
Computational Aesthetics in Graphics, Visualization, and Imaging EXPRESSIVE 2016
Angus Forbes and Lyn Bartram (Editors)

Barycentric Shaders:
Art Directed Shading Using Control Images

E. Akleman, S. Liu and D. House

(a) by Jay Jackson and Tim Swartz, after an illustration by Goro Fujita. (b) by Yinan Xiong, after an illustration by Artyakov Artyom.

Figure 1: Example frames from class projects created using our method that provides intuitive art-directed control of expressive style.

Abstract

In this paper, we present Barycentric Shaders, a shading framework based on barycentric algebra, for the development of
shader functions providing intuitive art-directed control. The framework guarantees that whatever style is desired will be con-
sistently obtained regardless of the underlying rendering method and illumination model, since our shaders are used only to
compute colors based on the incoming illumination. This property of our framework allows our shaders to be included in any
rendering pipeline without major changes. We define barycentric operations over positive real colors to guarantee that results
will always be positive real colors. With this formalization, we redefine shader functions as parametric functions that satisfy
the partition of unity. This property supports an intuitive interaction mechanism for obtaining desired styles by guaranteeing
that colors will always stay inside of the convex hull of a set of control colors. To obtain colored light effects, we extend our
barycentric methods by allowing computation separately along each color channel, providing the convex hull property for each
dimension independently. This results in a more relaxed rectangular box property without significantly changing visual style.
This formalism can be particularly helpful to artists, who may not have mathematical training, by simplifying shader devel-
opment to obtain a desired expressive style. This new approach also suggests a new rendering and shading architecture that
provides a clear distinction between illumination and shading.

1. Motivation

In visual narrative, the term look-and-feel refers to the unique ex-
pressive style for defining the world of the story and its characters,
and is one of the most important important attributes differentiating
one narrative from another [Ols98,Blo14,pix15]. The identification
of a desired art style, therefore, is one of the key artistic decisions
that is made during the initial stage of the production process. Un-
fortunately, development of a rendering and shading framework to

obtain a look-and-feel that is consistent with a desired art style is
not an easy task.

Providing support for the range of visual styles required to create
any desired look-and-feel was one of the goals of the highly influ-
ential Shade Trees architecture [Coo84]. This architecture laid the
foundations of the procedural shader concept, and quickly evolved
into the Renderman shading language [CCC87, HL90, UAD∗90,
AGB00]. The main goal of such a shading language is to provide
users easy control over the look-and-feel of the rendered image.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/exp.20161062

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/exp.20161062


E. Akleman, S. Liu and D. House / Barycentric Shaders:Art Directed Shading Using Control Images

The conceptual flexibility of the procedural shader, which can be
developed with functional operators, has made Renderman an in-
dustry standard since the 1990’s [Ebe03]. The shader concept is
now ubiquitous in graphics, as it is central to the modern GPU ar-
chitecture, which is structured around a sequence of programmable
shaders [PMTH01, MGAK03, LKM01, RLKG∗09].

Despite the enormous success of shading languages, in current film
making practice highly qualified lighting technical directors regu-
larly need to hand craft custom "one-off" shading solutions to ob-
tain a desired style. Such work requires a high degree of experience
and expertise, as solutions tend not to be intuitive. The need for con-
siderable skilled custom work on shader development contributes
to the high number of resources spent on art direction. Therefore,
there exists a critical need for new approaches to simplify rendering
and shading development through a more intuitive and streamlined
process.

This problem has not been appropriately acknowledged until now,
since there exists a false impression that obtaining a desired style
is not that difficult. It is easy to understand where this impression
comes from. There exists a large number of publicly shared shader
examples for a wide variety of styles. Creation of a version of an
existing shader is not that difficult. People can always create a new
shader by making minor changes to a publicly shared shader that
provides a style they like. It is also possible to obtain an interest-
ing style by just randomly playing with functions. On the other
hand, the look development phase of a project will typically rely
on artists who use hand drawn and rendered images to convey their
visual concepts. Thus, the real art direction problem is very close to
that of matching the style of a painting or an illustration. This is a
very different problem that cannot typically be solved by tweaking
existing shaders, and is the demonstration problem that we set for
ourselves in this paper.

2. Introduction

Our point of view is that the complexity of obtaining a desired style
with shaders comes from the fact that the there is a mismatch be-
tween the underlying algebra of the shade tree framework with its
elements. Abstractly, colors are the elements of the algebra, and are
represented by n-tuples of positive real numbers. On the other hand,
operations to create new colors are closed over all real numbers, not
just positive real numbers. Because of this mismatch, shader net-
works do not guarantee mathematical consistency. To make things
worse, the physical concepts rooted in shader development tend to
cause us to ignore this mathematical inconsistency. Therefore, ad-
hoc solutions (e.g. negative lights or material colors), introduced
to circumvent problems resulting from this mathematical inconsis-
tency, have become ingrained in the community as accepted prac-
tice.

Recent advances in physically based rendering [HPJ12, GKDS12]
require a formal resolution of this inconsistency. For instance, in
the new version of Renderman it is now possible to have negative
colors [HJB∗12]. Moreover, new color models such as projective
alpha colors provide a theoretical foundation for a vector definition
of colors [Wil06]. This new direction provides a solution for ob-
taining physically acceptable images. However, it does not provide

(a) A photograph of Mr. Potato
head illuminated by three colored
lights.

(b) Detail: the red channel in the
shadow region is brighter than in
the non-shadow region.

(c) A photograph of a high-genus
sculpture illuminated by three col-
ored lights.

(d) Detail: both red and green chan-
nels in the shadow regions are
brighter than in the non-shadow re-
gion.

