
High-Performance Graphics (2023)
J. Bikker and C. Gribble (Editors)

Spherical Parametric Measurement for Continuous and Balanced
Mesh Segmentation

Huadong Zhang , Lizhou Cao , and Chao Peng †

School of Interactive Games and Media, Golisano College of Computing and Information Sciences, Rochester Institute of Technology, USA

Abstract
Mesh segmentation is an important process for building the discrete mesh structure used on the GPU to accelerate geometry
processing applications. In this paper, we introduce a novel mesh segmentation method that creates balanced sub-meshes for
high-performance geometry processing. The method ensures topological continuity within sub-meshes (segments) and evenly
distributes the number of triangles across all sub-meshes. A new cohesion algorithm computes the chord distances between
triangles in the spherical domain and re-groups the triangles into the sub-meshes based on a distance-based measurement
condition. A new refinement algorithm between the neighboring sub-meshes is conducted to resolve the non-manifold issue
and improve the boundary smoothness. Both algorithms are executed in a parallel fashion. In advancing the state-of-the-art,
our approach achieves exactly balanced triangle counts and mitigates the non-manifold issue significantly. The algorithms
require the input meshes to have a closed-manifold genus of zero, which is a constraint that is commonly associated with the
concept of sphere-based parameterization. We evaluated the effectiveness of our approach in supporting two geometry processing
applications. The results show that the performance is enhanced by leveraging the structure of the balanced sub-meshes from our
approach.

CCS Concepts
• Computing methodologies → Mesh models; Shape analysis; Shape modeling;

1. Introduction

Surface mesh segmentation is a crucial problem in computer graph-
ics applications, a highlighted in many existing studies [Sha08,
CGF09,RMG18,LLS∗05,CL18,PC06,CSAD04,KYD∗18,MPO21].
While segmentation criteria vary depending on the application, deter-
mining which sub-mesh a triangle belongs to significantly impacts
the resulting sub-meshes. Popular segmentation methods, like region
growing and hierarchical clustering, maintain topological continuity
but do not balance the number of triangles among the sub-meshes.
This can lead to underutilization of GPU computing resources or
imbalanced workloads among parallel threads, and make fast re-
configuring of the number of sub-meshes problematic due to costly
sequential algorithmic steps.

This work focuses on mesh segmentation for high-performance
geometry processing applications that require a block-based stor-
age scheme for meshes. Examples of such applications include
mesh compression and GPU-based parallel LOD. In these cases, it
is preferable to have geometry primitives represented in discrete,
balanced mesh structures for optimal performance and balanced
workloads. For instance, GPU architecture comprises an array of
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streaming multiprocessors, with each streaming multiprocessor con-
taining identical execution cores that can manage blocks of threads
to access the same shared memory. However, the bulk of vertices
and triangles must be accessed from global memory. Until recently,
RXMesh [MPO21] was capable of segmenting the mesh and cre-
ating a GPU-friendly mesh structure. This method mandates the
largest sub-mesh to be smaller than the size of the GPU’s shared
memory so that all sub-meshes can fit into the distributed shared
memory. However, the triangle counts are not balanced, result-
ing in memory underutilization and imbalanced workloads among
the blocks of threads. The state-of-the-art balanced segmentation
method based on the k-way graph partitioning, METIS [KK97], can
generate sub-meshes with balanced triangle counts. However, the
resulting sub-meshes often can not have the 2-manifold topology.

The objective of this work is to improve the efficiency of high-
performance parallel computing by supporting balanced, block-
based mesh segmentation. To achieve this goal, we propose a new
approach, as shown in Figure 1, that advances the state-of-the-art in
satisfying all three requirements below:

• Achieving exact balancing of triangle counts among sub-meshes.
This is crucial because memory consumption is bounded by the
size of the sub-mesh that has the largest amount of triangles. If
the triangle counts are unbalanced, it can result in underutilized or
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fragmented memory on the streaming multiprocessors processing
the sub-meshes with fewer triangles. This can impact the perfor-
mance of applications that rely on balanced mesh structures.

• Maintaining the 2-manifold topology of each sub-mesh. This is
important because each sub-mesh should be a continuous surface
patch with 2-manifold triangle connection, allowing the preser-
vation of local topological space. However, in traditional mesh
segmentation methods, sub-meshes may lose their 2-manifold
topology after segmentation. This issue typically manifests as a
“bowtie” non-manifold shape, where two triangles share a vertex
rather than an edge. Such non-manifold shapes can complicate
the boundary of the sub-mesh, resulting in more external edges,
and can also break the surface continuity.

• Supporting fast segmentation of meshes. This is important because
the number of sub-meshes should be customizable according to
hardware specifications or specific application demands. However,
resegmenting a mesh to a different number of sub-meshes can be
time-consuming, especially when done sequentially. To ensure
that mesh segmentation is efficient and fast, parallel algorithms
are needed. Our approach addresses this issue by utilizing parallel
algorithms that can quickly segment the mesh into the desired
number of sub-meshes.

