OpenSG Symposium (2003)
D. Reiners (Editor)

OpenManip: An Extensible Cross-Scene-Graph Framewor k
for Direct Object Manipulation

Michael Braitmaier, Manfred Weiler, Thomas Ertl

Visualization and Interactive Systems Group
University of Stuttgart

Abstract

In this paper we describe a framework that exploits 3D widgets in order to allow for the direct manipulation of
scene graph objects. The design of the frameworks is inspired by the Openlnventor manipulator functionality, but
additionally emphasizes transparency from the underlying scene graph system, by separating core functionality
from a relatively lean scene graph abstraction layer. Thus, the framework features different scene graph APIs, in
particular OpenSG and Cosmo3D. Using our framework manipulation functionality can be easily integrated into
any existing application since it only introduces a few new objects that have to be connected to the application. Our
framework provides different manipulators for selection, scaling, rotation, and translation of objects. Moreover a
set of editors allows for the manipulation of light and material properties. We demonstrate the extensibility of our
framework both, in terms of customized manipulators and porting the framework to new scene graph APIs, which

is supported by a clear object-oriented structure.

1. Introduction and Related Work

Direct manipulation is a style of Human Machine Interac-
tion (HMI) design which features a natural representation
of task objects and actions in a computer environment and,
therefore, realizes many benefits in contrast to traditional 2D
menus or command line languages. An intuitive interface
and the lack of a complex syntax, for instance, dramatically
increases the learning speed and retention. Moreover a real-
time feedback avoids handling errors and the reversibility of
actions helps the user to gain confidence in the system. Be-
cause of these benefits, direct manipulation techniques are a
widely used interaction pattern not only in computer graph-
ics application. Dragging an unused file onto the recycle bin
on the desktop is only one typical example for direct manip-
ulation.

Considering especially VR applications direct manipula-
tion seems to be the natural interaction pattern as well, for

T Universitat Stuttgart, VIS, UniversitatsstraBe 38, 70569
Stuttgart, Germany; E-mail: braitml @i smail .
informati k. uni-stuttgart.de, {Manfred. Wil er

| Thomes. Ertl}@nformatik.uni-stuttgart.de.

(© The Eurographics Association 2003.

instance, when a data glove or a 3D pointing device is used
to manipulate objects in the virtual environment, e.g. in a
digital mock-up scenario. The user can interact with the pre-
sented parts in a natural and intuitive way performing the
desired task.

However, not every task in an virtual environment acts on
objects that are part of the scene. Kniss et al. 6, for exam-
ple, use direct manipulation to modify the transfer function
of a rendered volume. In such cases 3D direct manipulation
widgets are widely used 3.10.5. These widgets are special
geometric objects rendered with a visualization and are de-
signed to provide the user with a 3D interface. Widgets are
typically rendered from basic geometric primitives such as
spheres, cylinders, and cones with each sub-part of a widget
representing some functionality of the widget or a parameter
to which the user should have access.

Direct manipulation can also be combined with a gravity
function that snap the cursor on nearby vertices, edges, sur-
faces or their intersection. Bier et al. 21 have successfully
applied this technique to build an interactive 3D solid mod-
eling systems, that allows for an efficient and precise posi-
tioning or scaling of geometrical primitives.

delivered by
[|

www.eg.org

- EUROGRAPHICS
DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Braitmaier, Weiler, and Ertl / OpenManip

From the different available 3D graphics API currently
only Openlnventor ° intrinsicly supports manipulation of
scene graph objects by the use of special manipulator scene
graph nodes, and, therefore allow an application program-
mer to incorporate intuitive scene graph modification into
any Openlnventor application. However, Openlnventor is
less suitable for VR applications since it lacks support for
multi-pipelining and multi-processing in contrast to the full-
immersive Performer API.

Our goal, therefore, is to provide a future-proof open
source framework that allows for an easy integration of di-
rect scene graph manipulation into a wide variety of interac-
tive and immersive 3D applications. We achieve this by sep-
arating the manipulation core functionality form scene graph
dependent code, thus, allowing to support different scene
graph systems, e.g. OpenSG and Cosmo3D, and to easily
adapt the framework to future scene graph APIs.