Figure 2: Two photographs that demonstrate conceptually incon-
sistent — yet real — shadows.

the control necessary for obtaining a desired look-and-feel that may
not necessarily be physically acceptable. Therefore, despite the re-
cent advances in physically based rendering, the need for obtaining
desired styles through a simple and streamlined process is still an
important issue.

We observe that it is easy to obtain desired styles by maintaining
colors as points, i.e. n-tuples of positive numbers, rather than vec-
tors whose elements can be negative. This restriction allows artists
to build color control in a shader using color points much like a
modeler uses control points to define the shape of a surface. This
approach provides an intuitive control mechanism for artists work-
ing to obtain a final look-and-feel. For mathematical consistency,
all we need is a formal algebra that guarantees that we deal with
and produce only n-tuples of positive real numbers. Fortunately,
such algebras already exist, and are known as barycentric alge-
bras [RS90, CR12]. These are well known and widely used in geo-
metric modeling applications as barycentric coordinates.

In this paper, we provide a theoretical formalism to obtain any de-
sired art style with relative ease by employing barycentric alge-
bras. Based on this formalism, we present a simple mathematical
approach to art directed shader development. We have tested this
approach over three semesters in a graduate rendering and shad-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

40



E. Akleman, S. Liu and D. House / Barycentric Shaders:Art Directed Shading Using Control Images

ing class. As a project in the course, the students each choose an
artist’s style to mimic, and then create rendered images strongly
resembling that style. Our thesis is that the method we are propos-
ing provides shader developers an intuitive process, giving them
a high level of visual control in the creation of stylized depictions.
The experience of the students on this project demonstrates the ease
with which a particular visual style can be attained. Two examples
of student work are shown in Figure 1, with additional examples
shown at the end of the paper.

2.1. Restriction for Better Artistic Control

Although there has been a significant amount of research on
non-(photo)realistic rendering (NPR), a theoretical formalism for
shader development has not yet been developed that can provide
a mathematically consistent non-realistic approach. Developing an
algebraic formalism does not mean including more operations and
a higher level of elements. In fact, in this case, it is the opposite.
We actually restrict the operations to the ones that can guarantee
obtaining only positive real numbers when applied to positive real
numbers.

We can demonstrate why we need such a restriction by examining
conceptual inconsistencies in shadow regions of real photographs.
Consider Figure 2(b), which is a detail of the photograph in Fig-
ure 2(a). In this case, the red component of the shadow region
is r0 = 214 and the red component of the illuminated region is
r1 = 200. Let a variable t denote illumination, such that t = 1 means
fully illuminated and t = 0 means not illuminated. Then, we can
write a Blinn-Phong style shading equation in the form r = a+ bt
to define the red component in the image. In this case, If we solve
this using the known values, we have r0 = a and r1 = a + b, so
that a = 214 and b = −14. This is a problem, since b is expected
to be a color. In other words, to replicate this shadow we need to
introduce some negative numbers, which we would have to con-
sider to be negative lights. The photographs in Figures 2(c) and (d)
provide another example, with similar issues for both the red and
green channels.

We call this a conceptual inconsistency, since this is a phenomenon
that is not logically expected. Unfortunately for shader develop-
ment, such inconsistencies frequently happen and they do not nec-
essarily come from the non-linearity of real photographs in RGB
space. In fact, any image, painted by an artist by hand, will be much
more likely to have such conceptual inconsistencies. A shader de-
signer’s job is to replicate these inconsistencies to obtain the de-
sired look-and-feel.

In current physically-based rendering and shading practice, the
only recourse is to use ad-hoc work-arounds such as negative lights
or negative material colors. Such ad-hoc solutions often create
more problems for designers than they solve. Since negative lights
or negative material colors are not really intuitive as control param-
eters, we end-up with a partial yet complicated solution to a very
simple problem.

What we demonstrate in this paper is that it is possible to to ob-
tain a solution to the illumination problem posed by Figure 2(b), if
instead of addition and multiplication and their inverses, we chose

operations that satisfy partition of unity such as the mixing opera-
tion r = a(1− t)+ bt. In this case, by just choosing a = r0 = 214
and b = r1 = 200, we obtain the desired result using only colors de-
fined with positive real numbers. Let us also compare and contrast
the partition of unity or Barycentric formulation with the existing
vector algebraic approach using a color space with only two color
channels, red and green as shown in Figures 3 and 4.

Figure 3 shows an affine vector algebraic equation in the form r =
r0 + r1tr and g = g0 +g1tg. Since (tr, tg) corresponds to the red and
green channels of the incoming illumination, which are energies,
both tr and tg must be positive real numbers. By varying tr and tg
we can span an infinite range of colors based on the strength of
light energy. There are two problems with this type of equation that
are demonstrated by this simple case. (1) The color vector (r1,g1)
does not provide much control over what types of results can be
obtained, in fact the range of colors is infinite. (2) When there is no
incoming illumination, we cannot get colors where either r < r0 or
g < g0.

(a) Coefficients of vector algebraic
equations in shaders are vectors
with positive real elements.

(b) The parameters (tr, tg) can be
any positive real numbers, permit-
ting results over the entire non-blue
region.

Figure 3: An example of colors that can be obtained by vector al-
gebraic equations in a red-green color space. In this case, we use
the affine vector algebraic equation r = r0 + r1tr and g = g0 +g1tg
with positive real terms. We can cover an infinite region, but we
cannot get colors where either r < r0 or g < g0.

