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Abstract

In this paper, we present an adaptive hierarchical method allowing users to interact with geometrically complex
3D deformable objects based on an extended shape matching approach. Our method extends the existing multi-
resolution shape matching methods with improved energy convergence rate. This is achieved by using adaptive
integration strategies to avoid insignificant shape matching iterations during the simulation. As demonstrated in
our experimental results, the proposed method provides an efficient yet stable deformable simulation of complex

models in real-time.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Animation—

1. Introduction

Simulating 3D volumetric deformation has long been an
active topic in many research communities like computa-
tional mechanics, computer graphics, virtual reality and so
on. Many computational methods, such as the finite ele-
ment method (FEM) [CKO5, BJO5] or the mass-spring sys-
tem [THMGO04,MZS*11] have been developed to model the
dynamics of the soft objects. Among all types of methods,
the shape matching [MHTGOS5] technique turns out to be
a competitive candidate. One of the most attractive advan-
tages associated with the shape matching approach is its un-
conditionally stable integration. This method is developed
based on the position based dynamics (PBD) [BMOT13,
MHHRO07], is able to provide a fast, controllable, and
unconditionally-stable dynamic simulation. Unlike mass-
spring system, this method [MHTGOS, MC11] is essentially
a meshless method grouping the particle cloud into clusters.
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The computation associated with each cluster is independent
making the shape matching based deformable model much
more light-weight. River and James [RJ07] used overlapped
clusters (lattice) to control the stiffness of the deformable ob-
ject. Steinemann [SOGO8] extended this work with dynamic
adaptive selection of levels of details (LODs). Geometrically
complex 3D models usually have a large number of clus-
ters to capture detailed local deformation, which could lead
to a slow deformation convergence. To improve the energy
convergence rate, multigrid methods [BWD13, Miil08] have
been adopted. In this paper, we propose a novel adaptive par-
ticle cluster hierarchy. The proposed method is able to effec-
tively boost the convergency rate of the deformation energy
during the simulation with three adaptive iteration strategies
by tracking the variation of energy density and avoiding un-
necessary computations accordingly. It inherits the uncon-
ditional stability and high efficiency of shape matching ap-
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proach, and it can be seamlessly integrated within the state-
of-the-art shape matching based frameworks.

2. Adaptive Shape Matching using Cluster Hierarchy

In shape matching, each particle of the cluster is associated
with a mass, an initial position, a current position as well as a
goal position denoted with m;;, x?j, x;; and g;;, respectively
for the jth particle in the ith cluster. The quadratic defor-
mation energy/potential E; is defined as the mass-weighted
summation of square distance between current positions and
the goal positions of all particles in cluster i:
Ei =Y mij| gij—xij
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where R; € SO® and t; € R? represent the best fitting rota-
tion and the translation. We refer such computation for ob-
taining R and t of all clusters as the shape matching (SM).
We call an individual loop of performing SM and neighbor
averaging as an SM iteration. The procedure of SM iteration
is similar to the so-called local/global optimization in recent
contributions [BML*14], and it is guaranteed that each iter-
ation will monotonically reduce the deformation potential of
the entire voxel mesh. After SM iterations are completed, a
forward Euler with time step size # is followed to update the
velocity and displacement of all the particles.

In our method, a cluster hierarchy of multiple levels is
constructed. The deformable simulation begins with the SM
iteration at the top (coarsest) level. After sufficient energy
reduction is observed, the algorithm proceeds to clusters at
the next level while the results at upper level are inherited.
Afterwards, the external forces will be incorporated with for-
ward Euler at clusters of the bottom level, which triggers vi-
brational deformations due to the inertia terms and pulls the
clusters away from their goal positions. At the next time step,
the initial configuration of top-level clusters (R and t) will
be set as the the blended rotation (e.g. using Slerp [Sho85])
and translation of lower-level clusters. This procedure mim-
ics the standard V-cycle in multigrid approach [BHMO00]
and has been adopted in many existing SM-based frame-
works [SOGO0S, BWD13]. We refer this algorithm as hier-
archical shape matching (HSM).