The remainder of the paper is organized as follows: In
Section 2 we will first shortly review Openlnventor manip-
ulators since this provides a better understanding of the ar-
chitecture of our framework presented in Section 3. The ab-
straction layer that allows for independency of the under-
lying scene graph system is introduced in Section 4. The
integration of our manipulator functionality is discussed in
Section 5 before we present achieved results in Section 6.

2. Openlnventor Manipulators

In Openlnventor direct manipulation of scene graph objects
is obtained by two types of special scene graph objects,
namely draggers and manipulators. A dragger is a node —
or more precisely a node kit — in the scene graph with spe-
cialized behavior that enables it to respond to user events.
Furthermore, draggers can insert geometry into the scene
graph that is used for picking and user feedback. A drag-
ger reacts on user input in a specified way and, thus, can be
considered as implementing its own user interface. It has a
field (or fields) reflecting its state. A very simple dragger, for
example, could record the state of the CTRL-Key in an inter-
nal field which might be used to switch between flat shaded
polygons and wire frame display.

Openlnventor provides simple and compound draggers.
Simple draggers perform only one operation such as a scale
or a translation in one dimension and have a fixed user inter-
face. Although simple draggers can be useful by themselves,
they are often combined to make a compound dragger. Com-
pound draggers use multiple simple draggers to combine
several operations, e.g. the SoTr ansf or nBoxDr agger
combines a rotation, translation, and scale.

Manipulators on the other hand are subclasses of other
Openlnventor nodes such as SoTr ansf or mor SoDi r ec-
tional Li ght that employ draggers to respond to user
events and edit themselves. Deriving a manipulator from an
Openlinventor node literally defines a user interface for that

type of node. Each manipulator contains a dragger as hid-
den child that responds directly to user events and in turn
modifies the field of the manipulator. A SoTr ackbal | -
Mani p, for example, is a subclassed SoTr ansf or mthat
uses a SoTr ackbal | Dr agger to modify its transforma-
tion matrix according to the user’s pulling of one of the rib-
bons surrounding a displayed sphere.

It is important to understand that a dragger moves only it-
self in response to user events, whereas a manipulator moves
itself and also affects other objects in the scene graph.

Openlnventor manipulators provide a powerful mecha-
nism for direct manipulation of scene graph objects. An ap-
plication programmer can easily — without much imple-
mentation effort — allow the user to move, rotate, or scale
objects, e.g. by dynamically inserting a transform manipula-
tor node in the scene graph without having to take care about
the user interaction himself. He simply removes the manip-
ulator node after the end of a manipulation sequence, which
automatically replaces the manipulator by a transform node
with the same transformation matrix making the changes
to the scene graph permanent. In the same way modifiable
lights can easily be added to any application exploiting the
light manipulator nodes of Openlnventor.

Figure 1: The SoTr ansf or rBoxMani p contains a So-
Tr ansf or mBoxDr agger consisting of six SoTr ans-
| at e2Dr agger s for the faces of the cube, three SoRo-
tateCylindrical Draggers, and one SoScal eU-
ni f or mDr agger . It allows for the translation, rotation
and uniform scaling of any scene graph object.

Figure 1 shows the most prominent representative of
Openlnventor manipulators. This SoTr ansf or mBoxMa-
ni p allows for rotation of the presented fighter around any
of the coordinate axises X, y, and z, by dragging one of the
green spheres. Picking any face of the box translates the
fighter in the plane of that face or perpendicular to the face if
the CTRL-key is pressed. Dragging of any of the white cubes
scales the box uniformly or non-uniformly in one direction
if the SHIFT-key is pressed. Note that this is only a selection
of the possible interaction modes. When the user begins ma-

(© The Eurographics Association 2003.

Braitmaier, Weiler, and Ertl / OpenManip

nipulating, an arrow appears indicating the direction of the
motion.