On the other hand, Figure 4 shows a barycentric equation in the
form r = r0wr0 + r1wr1 and g = g0wg0 + g1wg1 . Since we work
with energies, all terms are still positive reals. However, since the
equation has to be barycentric, the weights are constrained such
that wr0 +wr1 = 1 and wg0 +wg1 = 1. Therefore, (wr0 ,wg0) and
(wr1 ,wg1) do not really represent incoming illumination, but in-
stead, are parameters obtained by mapping incoming illumination
between 0 and 1. If we choose wr1 = wg1 this equation provides the
convex hull property as shown in Figure 4(a). if wr1 and wg1 are
not constrained to be equal, solutions can span the box defined by
(r0,g0) and (r1,g1) and shown in Figure 4(b). There are two advan-
tages to this type of equation that are demonstrated by this simple
case. (1) We now have complete control over what colors can be
obtained, i.e. they must lie within the convex hull or the rectan-
gular region defined by the control colors. (2) The point (r0,g0)

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

41



E. Akleman, S. Liu and D. House / Barycentric Shaders:Art Directed Shading Using Control Images

does not have to be the lower left corner of the box, so that missing
illumination can possibly produce larger numbers, as we wanted.

(a) Convex hull property obtained
by wr1 = wg1 .

(b) Box property obtained by non
equal wr1 and wg1 .

Figure 4: Colors that can be obtained by a barycentric equation
in the form of r = r0wr0 + r1wr1 and g = g0wg0 + g1wg1 , subject
to wr0 +wr1 = 1 and wg0 +wg1 = 1, and where all terms are posi-
tive real numbers. The blue regions indicate colors that cannot be
obtained by the equation.

3. Historical Perspective

The problem encountered in working with colors as algebraic ele-
ments is not unexpected mathematically, since the addition operator
and its inverse are not closed over the positive real numbers. This
was a noted historical problem that was solved by the introduction
of zero and negative numbers, and eventually lead to the familiar
algebra of real numbers. Actually, real algebra was the first vector
algebra, where numbers do not correspond to positions on an axis,
but instead to the difference of two positions. This is true even in
the one dimensional case.

If we relate this to shader development, when we use the addi-
tion operator, we cannot avoid negative numbers and all the terms
are conceptually vectors, i.e. the difference between two positions,
Therefore, none of the terms in the equation of r = a+ bt behave
like colors, in the sense of being positive real values. In actuality,
they are really the difference of two colors, even when there is only
one color channel.

This issue is also reminiscent of another historical example; finding
roots of cubic equations [Tal04]. By allowing square roots of nega-
tive numbers, Tartaglia was able to solve certain kinds of otherwise
unsolvable cubic equations [Gui30]. That Cardano called complex
numbers “fictitious” was not a problem, since a cubic equation with
real coefficients always has at least one real root.

Analogously, in shaders as they are currently conceived, all of the
energy related terms, such as colors, actually are relative entities
that must be viewed as the difference between two positive real
numbers. If we do not allow negative numbers, our solution space
becomes quite awkward and, in most cases, we cannot even find a
solution. This is equivalent to not allowing complex numbers in the
solution process of cubic roots.

One legitimate approach would be to embrace the current under-
lying algebra of shaders by letting our algorithms manipulate neg-
ative numbers along the way. As we have described earlier, this
is the current status resulting from physically based rendering ap-
proaches. In this case, there are no absolute colors corresponding
to energies. What we currently call colors should be thought of as
relative colors, which can be negative during the shading computa-
tion. But, once the computation is finalized we need to make sure
to convert relative colors into absolute colors. This creates a con-
ceptual confusion, as the tendency is for people to view all of these
entities, and not just the final result, as absolute colors.

Fortunately, there is a simpler solution to this problem in this par-
ticular case: barycentric algebras [RS90, CR12]. There is prece-
dent for the use of operators from a barycentric algebra in shaders.
For instance, Gooch shading is based on a barycentric formula-
tion [GGSC98]. Using a barycentric algebra in shaders does not
even require a significant conceptual change. We must only restrict
shader operators to be of the form

c =
M

∑
i=0

ωiCi where
M

∑
i=0

ωi = 1 and ∀ωi ≥ 0

where the Ci’s are colors, i.e. n-tuples of positive real numbers. The
restriction that the weights ωi are all positive and sum to 1 is called
the partition of unity property, which guarantees that solutions c
stay inside of the convex hull defined by the colors Ci. This restric-
tion does not impose any limit over the polynomials we can use.
In fact, basis functions of most widely used parametric polynomi-
als in geometric modeling, such as Bezier, B-splines or β-splines,
satisfy this property. For instance, if we choose ω0 = (1− t) and
ω1 = t with 0 ≤ t ≤ 1, we obtain the mix operator, which utilizes
basis functions of first degree Bezier curves. Similarly, it is easy to
see that the degree zero B-spline basis functions, namely,

Ni,0(t) =
{

1 if ti ≤ t < ti+1
0 otherwise.

satisfy partition of unity and each ti is called a knot. Moreover,
higher degree B-spline basis functions

Ni,p(t) =
t− ti

ti+p− ti
Ni,p−1(t)+

ti+p+1− t
ti+p+1− ti+1

Ni+1,p−1(t),

that are obtained by the Cox-de Boor formulation also satisfy par-
tition of unity. More importantly, any parametric rational or irra-
tional polynomial or piecewise polynomial can be converted to a
form that satisfies the partition of unity property [BB87]. In addi-
tion, the convex hull property, which comes with partition of unity,
is particularly useful in practical shader development applications,
since it provides an intuitive control mechanism for obtaining de-
sired results.

