefore, it is not possible to
employ these systems in real-time proactive user interfaces.

3. After-the-fact activity prediction

In this section, the existing static system [CS15] and the
newly developed alternative dynamic system are described.
We compare the two methods with respect to after-the-
fact (as opposed to early) activity prediction accuracy. For
all experiments, we use the multimodal database detailed
in [CS15]. This database consists of sketch and gaze data
collected for 5 different activities (drag, maximize, minimize,
scroll, and free-form drawing) from 10 participants (6 males,
4 females) over 10 randomized repeats across 3 scales. The
scale variable determines the length of the desired pen mo-
tion and was set to 21 c¢cm, 10.5 cm, and 5.25 c¢m for the
large, medium, and small scales, respectively. The free-form
drawing activity differs from the remaining activities in a
special way. If our prediction system is to be employed in
a proactive user interface, the ability to distinguish between
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the intention to sketch and the intention to interact becomes
vital. Accordingly, the free-form drawing activity is included
in our study to avoid unsolicited task activation. For col-
lecting this database of synchronized sketch and gaze data,
the authors used a tablet and a Tobii X120 stand-alone eye
tracker for the sketch and gaze modalities, respectively. To-
bii X120 operates with a data rate of 120 Hz, tracking accu-
racy of 0.5°, and drift of less than 0.3°. The tracker allows
free head movement inside a virtual box with dimensions
30%x22%30 cm.

The existing static system utilizes three kinds of features
for gaze-based task prediction: (1) evolution of instanta-
neous sketch-gaze distance over time, (2) spatial distribu-
tion of gaze points collected throughout an activity, and (3)
IDM visual sketch features [OD09]. Among these kinds of
features, only the first one takes time element into consid-
eration. For that reason, when designing the alternative dy-
namic system, we primarily focused on different approaches
for computing this feature. For all experiments, we report
the mean prediction accuracy obtained via 5-fold cross vali-
dation.

3.1. Static system

In the static system, the authors use a time-series signal to
represent the time-wise evolution of the instantaneous dis-
tance between pen tip and gaze direction over time. Initially,
they compute one or multiple characteristic signals per activ-
ity (Figure 2). When it comes to determining which activity
a new signal belongs to, they measure the similarity of the
new signal to each of the characteristic signals and use an
SVM model previously trained with these similarity values
to determine the label of the new signal (Figure 3). The au-
thors use an open-source DTW library detailed in [CS15] for
computing the similarity of two given signals.

3.2. Dynamic system

Similarly in the dynamic system, we use a time-series Sig-
nal to represent the time-wise evolution of the instantaneous
distance between pen tip and gaze direction. We observe a
rise in this signal when the sketch-gaze distance increases, a
fall when the sketch-gaze distance decreases, and no change
when the sketch-gaze distance is constant over a period of
time. Based on this observation, we train an HMM for each
activity. Using HMMs gives us the ability to learn compact
models of how hand-eye coordination behaviors change over
the course of an activity and allows us to obtain a likelihood
value from each HMM for classifying a given sketch-gaze
distance signal.

When training the HMMs, we assume that (1) there are 3
different states as rising, falling, and steady and (2) the ob-
servations come from a Gaussian Mixture Model (Figure 4).
When it comes to determining which activity a new signal
belongs to, we initially apply a simple preprocessing step to
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Figure 2: Characteristic signals obtained from sketch-gaze
distance signals of each activity.
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Figure 3: Extraction of the sketch-gaze distance feature in
the static system. For a given signal, its similarity to each
of the characteristic signals is measured and the degree of
matching is used as an informative feature for classifying
activities.
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Figure 4: Visualization of the HMM state assignments for
the data points of a sample preprocessed signal. The data
points are assumed to come from a normal distribution.
The active state is represented with green squares when the
sketch-gaze distance increases; red circles when it decreases;
and blue diamonds when it is constant over a period of time.
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Figure 5: Extraction of the sketch-gaze distance feature in
the dynamic system. For a given signal, its log probability
of being generated by each of the HMMs is calculated and
the degree of likelihood is used an informative feature for
classifying activities.

the signal. During this preprocessing step, the original sig-
nal is first differentiated and then downsampled to decrease
the noise in the original signal and highlight state changes.
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Afterwards, we calculate the likelihood of the preprocessed
signal being generated by each of the HMMs and use an
SVM model previously trained with these likelihood values
to determine the label of the new signal (Figure 5). We use
an open-source HMM library [DM10] for all HMM-related
calculations.