Several manipulator nodes are available in the Openin-
ventor library providing different interaction modes for the
object manipulation. Moreover a rich set of over 20 drag-
gers allows for writing own manipulators with user specific
behavior.

3. OpenManip Architecture

The OpenManip architecture consists of two layers to allow
for a clear separation of the different abstraction levels. The
higher level realizes the manipulator functionality whereas
the lower level implements the connection to the underly-
ing scene graph API, which will be discussed in Section 4.
The OpenManip functionality concerning the manipulators
features an object-oriented structure, which aims at easy ex-
tensibility.

The design of OpenManip was inspired by the widely
known Openlnventor manipulators, but additionally empha-
sizes scene graph API transparency and support for the
cross-platform C++ widget set Qt from Trolltech 4.8.

The OpenManip manipulator layer is composed of two
parts reflecting the major function blocks. These functional
parts are the manipulator core and the event handling. For
each of these parts a class hierarchy is defined that allows
for easy creation of new manipulators.

The manipulator core performs all actions, related directly
to the manipulation of objects and to the visual appearance
of the manipulator within the application. The interface be-
tween the application’s event handling and the manipulator
core is provided by the OpenManip event handling. It checks
whether specific events are relevant for the manipulator. We
will first present a more detailed description of the manipu-
lator core, including components and their interactions fol-
lowed by the event handling.

3.1. Manipulator Core

Our framework utilizes the Openlnventor concept of ma-
nipulators and draggers presented in Section 2. However,
the design does not derive manipulators from scene graph
nodes, since this would have amalgamated the manipulator
functionality with the underlying scene graph API and, thus,
severely hampered portability between different APIs. In-
stead, our framework creates an own object graph parallel to
the scene graph where each object links to a corresponding
scene graph node. The visual representation of the manipu-
lator uses ordinary geometry nodes of the scene graph API.

The manipulator core part consists of a small set of
generic base classes that already implement base functional-
ity. For example the Mani pul at or base class handles the
administration and the deletion of all aggregated objects, in

(© The Eurographics Association 2003.

particular draggers. Thus, the specialized classes only have
to take care about the dragger setup, which actually make
up the particular characteristics of a manipulator. Figure 2
demonstrates this relations for a translation manipulator.

ranslation:
ianipulator)

H-Aois- - Axis- Z-Axis-
Transiation Dragger Transiation Dragger Translation Dragger
Dragger Dragger Dragger

Front- Back-
ransiation-| ranslation-}
Handle Handle

Projector
Cylinder Sphere Line
Projector [} Projestor / | Projector
Legend

~+— Derived from ~--- Depends on
@ Specialized class @ Generic class
- AQQregated by

Figure 2: The architecture of OpenManip manipulator core
part. It shows the inheritance between generic and special-
ized classes, as well as the dependencies between the hier-
archy levels.

Besides from the handling of aggregated objects the ma-
nipulator class and its derivations are only administrative ob-
jects acting as a connection between draggers and the scene
graph. For example the manipulator objects perform all tasks
of directly accessing the transformation matrices of a corre-
sponding node by calling appropriate methods from the ob-
jects of the scene graph driver.

The corresponding node is determined during the creation
of a Mani pul at or object. If the parent of an object that
should be modified by a manipulator is a transform node, the
manipulator links to this transform node. Otherwise a trans-
form node is inserted above the node to be manipulated and
connected to the manipulator. This node stays in the scene
graph for permanent effect of the manipulation action.

A Mani pul at or in the context of OpenMani p is ba-
sically a set of Dr agger s where each dragger represents a
specific transformation task or a set of draggers. Note that
a transformation task refers to a basic transformation, e.g.
a translation, rotation, or scaling. Although our framework
features compound draggers as well, the draggers presented
here use only basic transformation.

A dragger contains all geometry required for a specific
type of transformation. We distinguish so called Vi sual s,
that have no interaction with the user, from Handl es. Visu-
als are just additional graphical elements for better orienta-
tion of the user and for displaying the current state of the ma-

Braitmaier, Weiler, and Ertl / OpenManip

nipulator. For example the lines along the edges of a bound-
ing box are implemented as visuals. The dragger admin-
istrates its visuals including creation, deletion and chang-
ing appearance for different modes of the manipulator, e.g.
bounding box lines are hidden as long as the rotation mode
is active.