Based on this discussion, the extension may seem to be straightfor-
ward and it could be implemented by adapting primitives, like those
used in geometric modeling, into shader development. This obser-
vation is not wrong, however there are practical aspects of shader
development that differentiate this problem from modeling curves
and surfaces. In this paper, we provide effective implementation
approaches for these three aspects of shader development.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

42



E. Akleman, S. Liu and D. House / Barycentric Shaders:Art Directed Shading Using Control Images

4. Rendering Architecture

With the Barycentric formalization, we cannot obtain non-
polynomial functions such as exponential, logarithm or cosine.
These functions are needed for shader implementations that are re-
lated to geometry such as implementation of displacements, ma-
nipulation of normal vectors or descriptions of procedural textures.
This type of information is only needed when computing global or
local illumination. Therefore, if we separate shaders into two types,
which we will call front and back-end shaders, we can effectively
develop a shading architecture that provides the best of both worlds.

• Front-end shaders: These are vector algebraic shaders that are
used to compute and manipulate geometry related informa-
tion such as displacements, normal vectors, and angles. These
shaders can be constructed like classical shaders using any func-
tion or any operation. In other words, we can use the full power
of the shade tree concept at this level and allow manipulation
with negative and even complex numbers. For instance, if the re-
sult of an operation using cosθ turns out to be negative, we can
keep it negative. In our architecture, these shaders only produce
parameters for use by back-end shaders, which actually compute
colors. Only when we output these parameters do we need to
make a conversion.

• Back-end shaders: These shaders are constructed using only
barycentric operations, and are used to compute colors based
on parameters that are passed from front-end shaders. Therefore
they guarantee that from a color we can only obtain other colors.
A back-end shader that is designed with a particular visual style
in mind, guarantees consistent provision of that style, regardless
of how parameters are computed in a front-end shader.

There can be a wide variety of parameters created by front-end
shaders. For conceptual simplicity, it is better to constrain these
parameters to be positive real numbers. In the rest of paper, with-
out loss of generality, we will further restrict them to be n-tuples of
positive real numbers between 0 and 1. Permitting only n-tuples is
of practical use since common color formats, such as RGB, can be
used as illumination parameters. For example, c = (r,g,b)∈ [0,1]3,
can be used to represent incident energy at three primary wave
lengths. The number of color channels used can be varied from
three without changing the overall structure. Restriction of numbers
to the range 0 to 1 is not a problem, since any set of real numbers
can always be mapped onto [0,1]. The simplest of such mappings
is clamp, which is defined in Renderman as:

clamp(t,max,min) =


1 if max≤ t

t−min
max−min

if min≤ t ≤max

0 otherwise.

For instance, the red color channel R0 = 214 in our earlier example
can be clamped to r0 using

r0 =
R0−min

max−min
=

214
255

0.84,

with min = 0 and max = 255. For high-dynamic range colors, of
course, non-linear tone mappings are more appropriate [RPK∗12].
Depths and distances are not colors and they can be significantly
large. For such cases, another mapping such as 1/(d + 1) can be

used where d is either actual depth or distance. We assume these
mappings are provided just to turn computed results into parame-
ters. This conversion helps us to treat all parameters uniformly as
if they are colors.

For conceptual simplicity, we will assume each parameter is created
by a single front-end shader. This can help us to further classify
front-end shaders in terms of the parameters they produce. In the
following list, we give some examples:

• Diffuse Shader: A diffuse front-end shader provides a single pa-
rameter that is a lump sum of all diffusely reflected light that
reaches a given point. This can include illumination coming
from lights, ambient occlusion, environment illumination or fi-
nal gathering.

• Specular Shader A specular front-end shader provides a single
parameter that is a lump sum of all specularly reflected illumina-
tion for a given view direction. Note that Phong reflection and
true mirror reflection are not really compatible. A shader de-
signer must decide how to compute this lump sum parameter
from these, not necessarily consistent, elements.

• Silhouette Shader: A silhouette front-end shader provides infor-
mation about the distance from the shading point to the silhouette
edge of an object from a given view direction.

• Depth Shader: A depth front-end shader provides information
about the distance from a view-point to the shading point.

There can, of course, be many other styles of front-end shaders such
as refraction, Fresnel, and caustic shaders. Note that specular and
diffuse output parameters will be colors, at least 3-tuples of positive
real numbers between 0 and 1. On the other hand, silhouette and
depth output parameters are single dimensional.

This structure allows non-realistic global illumination with artistic
control. For example, we can obtain reflection or refraction of a
silhouette edge through ray tracing. Figure 5 demonstrates that we
are able to obtain a specific type of mirror reflection by including
shaders in the global illumination stage. Such global illumination
effects cannot be obtained during a post-processing stage. This ap-
proach is not limited to only one type of rendering. For instance,
it is possible to include non-realism into particle systems by con-
trolling the colors of the particles using barycentric shaders. For
instance, particles reflected in the view direction from a shading
point closer to a silhouette edge most likely carry the color of the
silhouette edge that is described by a back-end shader.

An advantage of this shading architecture is that it can be re-used
for other scenes to obtain the same visual style without major
changes. Figure 6 shows two well-known computer graphics ob-
jects rendered in a Chinese Painting style using the same shader
network used to produce Figure 5. In the next section, we present
the usage of our barycentric framework in practice.

5. Barycentric Shaders

Although Barycentric shaders defining colors and parametric
shapes defining geometry originate from the same theoretical
framework, there are significant practical differences between

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

43



E. Akleman, S. Liu and D. House / Barycentric Shaders:Art Directed Shading Using Control Images

Figure 5: A Chinese Painted 3D Scene with river reflections ob-
tained using our shading concept. The visual style is inspired by
the paintings of Yang Ming-Yi, a contemporary Chinese landscape
painter.

(a) Chinese painted Stanford
Bunny.

(b) Chinese painted Teapot.