Our framework further improves the simulation effi-
ciency. The key inspiration is that not all SM iterations play
equally important roles in shaping the deformed geometry of
the object. In fact, our experiment shows that a considerable
amount of SM iterations (over 25%) could be avoided. This
is achieved by checking three conditions during the multi-
level SM iteration, namely the termination condition, the
subdivision condition and the origination condition, which
are to be discussed in detail. Typically, the hierarchy of three
to five levels is used in our experiments. We may incorpo-
rate more overlapping particles as did in fast lattice shape

matching (FLSM) [RJ07] to further tweak the “stiffness” of
the object.

Termination Condition Following the intuition that the
SM iteration goes to the finer level when current level it-
erations do not effectively reduce the energy potential, we
evaluate the energy reduction rate r; at /th level as:

k k—1
=Y ¥, - Wi 2
7

where W ; defines the energy density of cluster i. Super-
scripts k and k — 1 indicate the SM iteration index. ¥ ; is
computed as ¥;; = f—;’z, where n; is the number of parti-
idp

cles of ith cluster and d; is the voxel size at level /. We use
a threshold value 7} is used to examine the effectiveness of
SM iteration. Iteration at current level / will be terminated
and the simulator moves to the next level when the termina-
tion condition, C; = r; < Ty, is satisfied.

Subdivision Condition If clusters at coarser level already
well capture the deformed mesh geometry, we should not
perform the iteration at finer levels. In other words, SM iter-
ation will only be applied to clusters whose energy density
is larger than some threshold 7y i.e. Cs = lPl,i > Ty, which
is named as subdivision condition. All the child clusters of
a cluster meats Cy are called active clusters. Figure 1 shows
how the clusters are evolving and the SM information are
passed as the Budda model is being bent.
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Figure 1: An example of the our SM iteration strategy. The dashed
grey arrows indicate how the SM information are passed.

Origination Condition Due to the external force, the en-
ergy potential at the next step will increase. However it is
possible that the external forces are subtle and regional, and
only alter small local deformation patterns. For instance, a
light breeze only sways the leaves of a willow tree while
its major branches remain still (Figure ). Such small devi-
ations of particles’ positions will induce larger perturbation
of energy density for clusters at lower levels (because d; is
smaller) and blindly performing complete top-down SM it-
eration could induce redundant less-effective computations
and slow the simulation performance. Based on this obser-
vation, we track the energy increase induced by forward Eu-
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ler integration at all clusters undertaking external forces' as
Y.\ — ¥, where ¥['; denotes the energy density after ap-
plying the forward Euler. The origination condition will find
a level whose energy reduction rate in previous time step is
comparable with the energy increase: Co =r; x Y ; ‘I’zi =¥
and set it as the starting level.

Algorithm 1: Adaptive shape matching.

1: 1< 0; /*11is the current shape matching level */
2. while simulation is active do

3: while / < n do

4 for all clusters at level | do

5: I_ inherit R and t from parents;

6: while /C; do

7 for all active cluster at level | do

8: I_ shape matching iteration;

9: update ry;

10: for all active cluster at level | do

11: if Cs then

12: |_ set child clusters as active clusters;
13: [ 1+1;

14: /[*now [ =n*/

15: for all clusters do

16: |_ forward Euler;

17: update surface mesh;

18: while / > 0 do

19: if C, then
20: I_ break; /* starting level of next step found */
21: else
2: |_ [+ 1—1;

Alg. 1 outlines our adaptive SM iteration strategy. Our
method differs from existing methods [SOG08, BWD13] by
not only addressing the questions of “where and when the
iteration should end?” but also answering “where and when
the iteration should start?”” which further accelerates the en-
ergy convergency.