2. Related Work

To provide the context for our work, we conducted a review of
several methods for procedural mesh segmentation.

One such method is the region growing approach, which starts
with k seed triangles and grows them into sub-meshes [KT96]. Other
methods, such as those proposed by Lavoué et al. [LDB05] and Ya-
mauchi et al. [YGZS05], conduct curvature analysis to determine the
sub-mesh regions. Another approach, introduced by Bergamasco et
al. [BAT12], is a semi-supervised growing method that starts from a
set of user-selected seeds. More recently, Mahmoud et al. [MPO21]
presented RXMesh, a new GPU-friendly data structure that rep-
resents surface meshes into patches using a seed-based growing
method. While region growing methods guarantee the continuous
topology of the sub-meshes, but they do not balance the triangle
counts.

Another approach for mesh segmentation is hierarchical cluster-
ing (e.g., [XLXG11, AFS06, WLAT14]), which starts by treating
each triangle as an individual sub-mesh and then merges clusters
iteratively. The study conducted by Sander et al. [SSGH01] mea-
sured the merging cost using compactness and planarity parameters,
where the squared perimeter of the sub-mesh is used to measure
the compactness, and the mean-squared distance between the sub-
mesh and the best-fitting plane is used to measure the planarity.
In contrast, Garland et al. [GWH01] measured the planarity using
the distance between pairs of triangles and orientation norms, and
applied the quadric error metric for efficient computation. They
calculated the compactness using the ratio between the square of the
perimeter and the area. Hierarchical clustering methods maintain
the continuity inside sub-meshes but do not allow customization of
the number of sub-meshes and do not balance the triangle counts
among sub-meshes.

Iterative clustering methods have similarities with the k−means

Resolving the non-
manifold issue & 
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Initial sub-mesh 
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Figure 1: An overview of our approach for segmenting a surface
mesh into continuous and balanced sub-meshes. Initially, each trian-
gle is randomly assigned a sub-mesh label, with a focus on achieving
balanced triangle counts, rather than surface continuity. Then, we
use a parallel cohesion algorithm that brings nearby triangles to-
gether into a common sub-mesh. After the cohesion step, we use a
parallel refinement algorithm to resolve the non-manifold issue and
improve the smoothness of the sub-mesh boundaries, while ensuring
that the sub-meshes maintain the same number of triangles during
the processing.

clustering algorithm in that they start with k sub-meshes and itera-
tively add triangles to them [Llo82, HSD00]. The approach intro-
duced by Shlafman et al. [STK02] measured the geodesic distance
when deciding which triangles to add to each sub-mesh. However,
computing the geodesic distance on a 3D mesh surface can be com-
putationally expensive [Sha08]. While iterative clustering methods
can maintain the continuity of the sub-meshes, they do not guarantee
balanced triangle counts among the sub-meshes. Another approach
proposed by Zhao et al. [ZTT12] aimed at decomposition for GPU-
accelerated mesh compression. They used the geodesic distance
measurement from the work of Peyré et al. [PC06] but had to sacri-
fice the balance of triangle counts among the sub-meshes to improve
the shapes and boundaries of the sub-meshes.

Achieving an exact balance of sub-mesh sizes is a challenging
task, and the previous work has acknowledged that it is an NP prob-
lem [BMS∗16, MPO21]. In the segmentation methods like region
growing, the degree of imbalance is influenced by the randomness
of seed vertices and distances computed to the seeds, and these influ-
ences can not be adjusted as needed during iterative clustering, mak-
ing it difficult to control the sizes of the sub-meshes. METIS [KK97],
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a state-of-the-art method for balanced mesh segmentation, uses the
multilevel bisection method and Kernighan-Lin algorithm [KL70]
to refine the segmentation result. However, due to the trade-off for
achieving high performance with the multilevel method, the sub-
meshes often have a serious non-manifold issue. Another approach
proposed by Rahimian et al. [RPG∗13] aimed at addressing the
balance issue. They proposed a graph partitioning method named
JA-BE-JA that can exactly balance the node counts and support
customizable patch counts. Their method randomly swaps a node
with one of the neighbor nodes or from a random set of the nodes to
the graph patches in balance at the initial stage to guarantee the node
counts are exactly balanced. However, when applying JA-BE-JA for
mesh segmentation, it has a severe discontinuity issue because the
node swapping uses randomness.

Our approach provides a new solution for generating an exactly
balanced mesh segmentation result while maintaining the topolog-
ical continuity of the sub-meshes. The use of a convex spherical
representation allows for fast computation of distance measurements,
reducing the overall time complexity of the algorithms. The par-
allel processing of creating and updating sub-meshes makes the
algorithms more efficient.