Figure 6: Two examples of reusing the shader in Figure 5 for ren-
dering well-known computer graphics objects.

them. We can classify these differences in the following broad cat-
egories:

1. In shaders, every surface or volume point behaves differently.
Therefore, shader functions must be parameters of either tex-
ture coordinates (u,v), that correspond to surface positions, or
volumetric positions (x,y,z).

2. In shape modeling, parameters are single dimensional. For in-
stance, a parametric surface is defined by two single parame-
ters. On the other hand, shading parameters are usually colors,
i.e., n-tuple positive numbers.

3. For modeling objects, the entire parameter space is used to com-
pute shapes. On the other hand, in rendering we construct only
a subset of allowable colors.

4. In shape modeling, the number of parameters can be at most
three; one for curves, two for surfaces and three for volumes. On
the other hand, the number of independent shading parameter
can be much higher than three.

Therefore, parametric curve and surface methods in geometric
modeling cannot be directly used in the implementation of barycen-
tric shaders. For implementation there is a need for practical so-

lutions resolving these differences. In the rest of this section, we
present these solutions.

5.1. Style Control with Control Images

We view barycentric shaders as if they are barycentric operations
on texture images. This view is necessary since every shading point
can have a different material property. These material properties
can be described by a set of texture images that are used as control
images of barycentric shaders. The function I : [0,1]2→ [0,1]3 will
denote a texture image as c = I(u,v) and it will simply be denoted
as I. Here, “two” corresponds to the dimension of the texture space
without loss of generality; it can be increased to three or decreased
to one without changing the overall idea.

We assume that the final assignment of a color for a given point,
for a given view direction, is done by functions that provide the
convex hull property. The resulting colors are always computed as
a weighted average of control colors. As a result, a function that
describes shading, i.e. how colors must be computed in every point
on a given surface, can simply be given as a weighted average of a
set of control images as

I =
M

∑
i=0

ΩiIi,

where Ii’s are control images and Ωi’s are weight images that sat-
isfy partition of unity, i.e

M

∑
i=0

Ωi = 1,

where 1 is a white image and I is the final rendering. Note that this
is usually a five dimensional formula that includes two texture di-
mensions and three color dimensions. Figure 12 provides a simple
example how final rendering is computed using the weighted av-
erage of two control images as I0 and I1. Note that in this case if
we choose one of the weight images, say Ω1, the other one is well
defined as Ω0 = 1−Ω1. In this case, obtaining 1−Ω0 is easy, since
it is just the inverse image of Ω0. Note that since Ω0 can be a color
image it is not possible to obtain this using Ω0 as an opacity map.
The two corresponding pixels in these two control images in this
example are not simply scaled versions of each other. Their hues
are also different. White backgrounds in both images are also part
of the computation, but, since the colors are the same we always
get a white background.

To control style, the most important component is the choice of
control images. As shown in Figure 12, the two control images de-
fine how the final rendering will look. The weight images only de-
fine the level of illumination. If the control images are meaningful,
any set of weight images that satisfy partition of unity can result
in an image in the same visual style. This is demonstrated in Fig-
ure 8. Although, the final rendering in Figure 8 does not look as
three-dimensional as in Figure 12, the resulting image still appears
to be illuminated. In this case, we did not use any special treatment
to obtain an acceptable result. Any image that we used as a weight
provided similar visual results for these control images.

The Figure 8 demonstrates the critical importance of control im-
ages for obtaining a consistent color scheme in the final image.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

44



E. Akleman, S. Liu and D. House / Barycentric Shaders:Art Directed Shading Using Control Images

Figure 7: An example demonstrating the concept of control and weight images. I0 and I1 are control images, Ω0 and Ω1 are weight images
that satisfy partition of unity. I = I0Ω0 + I1Ω1 is the final rendering obtained by taking a weighted average of the two control images.

Styles can further be controlled by basis functions that are used
to compute weight images. Basic functions control how colors are
distributed across the final image.

(a) Ω1: Mona Lisa as a
weight image.

(b) Ω0: Inversion of
Mona Lisa.

(c) Final rendering.

Figure 8: An example that shows the importance of control images
in obtaining a style. Even a meaningless illumination, in this case
we used the Mona Lisa as a weight image, can result in an accept-
able image in the same visual style.

5.2. Style Control with Basis Functions

Similar to weights ωi, weight images Ωi are computed from ba-
sis functions and parameters. For instance, first degree Bezier basis
functions are ω0 = 1− t and ω1 = t. If we replace, 1 with a white
image 1 and t with a parameter image T , we obtain the first degree
Bezier basis functions for shading as Ω0 = 1−T and Ω1 = T . In
this equation T can be any image that describes a particular illu-
mination effect such as diffusely reflected illumination that reaches
every point on the surface.

We have observed that some important elements of visual style are
the functional continuities underlying the parametric function. For
instance, an everywhere G2 continuous function appears signifi-
cantly different “in style” than a function that is G0 discontinuous
in some regions. Similarly, the number of discontinuous regions,
their shapes and sizes also changes our perception of style. Since
our control texture images can be discontinuous everywhere, we
cannot really evaluate the continuity of control images. On the other

(a) Two zero degree B-spline ba-
sis functions with uniformly dis-
tributed knots at t0 = 0.0, t1 = 0.5
and t2 = 1.0.

(b) Four zero degree B-spline ba-
sis functions with uniformly dis-
tributed knots between 0 and 1.