3. Experimental Results

The proposed framework was implemented using Microsoft
Vistual C++ 2010 on a 64-bit Windows 7 PC equipped with
an Intel Xeon 2.8 GHz CPU and 6.0 GB RAM. Only single
tread was used in our experiment and reported data. Our ex-
periments use 3 models including willow tree (5k faces, 4k
vertices), elephant (85k faces, 42k vertices), and dinosaur
(123k faces, 58k vertices). Table 1 shows the detailed in-
formation of cluster hierarchy setup as well as the compar-
ative time performance. As highlighted in the Table 1, the
proposed adaptive iteration rule has a notable advantage of
efficiency over the classic HSM method.

T Since forces are applied to particles at the bottom clusters, all of
their parent clusters are also considered.
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Figure 2: Snapshots of the simulation results using NSM method
(top) and our method (bottom). Scripted forces are highlighted as
blue arrows in the figure.
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Figure 3: Energy changes over iterations of the first two time steps
of elephant model showed in Figure. 2.

Figure 4: Two haptic devices interact with the deformable dinosaur
model. Realistic results are produced even under extreme deforma-
tion.

Figure 2 shows a comparison of using our method and
the naive shape matching (NSM) approach. The forces, in-
dicated as blue arrows in the figure, are applied trying to
shake the nose of the elephant. At each time step, the surface
mesh is updated after each cluster completes just one shape
matching. Using the NSM (the top row), we can clearly see
an unnatural wave-like deformation propagation at the nose.
With our method, a more natural result is produced (the bot-
tom row). If we want to achieve the same energy reduc-
tion as the one after 15 iterations with our adaptive method,
NSM will need over 2,200 iterations. In terms of computa-
tion efficiency, classic HSM is about 190 times faster than
NSM while our method is up to 310 times faster. Table 1
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Comp. intensity (# SM iteration) Time benchmark
Model # Cluster NSM | HSM | Ourmethod | NSM | HSM | Our method
Willow tree 703/3k/10k 10.9m 35k 29k (~ 372x%) 3.81s 16ms | 11ms (~ 354x%)
Elephant 202/954/5k 6.9m 27k | 22k (~314x) | 1.86s | 10ms | 6ms (~310x)
Dinosaur 258/841/3k/17k/98k | 48m 66k | 59k (~822x) | 12.60s | 22ms | 16ms (~ 788x)

Table 1: Time and computation performance. Comp. intensity: number of SM iteration required on average at each step in order to achieve
energy convergency; Time benchmark: the average computation time simulating the 3D model for a single time step.

reports the detailed simulation performance. On average,
our method is orders-of-magnitude faster than NSM and
consistently outperforms HSM by 30 — 50%. In some ex-
treme cases (e.g. very large/subtle deformations occur), our
method could bring better performance improvement due to
the adaptive iteration strategies used. Figure 3 shows how the
deformation potential is reduced along the simulation at the
first two times steps using NSM, HSM and our method. The
curves correspond to the elephant animation shown in Fig-
ure 2. Our method is particularly good at simulating the ge-
ometrically complex model with enriched local details. The
teaser figure shows the snapshots of a willow tree swaying
in the wind. We refer readers to the accompanying video for
details, where we show three different scenarios with light,
medium and large winds. The proposed adaptive simulation
strategy is able to well accommodate various wind fields of
different intensity and natural result is produced while the
simulation is still efficient. In Figure 4, two haptic devices
participate in the interaction with the dinosaur model simul-
taneously. It can be seen that our system is rather robust even
under extreme deformations imposed by the user.

4. Conclusion and Future Work

In this paper, we present a novel system to simulate defor-
mation of geometrically complex objects based on adaptive
hierarchical shape matching. We construct a multi-resolution
hierarchy of particle clouds with three adaptive strategies to
boost the energy convergence speed while the locally de-
tailed deformation is still well captured. Our approach works
well with existing methods such as FLSM. There are many
future works that can improve the current system. First of
all, we still lack of a good representation to accurately in-
corporate elastic materials with different parameters such as
Young’s modules or Poisson’s ratio. Another promising di-
rection is to further extend our system to the networked en-
vironment in a tele-immersive virtual environment. In this
case, special cares need to be taken in order to handle the
connection stability of the network and provide a high-
quality user experience.
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