For providing user interaction, each dragger additionally
contains a set of handles. A Handl e uses a visual repre-
sentation — the widget — and contains the main logic of
the manipulator core. It keeps track of all the states by im-
plementing a state machine and performing appropriate state
switches with respect to mouse or keyboard events. A han-
dle creates its geometry required to represent the widgets for
user interaction, e.g. small boxes at the corner of the bound-
ing box that the user can drag for scaling. These objects are
registered at the event distributor component of the event
handling part (see Section 3.2) so the handle can receive the
events intended for it.

The handle also performs the required computations for
mapping 2D mouse movement into 3D-space. For this
task it employs so called Pr oj ect or objects. OpenMa-
nip provides three different types of projectors, the Li ne-
Pr oj ect or for mapping movements along a line, the
Circl eProj ect or for movements on a circle and the
Spher ePr oj ect or for mapping movements on a sphere.
The calculation itself includes the computation of the view
ray through the mouse position mapped on the near clip-
ping plane and the intersection of the ray with the analytical
geometry of the projector. The returned intersection point
is used as the start point for the transformation. When the
mouse is moved, a second point is calculated and the map-
ping between these points with respect to the projector ge-
ometry is used to transform the object.

3.2. Event Handling

The second functional part of OpenManip’s top layer is the
event handling. The main task of this part is the distribu-
tion of events from the application to OpenManip. There-
fore, OpenManip provides a component called Event Di s-
tri but or. The event distributor receives all events from
the application and checks whether an event is intended
for one of the manipulators’ handles. OpenManip utilizes
its own event hierarchy and, therefore, requires a translator
class presented in Figure 3, which maps application events,
e.g. Qt events, to OpenManip events.

These OpenManip events are then passed to the Event -
Di stri but or which decides whether the received event
affects some interactive objects of a manipulator. Therefore,
the event distributor traverses a list of Cal | back objects,
that the handles registered during their creation. A callback
contains a pointer to an Event Li st ener, which is an in-
terface class for objects that are capable of receiving events
and only provides a method to receive events. In our case
each handle acts as an event listener.

Send QT-Event
Application - —--—--—-—,
Siewer-

Event-

;

' Qispatche
:

H H
| SendOmEwent |
:

:

;

i

i

i

i

Event
Listener
!
! Send OM-Event
[
_____ : i -~
| Event
Distributor;

i :

H
i i
Ceck for matching
object
Dragger

Send OM-Event

Legend

-+— Derived from -«--- Depends on
Specialized class GEneric class
@ P @ - Registers at ¥ Datanow

Figure 3: The figure shows the event hierarchy and handling
mechanisms of OpenManip. An event dispatcher receives ap-
plication events and forwards them to the event distributor,
which passes the events to a matching handle.

In order to check whether a widget of a handle is affected,
the event distributor performs a picking based on the 2D-
coordinates of a mouse event and compares the resulting
node with the widgets of all registered Cal | back objects.
If a matching widget is found the event is passed to the event
listener retrieved from the callback object. Once the event
arrives at the handle, the appropriate state switches occur
based on the type of event received. Eventually the event is
propagated upwards to the handle’s dragger, thus, it can also
change its state and update the visuals belonging to the drag-
ger.

If the event distributor does not find a matching node, a
flag is set to report that no event handling occured within
OpenManip, thus, the application can react accordingly and
handle the event itself.

4. Scene Graph Independency

As stated before our framework was designed to be largely
independent of a particular scene graph API, such that it can
easily be ported. Therefore, our cross-scene-graph frame-
work inserts a layer between the manipulator core, that han-
dles user interaction, and the underlying scene graph library.
This layer wraps the scene graph to provide an independent
and stable interface for the top layer of OpenManip. Cur-
rently we have implemented scene graph drivers for OpenSG
and Cosmo3D 7. Figure 4 shows the layer concept in the con-
text of an application based on the Qt library from Trolltech.