3.3. Experiment results

We conducted a one-way ANOVA to examine the effect of
system type on prediction accuracy across the static system
and dynamic system conditions. There was no significant ef-
fect of system type on prediction accuracy at the p < 0.05
level for all large (p = 0.304), medium (p = 0.266), and
small (p = 0.536) scales (Figure 6). Nevertheless, the newly
developed alternative dynamic system (83.77 +5.13) was
found to be better on average than the existing static system
(82.14 £3.82) in terms of activity prediction accuracy (al-
though firm conclusions cannot be reached due to the limited
amount of data available).

To examine the effect of system type on prediction ac-
curacy when only the sketch-gaze distance feature is used,
we conducted a one-way ANOVA. The sketch-gaze distance
feature is important for real-time activity prediction since it
is the only one that takes time element into consideration and
attempts to capture the dynamic aspects of human hand-eye
coordination behavior. The dynamic system (73.53 £+ 1.13)
was found to be significantly better than the static system
(70.88+2.18) in terms of capturing the sketch-gaze distance
feature [F(1,8) = 5.832,p = 0.042]. ANOVA results hint
that the newly developed alternative dynamic system may
be a better candidate than the existing static system for real-
time activity prediction (Figure 7).

4. Real-time activity prediction

Existing gaze-based activity prediction systems are able
to detect the performed activity only after the activity
ends. However, in line with the feedback principle of de-
sign [Nor(2], users must be informed in real-time about the
effects of their actions via immediate and appropriate vi-
sual feedback. For instance, when the user places the sty-
lus pointer on an object and starts dragging the object, s/he
must be able to see the change in the object’s position in
real-time. If we take this one step further, early prediction
speed becomes even more important in a proactive user in-
terface (that actively monitors the user, and switches to the
intended mode of interaction on behalf of the user). If we
continue with the same example, when the user places the
stylus pointer on an object and starts moving the cursor away
from the object, the proactive interface actively detects that
the user wants to drag the object, and saves the user time
and energy by automatically switching to the drag mode of
interaction.
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Figure 6: Mean prediction accuracy values obtained for
each system type and scale using all three kinds of fea-
tures (sketch-gaze distance, spatial distribution, IDM). Mod-
els trained with different kinds of features are combined via
classifier-level fusion. Error bars indicate 4-1 standard error.
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Figure 7: Mean prediction accuracy values obtained for each
system type irrespective of scale using only the sketch-gaze
distance feature. Error bars indicate -1 standard error.

4.1. Baseline

Initially, we analyze the real-time activity prediction perfor-
mance of the existing static and dynamic systems without
any specialized training for real-time prediction, hence the
title naive approach. The fundamental difference between
the static and dynamic systems lies in the approach each sys-
tem adopts for computing the sketch-gaze distance feature.
The remaining two kinds of features are computed identi-
cally for the two systems and models trained with different
kinds of features are combined via classifier-level fusion. For
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this reason, real-time activity prediction performance of the
two systems is measured only on the basis of the sketch-gaze
distance feature.

For the experiments reported in this section, we first gen-
erate 10 different test signals from each individual test sig-
nal. These 10 signals respectively correspond to the first
10%, 20%, ..., 100% of the original test signal. The sub-
signals created from the set of all test signals are then fed
to the real-time prediction systems as test data. Mean predic-
tion accuracy at the start of an activity is assumed to be 20%,
i.e. the random baseline accuracy for recognizing 5 different
activities. The experiment is repeated for the large, medium,
and small scales, as well as for the all scales case, which cor-
responds to the entire database. Experiment results show that
the dynamic system is able to accurately predict the currently
performed activity earlier than the static system (Figure 8).
For instance, if we consider the entire database, at the point
when only 50% of the data is observable, the dynamic sys-
tem reaches 60% of its maximum accuracy value (i.e. 60%
of 74.14%) whereas the static system reaches only 43% of
its maximum accuracy value (i.e. 43% of 70.88%).
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Figure 8: Mean real-time prediction accuracy values ob-
tained for each system type and scale as a function of per-
centage of data seen from the start of the activity. For these
experiments, existing static and dynamic systems are used
without any specialized training for real-time prediction.