Figure 9: A comparison of the effect of the number of discontinu-
ities in changing the final style. To create consistency, we obtained
the two new control images needed in (b) by using linear interpo-
lation of the original control images.

hand, we can always analyze properties of the basis functions that
are used to create the final images. For instance, consider the two
renderings presented in Figure 9. Although these images are dis-
continuous everywhere, it is easy to see in (a) there are only two
and in (b) there are four distinct regions. These perceived regions
result from the number of zero-degree B-splines. Note that when
the number of zero degree basis functions increases, the final im-
age approaches a linear interpolation.

This particular example demonstrates that discontinuities intro-
duced by basis functions are helpful in designing a style, since dis-
continuities and continuities introduced by basis functions can be
more visible than texture discontinuities in control images. In other
words, artists can simply control style by changing the formulation
of the underlying parametric function. Choice of basis functions
is also important for some applications that require discontinuity,
such as the crosshatching example shown in Figure 10.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

45



E. Akleman, S. Liu and D. House / Barycentric Shaders:Art Directed Shading Using Control Images

(a) Crosshatching with zero de-
gree B-splines.

(b) Detail.

Figure 10: Nine zero degree B-spline basis functions with uni-
formly distributed knots using nine control images consisting of
thicker and thicker lines.

5.3. Rectangular Box Property

If weights for a given shader point (u,v) are unsaturated, i.e.
greyscale colors, then we obtain a convex hull property exactly like
that in geometric modeling (See Figure 11(a)). On the other hand,
if weights are just random colors, each dimension gives a convex
hull property independently from each other. This results in a richer
range of color possibilities, as shown in Figure 11(b). We call this
the rectangular box property.

(a) Convex hull property ob-
tained by choosing unsaturated
colors as ω values.

(b) Box property obtained by
using random colors as ω val-
ues.

Figure 11: White points show control colors for a given shader
point (u,v). Blue regions are the ones that cannot be obtained by
the equation.

Figure 12 provides a comparison of results using unstaturated vs.
saturated weight images. As can be seen in this example, saturated
weights provide a wider distribution of colors without sacrificing
visual style.

5.4. Painter’s Hierarchy

In this paper, we also introduce a painter’s hierarchy for handling a
high number of shading parameters. As discussed earlier, the num-
ber of parameters can be very high (e.g. Diffuse, Specular, Refrac-
tion, Fresnel, Caustic, Depth and Silhouette). If we consider all of
these parameters in a general parametric function, it will be very

(a) Ω0: An unsatured (B&W)
weight image.

(b) I: Final Rendering using Ω0
in (c).

(c) Ω0: A very saturated weight
image.

(d) I: Final Rendering using Ω0
in (c).

Figure 12: A comparison of convex hull vs. box property. A
greyscale weight image provides a convex hull. On the other hand, a
very saturated weight image extends color possibilities to a bound-
ing box.

hard to keep track of control images since there would be a need
for too many of them. Our solution to this problem is to create a
hierarchy similar to a painter’s order. A painter first creates a base
image that corresponds to the most essential part of the painting,
its system of values. This corresponds roughly to diffuse reflection.
The painter then adds other effects such as specular highlights, sil-
houette edges, outlines, caustics or shadows. We also create a hi-
erarchy of parameters, starting with the diffuse parameter. Let us
denote the diffuse rendering as I0, the next rendering I1 is com-
puted as a weighted average of I0 and another effect image IF1 , e.g.
reflection and refraction combined by Fresnel, as

I0 = I0Ω1,0 + IF1 Ω1,1.

We can continue this way to obtain final image In as

In = In−1Ωn,0 + IFn Ωn,1.

If all effects IFn ’s are computed by a barycentric formula, combi-
nation of all these equations is guaranteed to provide a barycentric
formula.

The painter’s hierarchy significantly reduces the complexity com-
ing from a high number of parameters. One property that can fur-
ther simplify shader development is that, except for diffuse, most
other parameters do not really require full textures. Most of them
can be described using a single color. For instance, we do not usu-
ally have to change the color of a silhouette along the silhouette
boundary. If we want to draw silhouette edges like cartoonists, this

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

46



E. Akleman, S. Liu and D. House / Barycentric Shaders:Art Directed Shading Using Control Images

color is usually a single dark color. If we want to get a rim light
effect, the resulting silhouette brightening is usually a single light
color. Some parameters, such Fresnel, do not need their own color,
they are used to mix the others, namely refraction and specular re-
flection.

6. Design Process and Results

We have tested this approach over three semesters in a graduate
rendering and shading class. Each student in the class chooses
an artist’s painting to mimic, and then creates still-life animations
strongly resembling that painting. Examples have been shown in
Figure 1 and additional examples are in Figure 13). As demon-
strated in these examples, it is possible to obtain a wide variety of
styles using this approach. The process of converting a style in a
painting into a Barycentric shader requires analyzing the chosen
painting carefully.

The most critical issue is to identify the painter’s hierarchy along
with the effects used in the painting. For instance, one painter might
have first drawn outlines and later added colors in such a way
that the outlines are still visible under the paint. Another painter
might first paint the diffuse illumination, add specular highlights,
and then add silhouette edges and outlines. The structure of the
shader must follow exactly the hierarchy of painting the painter
employed. Some painters may not use certain effects. For instance,
many painters do not emphasize outlines and do not draw silhou-
ette edges. Leonardo Da Vinci’s sfumato style did not use specular
highlights. If any particular effect is not used in a desired style,
our shader must not provide it. This process of analysis and con-
struction results in a simple tree structure, in which each leaf node
corresponds to a particular effect and other nodes correspond to a
Barycentric operation that simply mixes colors.