3. Cohesion Algorithm

The cohesion algorithm is designed to ensure that the sub-meshes
created from randomly assigned labels are contiguous. The input of
the algorithm is the spherically parameterized representation of a
3D mesh, with vertices presented in Cartesian coordinates on the
sphere. Parameterizing the mesh onto a sphere requires the shape
of the mesh to have a closed-manifold genus of zero, which is a
constraint that is common to the general concept of sphere-based
parameterization.

The algorithm uses a label-swapping approach between any two
triangles. This swapping process is carried out in parallel, and the
pairs of triangles are evaluated based on chord distances between
the centroids of the triangles and the centroids of the sub-meshes.
Initially, all sub-meshes are assigned the same number of triangles,
and the label-swapping operation preserves the triangle count. The
next two subsections describe the key components of the algorithm.
The first subsection explains the label-swapping method, and the
second subsection describes a parallel processing technique for trian-
gle pairs that eliminates any occurrence of swapping and accessing
conflicts.

3.1. Swapping Labels

In order to ensure that the labels of the same sub-mesh are as com-
pact as possible, The cohesion algorithm aims to minimize the
geodesic distance between the triangles of the same sub-mesh. How-
ever, computing the geodesic distance in the mesh surface domain
can be prohibitively expensive. To address this issue, an efficient
estimation of the geodesic distance can be carried out in the spher-
ical domain. This approach allows the algorithm to estimate the
geodesic distance between triangles of the same sub-mesh in a com-
putationally efficient manner, enabling the algorithm to improve the
compactness of the sub-mesh labels.

Let’s consider two triangles in the spherical domain, ta and tb,

where ta ∈ smla and tb ∈ smlb , and la is the sub-mesh (sm) label
of ta, and lb is the sub-mesh label of tb (a ̸= b). If la ̸= lb, then ta
and tb potentially need to swap their sub-mesh labels. Algorithm
1 describes the method for swapping the labels, which involves a
distance comparison condition to determine whether or not ta and
tb should swap the labels (lines 5-9). The distance di represents the
chord distance (| · |) between the centroid of a triangle (ti.ctr) and
the centroid of a sub-mesh (smi.ctr). In this context, the centroid of
the triangle is projected onto the sphere surface, while the centroid
of a sub-mesh is the mean position of the centroids of the triangles
in this sub-mesh, also projected onto the sphere surface.

Algorithm 1

1: procedure COHESIVESWAP(two triangles: ta, tb)
2: la← ta’s sub-mesh label;
3: lb← tb’s sub-mesh label;
4: if la ̸= lb then
5: d1← |ta.ctr− smla .ctr|;
6: d2← |tb.ctr− smlb .ctr|;
7: d3← |ta.ctr− smlb .ctr|;
8: d4← |tb.ctr− smla .ctr|;
9: if d1 +d2 > d3 +d4 then

10: ta’s sub-mesh label← lb;
11: tb’s sub-mesh label← la;
12: end if
13: end if
14: end procedure

Calculating the geodesic distance involves a significant time com-
plexity of O(n2) as it requires finding the shortest geodesic path
between the centroids in the origin mesh surface domain. Although
previous studies [SC20, HYYZ17, SSK∗05] have made efforts to
reduce the computation time of geodesic distance, its time complex-
ity remains high. Our approach utilizes the chord distance in the
spherical domain, which, although not as precise as the geodesic
distance, provides a more efficient alternative. The chord distance
allows for quick and correct distance comparisons and facilitates
the determination of whether the labels of two triangles need to be
swapped, all accomplished in constant time O(1). The shorter the
chord distance, the more suitable the triangle is labeled with this
sub-mesh. To this end, we sum the distances from the centroids of
the triangles to the centroids of their current sub-meshes (d1 +d2 in
Algorithm 1). If this sum is greater than the sum of distances after
swapping (d3 +d4), swapping the labels can result in a more closely
cohered group.

In certain extreme scenarios, the cohesion algorithm may en-
counter situations where no progress can be made. One such ex-
ample is when all centroids of sub-meshes coincide at the same
position. Although this situation did not arise in our experiment with
test models, it is worth noting as it has a potential to cause stagna-
tion. In such cases, a possible solution could involve introducing
a one-time random offset to shift the centroids of sub-meshes. By
dispersing the centroids to different positions, the algorithm would
regain the ability to make progress and overcome the stagnation.
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Iteration 1 Iteration 2 Iteration 4 Iteration 16

Figure 2: Intermediate label-swapping results of different iterations during the cohesion process with Triceratops model. The number of
sub-meshes is 20. The leftmost image shows the random initialization result. The rest images show the results after 1, 2, 4, and 16 iterations,
respectively. The process stops after 16 iterations (reaching the minimal segmentation energy of the mesh).