4.2. Specialized training for real-time activity
prediction

There exists some problems associated with the naive ap-
proach. First of all, in the naive approach, real-time activity
prediction systems are not purposely trained for real-time
activity prediction. For this, in line with the test scenario of
the naive approach, we generate 10 different signals from
each signal used in training the prediction models. The sub-
signals created from the set of all training signals are then

(© The Eurographics Association 2015.

separated into 5 different groups as follows (note that a typ-
ical signal lasts about 2 seconds):

e First group consists of sub-signals that last shorter than
500 milliseconds (0 < duration < 500),

e Second group consists of sub-signals that last shorter than
1000 milliseconds (500 < duration < 1000),

e Third group consists of sub-signals that last shorter than
1500 milliseconds (1000 < duration < 1500),

e Fourth group consists of sub-signals that last shorter than
2000 milliseconds (1500 < duration < 2000), and

e Fifth group consists of sub-signals that last longer than
2000 milliseconds (duration > 2000).

After the groups are formed, we train a separate SVM
model for each group using the sub-signals comprising each
group. Accordingly, the first model captures the characteris-
tics of signals that last shorter than 500 milliseconds while
the second model captures the characteristics of signals that
last longer than 500 and shorter than 1000 milliseconds.

Second, response time of a pen-based user interface uti-
lizing either of the real-time activity prediction systems will
inevitably be affected by the computations necessary for in-
ferring the activity. Hence, when calculating the early pre-
diction speed of a system, we must take into account the
computational complexity of the algorithm used for activity
prediction. In order to determine the label of a given signal,
the static system measures the similarity of the given signal
to each of the characteristic signals using the DTW algo-
rithm. This process takes an average of 1.125 seconds for a
single signal. On the other hand, the dynamic system initially
applies a simple preprocessing step to the given signal and
then calculates the likelihood of the preprocessed signal be-
ing generated by each of the HMMs to determine the label of
a given signal. This process takes an average of 0.0064 sec-
onds for a single signal. According to these computational
time measurements, the static system is not able to give any
feedback for the first 1.125 seconds of an activity while the
dynamic is not able to give any feedback for the first 0.0064
seconds.

And finally, in a real user interface, there is no way of
knowing the percentage of activity completed by the user at
a random point during an activity; one can only know the
amount of time passed from the start of an activity. For this
reason, the experiments should measure how real-time pre-
diction accuracy values change over time instead of over per-
centage of data seen.

In consideration of the factors listed above, we repeated
the experiments and conducted a two-way ANOVA to exam-
ine the effect of system type and elapsed time on real-time
prediction accuracy. ANOVA revealed (1) a main effect of
system type on prediction accuracy [F(1,36) = 107.067,p =
0.000], (2) a main effect of elapsed time on prediction accu-
racy [F(5,36) = 93.634, p = 0.000], and (3) a significant in-
teraction between system type and elapsed time [F(5,36) =
6.333, p = 0.000]. Experiment results again show that the
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dynamic system is able to accurately predict the currently
performed activity earlier than the static system (Figure 9).
More specifically, if we consider the entire database, mid-
way through an activity, the dynamic system reaches 66% of
its maximum accuracy value (i.e. 66% of 70.34%) whereas
the static system reaches only 36% of its maximum accuracy
value (i.e. 36% of 55.69%).
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Figure 9: Mean real-time prediction accuracy values ob-
tained for each system type and scale as a function of time
elapsed from the start of the activity. For these experiments,
purpose-trained static and dynamic systems are used.

5. Conclusions and future work

In this paper, we have presented our work on gaze-based
real-time activity prediction in pen-based devices. We have
proposed a dynamic approach based on Hidden Markov
Models (HMMs) and compared it with an existing static ap-
proach based on Dynamic Time Warping (DTW). Through
a set of carefully designed experiments and accompanying
comprehensive statistical analysis, we have demonstrated
that the dynamic approach is a more successful candidate
(in terms of prediction accuracy and early prediction speed)
than the static approach for real-time activity prediction. We
believe that our novel activity prediction system will open
the way for unprecedented gaze-based proactive user inter-
faces for pen-based devices.

On the basis of the promising findings presented in this
paper, our ongoing work aims to develop an improved real-
time activity prediction system based on Dynamic Bayesian
Networks (DBNs). The fundamental difference between the
HMM- and DBN-based systems will lie in our ability to ex-
plicitly model high-level processes that occur during human
hand-eye coordination behavior (e.g. gazing at the object to
be manipulated, gazing at the intended final position of the
object). Another substantial extension might explore the fea-
sibility of using our real-time activity prediction system to

build a proactive user interface. When the user performs a
pen action (demarcated by a pen-down and a pen-up event),
the planned proactive user interface will actively detect and
switch to the currently intended mode of interaction based
on user’s synchronized pen trajectory and eye gaze informa-
tion during pen-based interaction. Intention predictions will
be carried out by the previously trained HMM-based model
and the features extracted from the corresponding sketch-
gaze data of the user.
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