Once the painter’s hierarchy is established, the next issue is to es-
tablish barycentric operations and control colors. To make the pro-
cess simple, we assume that all surface colors result from material
properties, i.e. all lights are white. Each barycentric operation is
a mixture of n colors. Therefore, the first step is the identification
of the number n, which is usually 2, but in some cases can be 3 or
higher in diffuse reflection effects. The second step is to identify ap-
propriate barycentric functions. For cartoon shading, we use zero-
degree B-splines to get flat shading. For smoother color changes,
we use first-degree B-splines, quadric or cubic Bezier curves. The
third step is the identification of control colors. Since all other key
decisions have already been made, this identification is done rela-
tively easily by carefully checking the colors that have been used
in painting every object in the painting.

Using this process, it is easy to obtain the overall look-and-feel of
the painting being used to guide visual style. Of course, the other is-
sues such as shapes of the objects, positions and colors of lights and
patterns of textures, must be continuously improved until a close
resemblance to the example painting is obtained. Copyright protec-
tion prevents us from including the original paintings used by the
students to develop their animations, however we have provided
the names of the artists and their paintings to facilitate an internet
search to make a qualitative visual comparison with their examples.

It is, of course, hard to convince all students to follow this pro-

cedure initially. Typically, students who have some previous expe-
rience with shader development try to follow a physically based
approach. Since there are always such students in a class, we al-
ways have an unofficial control group. We show them how to use
negative materials and negative colors to obtain a desired style us-
ing physically based shaders. It is our observation that despite very
hard work, they fail to obtain the desired styles. After this expe-
rience, they eventually begin to use our method. We believe that
this approach, if it is adopted by the industry, can save a significant
amount of time and resources.

To make adoption easier, there is a need for the development of
some off-the-shelf basic shader structures that will hide all of the
mathematical complication from users. Users should only need to
provide control textures or colors. This approach is reminiscent of
parametric curves and surfaces. Most users that draw a curve in a
vector drawing package do not have any idea about the underly-
ing mathematics. On the other hand, once they choose a tool they
quickly start to feel how the control points shape the curve. There-
fore, the most important issue in practice is to turn these ideas into
an intuitive user interface for novice users.

7. Conclusion and Future Work

In this paper, we have presented a simple mathematical approach
to art directed shader development. This approach provides shader
developers an intuitive process, giving them a high level of visual
control in the creation of stylized depictions. In our approach, the
shader functions are parametric functions that satisfy the partition
of unity, a concept that is widely used in Computer Aided Geomet-
ric Design. The paper makes three contributions:

(1) We define barycentric operations over positive real colors to
guarantee that results will always be positive real colors. With this
formalization, we redefine shader functions as parametric functions
that satisfy the partition of unity, a concept that is widely used in
geometric modeling. In geometric modeling, parametric functions
with this property, such as Bezier or B-spline functions, guaran-
tee that shapes stay inside of the convex hull defined by control
vertices. This property provides an intuitive interaction mechanism
for obtaining desired shapes. Similarly, with our shader functions,
we can provide intuitive interaction by guaranteeing that colors (or
texture images) will always stay inside of the convex hull of control
colors (or texture images).

(2) To obtain colored light effects, we allow computation separately
along each color channel. This extension provides the convex hull
property for each dimension independently, and results in a more
relaxed, rectangular box property without significantly changing
visual style. This formalism can be particularly helpful to artists,
who may not have mathematical training, by simplifying shader
development for obtaining desired expressive styles. The new ap-
proach also provides a clear differentiation between illumination
and shading. The terms that are related to local illumination such
as surface normals and angles conceptually move into the illumina-
tion part of the rendering and shading pipeline.

(3) We have also provided a well-tested procedure to obtain desired
styles. To develop a specific shader for a given shader function,
all artists need to provide a set of texture-mapped control images,

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

47



E. Akleman, S. Liu and D. House / Barycentric Shaders:Art Directed Shading Using Control Images

which act like control points of parametric functions. With these
shader functions, final renderings are guaranteed to be weighted
averages of the control images. The resulting styles are also con-
trolled by the choice of shader functions. For instance, zero-degree
B-splines are appropriate for styles such as cartoon or crosshatch-
ing, since they can support discontinuity. Similarly, first-degree B-
splines support linear color changes with derivative discontinuities.
Given this underlying structure, it is easy to provide an intuitive
interface that allows the artist choose their style. As a result, the
artist’s work is simply deciding on a shader function to obtain the
desired style and providing control images or textures to obtain the
desired color distribution.

We have focused our attention on the actual working process that
lighters use in film production. They really do use negative lights
and other hacks like that, and are invariably working in RGB space.
On the other hand, it is possible to use these ideas in other color
spaces designed to support interpolation, such as Lab space. We
want to emphasize that no matter what color space one is working
in, this method can be used to guarantee that colors stay in the dis-
play gamut, as long as the convex hull vertices lie in the display
gamut. Although RGB is just one example space, it is particularly
easy to work with, since the display gamut is a unit cube. For other
color spaces, there is no guarantee that colors will project back into
the display gamut when we convert back to RGB in order to build
an image.

In this framework, what is usually considered as shader develop-
ment goes into computing shading parameters. This approach guar-
antees that the overall look of resulting 3D renderings are not sig-
nificantly affected by how the shading parameters are computed.
For instance, if shadows are not included in the computation of the
diffuse parameter, shadows disappear but the overall look and feel
of the rendering does not really change. This predictability is espe-
cially useful for artists, enabling them to be able to focus mainly on
final appearances.

This paper only deals with non-realistic illumination and shad-
ing. We assume that the images are still representational and the
shapes and cameras are still realistic. For truly non-realistic paint-
ings and illustrations, we would also need non-realistic shapes and
cameras. We are currently investigating the shape problem and are
developing a new shape representation for modeling impossible or
non-realistic shapes. There is also need for a formalization of non-
realistic cameras, which we are also currently working on. It is our
hope that these three approaches will provide a solid foundation for
the formalization of non-realism in 3D modeling, rendering, and
shading.