3.2. Parallelization with Round Robin Scheduling

All unique pairs of triangles need to be evaluated for swapping
labels until no two triangles can swap labels any more. This iter-
ative process can be compared to cohesion, as it aims to adhere
nearby triangles together through the minimization of the distance
energy Emesh = Esm0 +Esm1 + · · ·+Esmm−1 . Here, Esmi represents
the energy of a sub-mesh, which is calculated as the sum of the
distances between the centroids of each triangle in the sub-mesh and
the centroid of the sub-mesh itself. Each swapping operation reduces
the energy. When a triangle does not connect directly with another
triangle of the same sub-mesh, there must be a path connecting them
through one or more triangles that belong to other sub-meshes. The
distance comparison condition can detect whether swapping the
labels between this triangle and a triangle on the path will decrease
the energy, thus ensuring the overall energy is minimized when the
iteration stops. Figure 2 shows the intermediate results of several
iterations.

Algorithm 2 Parallel cohesion
1: procedure COHESION(all triangles: T = {t0, · · · , ti, · · · , tn−1})
2: define the triangle index array U = {u0, · · · ,ui, · · · ,un−1};
3: for i = 0 to n−1 in parallel do ▷ initialize the index array
4: ui← i;
5: end for
6: for i = 0 to n−1 rounds do
7: for j = 0 to n

2 −1 in parallel do
8: CohesiveSwap(tu j , tun−1− j ); ▷ Algorithm 1
9: end for

10: for j = 1 to n−1 in parallel do ▷ Cyclic rotation of
the indices

11: u j← u j−1;
12: if u j < 1 then
13: u j← n−1
14: end if
15: end for
16: end for
17: Update all sub-mesh centroids in parallel with prefix sum;
18: end procedure

Round 1 Round 2 Round 5

Figure 3: Example of a schedule constructed by circle method. In
the first round, element 0 is compared with element 5, element 1 is
compared with element 4, etc. For each round, except for element 0,
all elements will be shifted in the forward direction.

We propose a parallel scheduling strategy aimed at reducing the
execution time. It is a fine-grained parallelization to process triangle
pairs. In our parallel algorithm design, a triangle is involved in only
one label swapping evaluation to avoid potential access conflicts
arising from multiple requests to swap the label. To achieve this,
we use the theory of round robin tournaments [HM66]. Essentially,
each triangle can only be paired with one other triangle in each tour-
nament round. For instance, if the triangle pair (t0, t1) is evaluated
for label swapping, t0 and t1 can not be in other pairs in the same
round. As a result, the triangle pairs in the tournament round can be
evaluated concurrently.

The parallel cohesion algorithm for one iteration is shown in
Algorithm 2. The triangle index array U is initialized to the default
triangle order in lines 3-5, and it is used to track the unique pairs
of triangles for each tournament round of the swapping evaluation.
Specifically, the set of triangle pairs {(tu j , tun−1− j )} for j ∈ [0, n

2−1]
can be evaluated in parallel without access conflict in lines 7-9. In the
first round, this set pairs the first and last triangles, the second and
the second-last, and so on towards the two middle triangles. After
that, the circle method (lines 10-15) is employed to update the index
array so that each triangle can be paired with a different one in the
next round. The circle method shifts the index values in the forward
direction by one array element in line 11. This cyclic rotation starts
with the second element of the index array (u1) and the value of the
first element u0 remains unchanged. Figure 3 provides an example
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of the circle method. For n triangles (n mod 2 = 0), there will be
n−1 tournament rounds with n

2 paralellizable triangle pairs each.

At the end of each cohesion iteration, the centroids of the sub-
meshes are updated with sub-mesh-level parallelization (line 17).
The centroid of sub-mesh s is the mean of the centroids of the
triangles that belong to sub-mesh s. We used the pre-fixed sum
method [HSO07] to calculate the mean of the centroids of the trian-
gles.

4. Refinement

After the cohesion step, a common issue is the presence of “bowtie”
non-manifold configurations, in which a single triangle becomes a
boundary triangle and is no longer editable in primitive-level appli-
cations. Moreover, the resulting boundary edges may not be smooth,
which can pose challenges in local domains. For instance, the ad-
ditional “ribbon” triangles [MPO21] introduced at the boundaries
may become bloated.

Our refinement approach aims to address the bowtie issue and
smooth out the boundaries of the segments by minimizing the num-
ber of boundary edges through refining the label assignment ob-
tained from the cohesion process. The refinement process also in-
volves an iterative label swapping process, similar to the cohesion
process, to ensure that the triangle counts of the sub-meshes are not
altered.

Algorithm 3
1: procedure REFININGSWAP(two triangles: ta, tb)
2: la← ta’s sub-mesh label;
3: lb← tb’s sub-mesh label;
4: e1← cost(ta,smla); ▷ Equation 1
5: e2← cost(tb,smlb); ▷ Equation 1
6: e3← cost(ta,smlb); ▷ Equation 1
7: e4← cost(tb,smla); ▷ Equation 1
8: if e1 + e2 > e3 + e4 then
9: ta’s sub-mesh label← lb;

10: tb’s sub-mesh label← la;
11: end if
12: end procedure

Given two labeled triangles, ta and tb, Algorithm 3 determines
whether or not swapping their labels, la and lb, can refine the bound-
aries of the sub-meshes, in terms of alleviating the non-manifold
triangle cases and reducing the number of boundary edges. The algo-
rithm takes into account the neighboring edges of the corresponding
sub-meshes of the two input triangles.