The design of the scene graph driver wraps the main func-
tionality of the scene graph API into own classes which offer
a common base functionality for the top layer of OpenMa-
nip. Each class wrap a specific part of the scene graph for ex-

(© The Eurographics Association 2003.

Braitmaier, Weiler, and Ertl / OpenManip

Application

Manipulator and
Event-Handling Layer

Scenegraph-Driver Layer

Scenegraph-API

Figure 4: The architecture of OpenManip is separated into
two layers to minimize scene graph dependencies. A scene
graph independent functional part can be combined with dif-
ferent scene graph drivers. Note that the presented applica-
tion also uses the Qt widget set.

ample a Transform node, Group node, or a specific geometry
node. With this fine-grained separation we have been able to
accommodate the fact that different scene graphs have dif-
ferent concepts on how they implement their leaves.

Whereas Cosmo3D uses a structure, where the leaf of
the scene graph — a csShape node — has two non-node
children, acsCGeonet ry and acsAppear ance, OpenSG
uses a OSGNode with a OSGGeonet r y core that contains a
pointer to the material. The latter provides a more consistent
node concept. However, with our framework design we were
able to hide these issues from the top layer of OpenManip.

On the other hand Cosmo3D provides basic geometry ob-
jects which are changeable in size and position. Since such
objects are not available in OpenSG we had to simulate
this functionality within our scene graph driver by using a
subgraph of OSGTr ansf or mand OSGGeornet ry nodes,
maintaining the stable interface to the top layer.

OpenManip manipulators are not implemented as a nodes,
because of the already mentioned reasons to accommodate
different scene graph concepts of different scene graph APIs.
Manipulator nodes would have significantly enlarged the
driver layer by transferring most of the functionality into the
scene graph driver. We still would need the wrapping of ba-
sic nodes such as geometries, transforms and groups to cre-
ate visuals and widgets for the manipulator. So there would
have been no obvious advantage with an extra scene graph
node.

Moreover the clear separation between manipulator func-
tionality and scene graph driver greatly simplifies porting to
new scene graph APIs. All which has to be done is to reim-
plement the classes of the scene graph driver with respect to
the new scene graph API. No modifications are required in
the manipulator core or the event handling. After implement-
ing the new scene graph driver and adapting the application
to the new scene graph, OpenManip works the same way as

(© The Eurographics Association 2003.

it does on the scene graphs for which a driver already ex-
ists. Basically one would reimplement the following groups
of classes:

e Basic geometry wrapper classes

e Light wrapper classes

e Transform and group wrapper classes

e Scene graph wrapper classes

In order to ensure proper functioning of the OpenManip
library the new classes minimally have to provide the corre-
sponding functionality of existing driver classes.

5. Using OpenManip

Our OpenManip framework allows for easy integration of
manipulator functionality into any application utilizing a
scene graph API for which OpenManip provides a scene
graph driver. Currently we support OpenSG and Cosmo3D.
The integration only requires a few modifications of the ap-
plication such as instantiation of several OpenManip main
objects which act as an interface for the application. These
objects are:

e Scenegraph
e EventDi stri butor
e Vi ewer Event Di spat cher

Additionally the application has to keep a list of selected
nodes and active manipulators. The list of selected nodes is
used to create manipulators for these nodes, which also in-
corporates a selection manipulator, as we implemented the
selection as a special case of a manipulator without any wid-
gets.

The Scenegr aph object is the basic object of the scene
graph driver layer and requires some initial settings. First the
scene graph object has to know the root node of the scene,
as this will be used for picking, and the camera settings, as
some scene graph APIs like Cosmo3D perform the picking
based on the csCaner a object. Additionally the Render -
Acti on or DrawAct i on has to be set in the scene graph
object as this is needed by OpenManip to trigger redraw of
the scene if necessary. The view port of the application is
also required for correct calculation of the mapping from 2D
mouse coordinates to 3D-coordinates.