References

[AGB00] APODACA A. A., GRITZ L., BARZEL R.: Advanced Render-
Man: Creating CGI for motion pictures. Morgan Kaufmann, 2000. 1

[BB87] BEATTY J. C., BARSKY B. A.: An introduction to splines for
use in computer graphics and geometric modeling. Morgan Kaufmann,
1987. 4

[Blo14] BLOCK B.: The visual story: creating the visual structure of film,
TV and digital media. CRC Press, 2014. 1

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The reyes image

rendering architecture. In ACM SIGGRAPH Computer Graphics (1987),
vol. 21, ACM, pp. 95–102. 1

[Coo84] COOK R. L.: Shade trees. ACM Siggraph Computer Graphics
18, 3 (1984), 223–231. 1

[CR12] CZÉDLI G., ROMANOWSKA A. B.: An algebraic closure for
barycentric algebras and convex sets. Algebra universalis 68, 1-2 (2012),
111–143. 2, 4

[Ebe03] EBERT D. S.: Texturing & modeling: a procedural approach.
Morgan Kaufmann, 2003. 2

[GGSC98] GOOCH A., GOOCH B., SHIRLEY P., COHEN E.: A non-
photorealistic lighting model for automatic technical illustration. In Pro-
ceedings of the 25th annual conference on Computer graphics and inter-
active techniques (1998), ACM, pp. 447–452. 4

[GKDS12] GEORGIEV I., KRIVÁNEK J., DAVIDOVIC T., SLUSALLEK
P.: Light transport simulation with vertex connection and merging. ACM
Trans. Graph. 31, 6 (2012), 192. 2

[Gui30] GUILBEAU L.: The history of the solution of the cubic equation.
Mathematics News Letter (1930), 8–12. 4

[HJB∗12] HACHISUKA T., JAROSZ W., BOUCHARD G., CHRISTENSEN
P., FRISVAD J. R., JAKOB W., JENSEN H. W., KASCHALK M., KNAUS
C., SELLE A., ET AL.: State of the art in photon density estimation. In
Acm Siggraph 2012 Courses (2012), ACM, p. 6. 2

[HL90] HANRAHAN P., LAWSON J.: A language for shading and lighting
calculations. ACM SIGGRAPH Computer Graphics 24, 4 (1990), 289–
298. 1

[HPJ12] HACHISUKA T., PANTALEONI J., JENSEN H. W.: A path space
extension for robust light transport simulation. ACM Transactions on
Graphics (TOG) 31, 6 (2012), 191. 2

[LKM01] LINDHOLM E., KILGARD M. J., MORETON H.: A user-
programmable vertex engine. In Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques (2001), ACM,
pp. 149–158. 2

[MGAK03] MARK W. R., GLANVILLE R. S., AKELEY K., KILGARD
M. J.: Cg: a system for programming graphics hardware in a c-like
language. In ACM Transactions on Graphics (TOG) (2003), vol. 22,
ACM, pp. 896–907. 2

[Ols98] OLSON R.: Art direction for film and video. CRC Press, 1998. 1

[pix15] Pixar’s animation process, 2015. 1

[PMTH01] PROUDFOOT K., MARK W. R., TZVETKOV S., HANRAHAN
P.: A real-time procedural shading system for programmable graphics
hardware. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques (2001), ACM, pp. 159–170. 2

[RLKG∗09] ROST R. J., LICEA-KANE B. M., GINSBURG D.,
KESSENICH J. M., LICHTENBELT B., MALAN H., WEIBLEN M.:
OpenGL shading language. Pearson Education, 2009. 2

[RPK∗12] REINHARD E., POULI T., KUNKEL T., LONG B.,
BALLESTAD A., DAMBERG G.: Calibrated image appearance repro-
duction. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia) 31, 6
(2012). 5

[RS90] ROMANOWSKA A. B., SMITH J.: On the structure of barycentric
algebras. Houston, Journal of Mathematics 16, 3 (1990), 431–448. 2, 4

[Tal04] TALL D.: Building theories: The three worlds of mathematics.
For the Learning of Mathematics (2004), 29–32. 4

[UAD∗90] UPSTILL S., ACHJADI J., DAMAIS A., JUMENA N. S.,
HARDJONAGORO K., ICHSAN F., PIETERS P., SISWANDI R., SOS-
ROWARDOYO T., TIRTA I., ET AL.: The RenderMan Companion: A Pro-
grammer’s Guide to Realistic Computer Graphics, vol. 226. Addison-
Wesley, 1990. 1

[Wil06] WILLIS P.: Projective alpha colour. In Computer Graphics Fo-
rum (2006), vol. 25, Wiley Online Library, pp. 557–566. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

48



E. Akleman, S. Liu and D. House / Barycentric Shaders:Art Directed Shading Using Control Images

(a) by Chethna Kabeerdoss after an illustration by Rachel Cunningham
Wang.

(b) by Justin Hollis after an illustration by Sylvain Sarrailh (aka Tohad).

(c) by Dustin Han after an illustration by Sam Nielson. (d) by Matthew Suarez after a still Life painting by Pieter Van Claesz.

(e) by Yolanda Cheng after a painting
by Cyril Rolando.

(f) by Egan Conrad after an illustration
by Chun Lo.

(g) by Schaefer Mitchell after an il-
lustration by Fiona Staples.

Figure 13: More example frames from class projects that were created using our method for providing intuitive art-directed control to obtain
a wide variety of expressive styles. Each of these are from short animations.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

49