To formulate the refinement cost, let us first define the function
ϕ(ti,sm j) as shown in Algorithm 4, which returns the number of
the boundary edges of the sub-mesh sm j that the triangle ti has.
A measurement takes into account both ϕ(ti,sm j) and the number
of boundary edges of the neighboring triangles. The refinement
cost is calculated as the sum of squares for these two parts of this
measurement, as expressed in Equation 1.

cost(ti, sm j) = ϕ(ti, sm j)
2 + ∑

(tk∈ti .neighbors)∧(tk∈sm j)

ϕ(tk, sm j)
2 (1)

Algorithm 4
1: procedure ϕ(triangle: ti, sub-mesh: sm j)
2: {t0, · · · , tk, · · · , tq−1}← ti’s neighboring triangles; ▷ q = 3

in a 2-manifold mesh
3: count← 0;
4: for k = 0 to q−1 do
5: lk← tk’s sub-mesh label;
6: if j ̸= lk then
7: count+= 1;
8: end if
9: end for

10: return count;
11: end procedure

Figure 4: The refinement example with the Triceratops model. The
non-manifold issue (the red triangle connecting to the red sub-mesh
through a single vertex) can be removed, and the boundaries of the
sub-meshes become smoother after the refinement.

In Algorithm 3, the number of the boundary edges associated with
the two input triangles with the current sub-mesh labels (e1 and e2)
and the number of the boundary edges after the refining swapping
(e3 and e4) are computed (lines 4-7). If the boundary edges become
less after the swapping, the labels of the two triangles are swapped
(lines 8-10).

For each iteration of the refinement, Algorithm 3 must be applied
to all pairs of triangles. The parallelization of the refinement process
is the same as the cohesion, including the round-robin scheduling
and the circle method to update the index array to pair the triangles in
each round (Section 3.2), which would require O(n) time. However,
during the refinement process, the centroids of the sub-meshes are
not used or updated. Figure 4 shows an example of the sub-meshes
before and after refinement. The refinement process minimizes the
total number of boundary edges so as to smooth the boundaries and
mitigate the non-manifold issue in all the sub-meshes.

5. Implementation and Evaluation

We have implemented a progressive spherical parameterization
method that allows us to preprocess meshes into spherical represen-
tations. As illustrated in Figure 5, the method starts by simplifying
the mesh into a base shape, which is a tetrahedron, using the half-
edge collapsing process from Peng and Timalsena’s work [PT16].
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Table 1: The segmentation results of 21 test models. Each model was segmented into 200 sub-meshes. CV is the coefficient of variation of all
the sub-meshes. and MTCD stands for the max triangle count difference between any two sub-meshes. # of Bowtie is the total number of the

“bowtie” non-manifold shapes, and # of BE is the total number of boundary edges of the sub-meshes.

Our Approach Region Growing METIS
Test # of CV MTCD # of # of CV MTCD # of # of CV MTCD # of # of

Models Triangles Bowtie BE Bowtie BE Bowtie BE
Elf 68,384 0.00 1 0 5,667 0.62 1,509 0 9,737 0.01 10 0 5,695

Monster 48,904 0.00 1 0 4,735 0.61 885 0 8,049 0.01 6 0 4,835
Armadillo 9,996 0.00 1 0 2,033 0.39 169 0 2,985 0.02 3 45 2,149

Bunny 3,996 0.01 1 0 1,303 0.34 41 0 1,695 0.02 2 143 1,447
Cow 5,804 0.00 1 0 1,580 0.34 57 0 2,112 0.02 2 19 1,631

David 10,390 0.00 1 0 1,963 0.19 60 0 3,011 0.02 3 34 2,163
Gargoyle 6,322 0.00 1 0 1,538 0.28 60 0 2,192 0.03 3 14 1,702

Horse 17,332 0.01 1 0 2,657 0.27 105 0 4,198 0.02 5 0 2,903
Human 20,096 0.00 1 0 3,041 0.35 182 0 4,749 0.01 6 0 3,182

Man Head 20,658 0.00 1 0 2,805 0.29 171 0 4,838 0.02 6 13 3,205
Triceratops 4,996 0.01 1 0 1,459 0.44 55 0 1,947 0.01 2 62 1,607

Dolphin 3,730 0.03 1 0 1,264 0.47 62 0 1,634 0.03 1 67 1,381
Dog 3,200 0.00 0 0 1,199 0.30 26 0 1,458 0.05 2 27 1,229
Car 6,550 0.01 1 0 1,652 0.29 54 0 2,274 0.03 3 48 1,824