After this initialization the application is ready to create
manipulators, though still an adjustment of the application’s
event handling is required. The application has to deliver the
following list of events to the event distributor of OpenMa-
nip:

Mouse move events

(Left) mouse button click and release events
Control key press and release events

Shift key press and release events

The way this is realized depends on the GUI library the
application is built from. For most GUI systems, in par-
ticular Motif, X or glut, this would require a modification

Braitmaier, Weiler, and Ertl / OpenManip

Figure5: The OpenManip Tr ansf or mvlani pul at or used to transform a cone. With activated rotation mode (middle image)
it allows for the rotation perpendicular to the x- and y-axis. The translation mode (right image) allows for the translation within

the highlighted plane.

of the corresponding event callbacks. Since our application
is built from the Qt widget set, we can exploit its signal-
slot-mechanism here. We use a class Vi ewer Event Di s-
pat cher, which provides Qt slots for the required events.
These slots have to be connected to the corresponding sig-
nals of the application.

The event dispatcher has to exclusively receive the Qt
events, as long as a manipulator is active. The slots of the
Vi ewer Event Di spat cher gather the information from
the Qt event and construct an appropriate OpenManip event,
either of type KeyEvent or MouseEvent . The event is
then sent to the Event Di st ri but or object instantiated
within the application.

Note that the application still has to deal with events
not handled by OpenManip. With Motif or X callbacks this
would normally be achieved by querying the flag, that indi-
cates whether an event has been handled, after dispatching
an event to OpenManip. If the flag is false the callback can
proceed with the original callback code, otherwise it can di-
rectly return from the callback. In our Qt implementation we
instead use a signal noCbj ect () emitted by the Vi ew
er Event Di spat cher that has to be connected to a slot
of the application.

OpenManip employs a clear object-oriented design for
easy extension of the top layer of OpenManip. This ex-
tensibility allows to fit a manipulator to the developer’s
needs. Writing new manipulators and draggers can be ac-
complished by deriving new classes from the generic base
classes presented in Figure 2. A new manipulator class only
has to include code for creating an appropriate set of drag-
gers and a new dragger code for creating handles and visu-
als. The implementation of visuals require additional code
for changing their appearance with regard to the different
states the dragger might be in. Extending handles require
the most work, as this is the place where the behavior of the

widgets is defined by the use of a state machine. Also the
desired transformation has to be applied here in addition to
the calculation of the orientation and the proper position of
the widgets in 3D-space.

6. Results

In this section we present the results we achieved with Open-
Manip including screen shots of OpenManip in action. Cur-
rently OpenManip provides support for two scene graph
APIs: OpenSG and Cosmo3D. We tested OpenManip in
applications on both platforms. The Cosmo3D viewer was
basically developed as a demonstration application for the
OpenManip framework, whereas the OpenSG application is
an independently developed viewer into which OpenManip
was integrated. The integration only took a few days and
comprised about 150 lines of code, whereas about 50 lines
are related to menue items and callbacks.

Both applications are based on the Qt GUI library. Note
that our framework could also be integrated with different
GUI libraries, e.g. Motif, X, or glut, and is not restricted to
Qt applications, although we added special support for Qt to
the OpenManip library (See Section 5). We provide config-
ure files and make files that allow for switching between the
two scene graph APIs. In the following we list the features
of OpenManip.

A transform manipulator

A selection manipulator

Light manipulators (for directional light and point light)
A material color editor

A head light editor

OpenManip provides two manipulator types: the selection
manipulator which is visualized as the bounding box of an
object and the transform manipulator demonstrated in Fig-
ure 5. To activate the manipulators the user has to select the

(© The Eurographics Association 2003.

Braitmaier, Weiler, and Ertl / OpenManip

pick mode. When an object is picked a selection manipulator
is inserted in the scene by default. An item in the manipulator
menu can be used to replace the active selection manipulator
by a transform manipulator, as it can be seen in the left im-
age of Figure 5. The same item can also be used to change
the default manipulator.

The widgets of the transform manipulator indicate the
interaction mode by changing their color when the mouse
cursor is moved over them. When the left mouse button is
clicked on one of these widgets the color changes to yellow
and the possible moving directions are displayed by arrows
as can be seen in the middle image and right image of Fig-
ure 5.