Merman 86,206 0.00 1 0 6,494 0.99 3,882 0 11,046 0.01 21 6 6,210
Volleyball 7,680 0.01 1 0 1,853 0.39 79 0 2,512 0.02 2 27 1,947

Troll 4,958 0.02 1 0 1,460 0.37 54 0 1,992 0.02 3 111 1,579
Exterminator 6,346 0.01 1 0 1,677 0.33 67 0 2,350 0.03 3 3 1,671
Sculpture 1 156,240 0.00 1 0 9,060 1.52 2,834 0 24,954 0.001 4 0 10,357
Sculpture 2 319,200 0.00 0 0 13,030 1.24 4,215 0 46,588 0.001 6 44 15,176

Rock 558,976 0.00 1 0 15,162 0.50 7,301 0 37,727 0.001 10 0 16,700

Simplify into the base shape Project onto a sphere

Figure 5: An example of spherical parameterization in the prepro-
cessing step. The Bunny model is simplified into a tetrahedron by
collapsing edges progressively. The tetrahedron is projected onto
the surface of a sphere, and vertices are inserted back one by one
and projected onto the sphere.

This process collapses one edge at a time, with the selection crite-
rion designed to remove high curvature regions as early as possible.
Our implementation evaluates all edges using this criterion in an
edge-level parallel fashion. After collapsing the edges, we projected
the tetrahedron onto a sphere and inserted the vertices back in the
reverse order of collapsing. To ensure that each vertex is inserted
to an optimal location on the sphere, we minimized the distortion
measurement function introduced by Hu et al. [HFL17]. This al-
lows us to find the least-distorted location inside the 1-ring region
of the adjacent vertices for projection. To inquire the relationship
between triangles directly, we built a dual graph of the triangular
mesh [Del99], which encodes the topological structure of the mesh.

The cohesion and refinement algorithms have been implemented
using C++ and CUDA version 11.6 on a machine equipped with

an Intel(R) Core(TM) i9-10980XE CPU and an RTX 3090 GPU.
We evaluated our approach using 21 different models, which are
listed in Table 1. The segmentation results for these test models are
presented in Figure 6 and Figure 7.

The spherical parameterization preprocess has been executed
on the same machine used to evaluate our cohesion and refine-
ment algorithms. The time complexity of our parameterization is
O(n logn), where n represents the number of triangles in the mesh.
For instance, the parameterization time is 21.27 seconds for the
Human model, which consists of 20,096 triangles. This time is
71.26 seconds for the Monster model, composed of 48,904 triangles.
In existing state-of-the-art spherical parameterization methods, the
models used for evaluation are usually limited to around 350 thou-
sand triangles [HFL17, CQW∗19]. Advancing the existing methods,
our implementation was able to parameterize the Rock model, com-
posed of 558,976 triangles, but it was not successful in handling
models with more than one million triangles due to the accumula-
tion of area distortions, limited parametric space, and floating-point
numerical errors.

The dual graph generation is fast, benefiting from the implemen-
tation with a triangle-level parallelization. For instance, the Human
model takes 9.27 milliseconds, while the Monster model takes 22.61
milliseconds for dual graph generation.

To compare the segmentation results of our approach, we con-
ducted experiments with two other methods: a region growing im-
plementation based on the existing algorithms [LDB05, YGZS05],
and the METIS software package. The region growing implemen-
tation selects triangles randomly as the seeds, with the number of
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Figure 6: The segmentation results of the test models produced by our approach.
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Figure 7: The segmentation results of Man Head, Horse, and Human models with 2-200 sub-meshes produced by our approach.
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seeds equals to the number of the sub-meshes. During the growing
iteration, unassigned triangles in the neighborhood of a region are
evaluated based on the distance to the center of the region. The trian-
gle with the lowest distance that does not cause a non-manifold issue
is added to the corresponding sub-mesh. For the METIS software
package, we enabled the option “-contig” to produce contiguous
mesh segmentation results. While the “-ufactor” option is avail-
able in METIS to define the maximum permissible load imbalance
among sub-meshes, we found that it was unable to achieve precisely
balanced mesh segmentation results, even when we set “-ufactor”
to the minimum allowed value of 1.001. Modifying “-ufactor” to a
lower value may also increase the edge-cut in the mesh segmenta-
tion results. Therefore, we relied on the default settings provided by
METIS and did not specify the “-ufactor” option.

5.1. Triangle Count Balancing among Sub-Meshes

In order to evaluate the quality of triangle count balancing, we
used two metrics: the coefficient of variation (CV) [Bro98] and the
maximum triangle count difference (MTCD) among all the sub-
meshes. The CV is defined as the ratio of the standard deviation to
the mean of the triangle count, and in our experiment, it was used
to normalize the comparison on the test models since they have
different geometric complexity. The MTCD is defined to express the
largest difference in the triangle count between any two sub-meshes.