The use of the SHIFT key offers additional functionality.
These buttons can either be pressed before or after the mouse
click. SHIFT restricts the movements along one axis in order
to make positioning easier. To deactivate the manipulator the
user has to click outside of the manipulator’s area indicated
by a bounding box or a bounding sphere.

B Lighteditor X

&

\a.

Intensity _|——— |0 _ﬂz'

Update Policy

& continuous

 manual
Edit Color

Figure 6: A Qt-based editor for the manipulation of head
light parameters.

Figure 6 shows an editor for manipulating the head light
parameters. The implementation is based on the Qt widget
library. Note that the drawing area utilizes the underlying
scene graph system in order to visualize and manipulate the
head light direction. Our editor for manipulating material
properties is shown in Figure 7.

7. Conclusion

We have presented an extensible cross-scene-graph frame-
work that allows for the direct manipulation of scene graph
objects using 3D widgets. Using our framework any existing
application can easily be enhanced by manipulation func-
tionality. The framework features different scene graph sys-
tems, in particular OpenSG and Cosmo3D and can be ex-
tended to future scene graph APIs with small effort. With
our framework we have demonstrated two manipulators for
scaling, rotation and translation of objects, and discussed
customized manipulators, which are naturally supported by

(© The Eurographics Association 2003.

a clear object-oriented structure of the framework. Addition-
ally two editors for manipulating light and material proper-
ties have been shown. Unfortunately up to now we did not
have the opportunity to introduce OpenManip in a working
environment, so that we lack results for the usability. This
will be addressed by future work.

B Materialeditor -
 Amb: Ji 0 :
I Diff Ji 0 :
Preview " Spec: Ji 0 =
S

Update Policy

’70 continuous Shininess: Ji P :
 manual Tans Ji g :

Figure 7: The material editor allows for the specification of
different material aspects. e.g. ambient, diffuse and specular
color.

References

1. Eric A. Bier. Snap-dragging in three dimensions. In Proceed-
ings of the 1990 symposium on Interactive 3D graphics, pages
193-204. ACM Press, 1990. 1

2. Eric A. Bier and Maureen C. Stone. Snap-dragging. In Pro-
ceedings of the 13th annual conference on Computer graphics
and interactive techniques, pages 233-240. ACM Press, 1986.
1

3. D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Herndon,
Daniel C. Robbins, Robert C. Zeleznik, and Andries van Dam.
Three-Dimensional Widgets. In Proceedings of the 1992 Sym-
posiumon Interactive 3D Graphics, Special |ssue of Computer
Graphics, \Vol. 26, pages 183-188, 1992. 1

4. Matthias Kalle Dalheimer. Programming with Qt. O’Reilly,
Cambridge, 1999. 3

5. Kenneth P. Herndon and Tom Meyer. 3D Widgets for Ex-
ploratory Scientific Visualization. In ACM Symposiumon User
Interface Software and Technology, pages 69-70, 1994. 1

6. Joe Kniss, Gordon Kindlmann, and Charles Hansen. Inter-
active Volume Rendering Using Multi-Dimensional Transfer
Functions and Direct Manipulation Widgets. In IEEE Visual-
ization’ 01, pages 255-262, October 2001. 1

7. SGI. Cosmo3D Programming Guide, Version 1.2. SGI, Online
Dokumentation. 4

8. Trolltech. Qt C++ GUI Application Development Toolkit.
http://doc.trolltech.com/. 3

9. Josie Wernecke. The Inventor Mentor. Addison-Wesley, Read-
ing, MA, 1998. 2

10. Robert C. Zeleznik, Kenneth P. Herndon, Daniel C. Robbins,
Nate Huang, Tom Meyer, Noah Parker, and John F. Hughes.
An Interactive 3D Toolkit for Constructing 3D Widgets. In
James T. Kajiya, editor, Computer Graphics (SGGRAPH '93
Proceedings), volume 27, pages 81-84, 1993. 1