Table 1, shows that our approach has achieved exactly balanced
results (MTCD = 0 or 1). The reason of MTCD = 1 on some of the
test models is that the total number of triangles can not be evenly
divided by the number of sub-meshes. Therefore, some sub-meshes
must have one extra triangle compared to other sub-meshes. On the
other hand, the region growing method results in high rates of CV
(ranging from 0.19 to 1.52) and MTCD (ranging from 26 to 7,301).
While METIS performs better than the region growing method in
terms of triangle count balancing, it can not achieve exact balancing,
resulting in a varying rate of MTCD (ranging from 1 to 21). This is
because the METIS algorithm only balances the load at each parti-
tion, resulting in a locally optimized configuration, and the global
balancing among all sub-meshes is not guaranteed. In contrast, our
approach mandates a balanced sub-mesh label assignment initially,
and the subsequent cohesion and refinement processes ensure that
such balanced triangle counts are not altered.

5.2. Topological Continuity and Boundary Smoothness

We counted the number of “bowtie” non-manifold shapes and the
number of boundary edges in all sub-meshes, listed in Table 1.

In various graph partitioning and mesh segmentation techniques,
the edge-cut is frequently used as a metric to evaluate the quality
of partition or segmentation, as discussed in the previous studies
[KK97, RPG∗13]. The edge-cut represents the number of edges
that traverse distinct patches, reflecting the communication volume
between these patches. In our triangle-based mesh segmentation
approach, the edges that separate various sub-meshes do not intersect
the sub-meshes. Instead, they define the boundaries between the sub-
meshes. Therefore, we used an alternative term, number of boundary
edges (# of BE), to describe this metric. It is important to note that
the number of boundary edges corresponds to the edge-cut in the

mesh’s dual graph. Thus, we employ the number of boundary edges
as a metric to evaluate the quality of our mesh segmentation results.
A smaller number of boundary edges indicates better roundness and
less communication volume between sub-meshes.

The roundness of the sub-meshes produced by our approach and
the METIS is similar, with an average boundary edge ratio (# of BE
/ total number of edges) of 13.1% and 14.0%, respectively. However,
METIS produces “bowtie” shapes, as shown in Figure 8. There is
no clear trend indicating that the non-manifold issue from METIS
becomes more severe with more complex models or an increasing
the number of sub-meshes. For example, the Bunny model, which
has just 3,996 triangles, has 143 “bowtie” shapes on the 200 sub-
meshes, which is the highest among all the test models. In contrast,
the Sculpture 2 model with 319,200 has only 44 “bowtie” shapes.
The Merman model has 74 “bowtie” shapes on the 20 sub-meshes,
but this decreases to 6 on the 200 sub-meshes. This is because the
Kernighan-Lin algorithm, which is at the core of METIS, only finds
a local optimum and causes an edge-level discontinuity between
partitions. The region growing method results in a large number of
boundary edges, and although it maintains continuous topology (no
“bowtie”), the sub-meshes have unbalanced triangle counts and poor
roundness (average boundary edge ratio = 19.0%).

5.3. Iteration Analysis

We analyzed the behavior of our approach in terms of the number
of boundary edges and the execution time over the iterations. As
shown in Figure 9, for the test case of the Human model (200
sub-meshes), the cohesion process converged after 27 iterations,
which has reached the condition of no more label swapping, and the
refinement process converged after 5 iterations, which has reached
the condition that the number of boundary edges stopped decreasing.
The total number of boundary edges and the current iteration’s
execution time decrease rapidly at the beginning. For instance, the
number of boundary edges went down from 29,670 to 3,888 in the
first 6 iterations of the cohesion process. Then, the decrease rate
slows down and eventually reached stability. In total, the cohesion
process took 4.05s and the refinement process took 1.84s to complete
the label swapping.

6. Applications

The resulting sub-meshes from our approach store vertices and
triangles in arrays, which are suitable to conduct remeshing-related
run-time geometry processing applications. We applied the sub-
meshes in two such applications: parallel continuous level-of-detail
(LOD) selection and multi-threaded mesh compression decoding.

6.1. Level-of-Detail

We utilized the GPU’s shared memory and implemented a parallel
level-of-detail selection scheme using CUDA version 11.6 for all
the 200 sub-meshes of each model. Each sub-mesh was simplified
individually by one CUDA block based on a set of common feature-
preserving edge-collapsing criteria [FKY∗10, PC12, LSW∗22].

To assess the capability of the sub-meshes to be simplified, we
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Ours
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Non-manifold 
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Figure 8: The comparison of our approach, region growing, and METIS with 20, 50, 100, 200 sub-meshes. The first row is the results from
our method. The second row is the results generated by region growing method. The third row shows the results created by METIS. In the last
row, examples of the non-manifold issue in the results of METIS are highlighted.
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of the cohesion process (left side of x-axis) and refinement process
(right side of x-axis) with the Human model. 0 in the x-axis means
the initial # of boundary edges before the cohesion and refinement
process.

evaluated their non-collapsibility ratio, which we defined as the per-
centage of non-collapsible edges in all the sub-meshes over the total
edges of the mesh. A lower ratio implies a better capability for sim-
plification. However, since the boundary edges of the sub-meshes
must be preserved to maintain topological continuity crossing neigh-
bor sub-meshes, the edge-collapsing criteria can only collapse edges
containing non-boundary vertices. Figure 10 (top) shows the results
of our evaluation. We found that the sub-meshes generated by the
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Figure 10: The charts showing the ratio of non-collapsibility (top)
and the shared memory usage (bottom). Note that, there is no red bar
for the Merman (86,206), Sculpture 2 (319,200), and Rock (558,976)
models, because the largest sub-mesh of these three models gen-
erated by the region growing method can not fit into the shared
memory.
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region growing method had the highest ratio of non-collapsibility
in all test models. This is mainly due to the highly irregular shapes
of the sub-meshes looped with complex boundaries that the region
growing method produces. Our approach achieved an overall lower
ratio of non-collapsibility than METIS, except for two test models
with small numbers of triangles (3200 and 6346). For all other test
models, our approach gained clearly lower ratios. Specifically, the
ratio from our approach was 11.3% lower than METIS on average,

Figure 11: The “bowtie” shapes
(red) resulting from METIS prevent
edges from collapsing.

and the standard deviation was
38.2% smaller than METIS.
The smaller standard devia-
tion indicates more balanced
capability among the sub-
meshes for simplification. The
results of METIS were af-
fected by the non-manifold is-
sue, which compromised the
visual quality of the simplified
sub-meshes, as shown in Fig-
ure 11. In contrast, the results
of our approach did not have
the non-manifold issue.

We also evaluated the usage of shared memory and the execution
time of the LOD selection. All the CUDA blocks must be allocated
with the same shared memory size. If the sizes of sub-meshes are not
balanced, the shared memory of a CUDA block is underutilized to a
greater extent when the sub-mesh size is smaller. Figure 10 (bottom)
shows that our approach resulted in almost full utilization of the
shared memory (only a small influence due to the difference in the
number of vertices between sub-meshes). METIS achieved shared
memory utilization that is comparable to ours, with an average
difference of only 2.7%. This is due to the consideration of load
balancing during the partitions in METIS. Figure 12 (left) shows the
execution time on the test models. For the test models with 48k or
more triangles, on average, the region growing method and METIS
were 29.1% and 6.8% slower than our approach, on average. For
smaller models, the cost of launching the CUDA kernel was the
major cost, and the computing time was small so as not to make the
difference significant. For the sub-meshes of the Merman, Sculpture
2, and Rock models generated by the region growing method, the
desired amount of memory was larger than the maximum amount of
shared memory that can be allocated on the GPU, so their execution
time evaluation was not included in the comparison.

6.2. Mesh Compression

Mesh compression is a widely used application that can benefit
from mesh segmentation, as noted in previous studies [CL18,KG00,
ZTT12]. To test this, we utilized Google’s Draco [Goo23] mesh
compression library to encode and decode the meshes that were
segmented into 20 sub-meshes. The Powershell ForEach-Object Par-
allel feature was used to conduct parallel execution. Figure 12 (right)
shows the execution time of the decoding process. The difference
in decoding execution time is more noticeable when testing with
larger models. For models with 68k or more triangles, our approach
resulted in an average decoding performance that was 7% faster than
the region growing method. The decoding performance with results
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Figure 12: The execution time of the LOD selection (left) and the
mesh compression decoding (right).

from METIS was similar to using the results from our approach
because both methods tended to balance the triangle counts among
the sub-meshes.

7. Conclusion

This work has presented a new approach to mesh segmentation that
surpasses the capabilities of existing methods such as region growing
and METIS, in terms of maintaining the topological continuity, bal-
ancing triangle counts, and improving sub-mesh shape regularities.
To demonstrate the effectiveness of our approach, we implemented
two parallel geometry processing applications on both CPU and
GPU platforms. These applications were designed to showcase the
enhanced performance that our segmentation technique provides.
Through these experiments, we observed significant improvements
in both the quality of the sub-meshes and the execution time required
to produce them.

One limitation of our approach is that it is currently restricted to
genus-zero meshes due to the nature of spherical parameterization.
Although genus-zero meshes are widely used in various applications,
it would be desirable to extend our approach to higher genus meshes
in the future. This could potentially be achieved by introducing
seams or open boundaries to reduce the genus level, thereby enabling
the mapping of higher genus meshes onto spheres for continuous
and balanced mesh segmentation using our approach.

The refinement algorithm effectively resolves the “bowtie” issue
for the sub-meshes of the test models in our experiment. However,
if the original model is composed of highly irregular geometric
primitives, it is possible that several adjacent sub-meshes grow into
long and narrow shapes, which can have a low possibility of causing
the refinement process to yield a local optimum. This scenario would
require further investigation in the future.
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