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Abstract
A good transfer function in volume rendering requires careful consideration of the materials present in a volume. In this work we
propose a graph based method that considerably reduces manual effort required in designing a transfer function and provides an
easy interface for interaction with the volume. Our novel contribution is in proposing an algorithm for robust deduction of a
material graph from a set of disconnected edges. Since we compute material topology of the objects, an enhanced rendering is
possible with our method. This also allows us to selectively render objects and depict adjacent materials in a volume.

CCS Concepts
•Computing methodologies → Machine learning approaches; Rendering; Image segmentation; Volumetric models;

1. Introduction

The necessity of creating a good transfer function (TF) goes un-
said in visualising 3D volumes. Given the fact that many real-life
medical CT/MRI volumes have a complex mix of materials, manual
TF creation becomes increasingly difficult. Numerous approaches
have been proposed for semi-automatic and automatic TF creation.
Majority of automated TF creation algorithms work with material
boundaries or interfaces. While there have been excellent feature
spaces (like intensity-gradient, and LH) to analyse material bound-
aries, these do not do justice to the interior of the materials when
it comes to visualisation. A complete visualisation must map the
interior of all materials and not just their interfaces. Motivated by
this, we propose an algorithm for deduction of the material graph
from material boundaries. Our graph generation is central to TF
creation, and provides fine control over material color and opacities.
The by-product of our pipeline is automatic background removal in
volumes, which could be difficult to achieve otherwise.

2. Related work

Automatic synthesis of transfer functions has been explored quite
well in the volume visualization community. The areas of assisted
and interactive volume exploration are also researched extensively
and many of such ideas are well summarised in the survey arti-
cle by Ljung et al. [LKG∗16]. High-dimensional TFs were intro-
duced with histograms composed of multiple features derived from
the intensity volume [KKH02, ŠBSG06, CM09]. Many approaches
have been proposed to automatically deduce higher dimensional
TFs from these feature spaces or histograms. Clustering is a pop-
ular approach to create groups of similar samples for TF creation.

† Corresponding author, e-mail: ojaswa@iiitd.ac.in

Maciejewski et al. [MWCE09] use non-parametric clustering over
intensity-gradient histogram for colour mapping and volume inter-
action. Cai et al. [CTN∗13] seek to automate the transfer function
generation process by doing colour and alpha assignment using
intensity-gradient magnitude histogram. The authors perform a his-
togram segmentation using normalized-cut and assign colors by pro-
jective mapping. In an interesting approach, Wang et al. [WZL∗12]
apply Morse theory for creating valley cells from feature space.
Their topologic approach to clustering does not depend on the num-
ber and shape of materials. The LH histogram is another robust
feature space that outlines material edges. Šereda et al. [ŠBSG06]
use hierarchical clustering technique on LH histogram space with
granularity control based on depth of the dendrogram. Further, Wang
et al. [WZL∗12] used a modified version of dendrogram for material
segmentation and feature exploration. A recent approach by Cai et
al. [CNCO17] uses self-organising map (SOM) to get a clustered 2D
topology and make graph exploration easy through simple transfer
function control.

Several approaches utilise machine learning based algorithms
other than clustering. Soundararajan and Schultz [SS15] motivate
the use of supervised classification in learning probabilistic transfer
functions. The authors compare several classification algorithms and
recommend random forests in general. Qin et al. [QYH15] propose
a voxel visibility metric based on the Gaussian mixture model and
use mathematical optimisation to to minimise distance between the
desired and the actual visibility distribution.

In this work, we suggest a graph-based framework for creation of
material definitions and volume exploration. Unlike many existing
works that focus primarily on clustering material boundaries to
deduce a transfer function, we instead create material definitions
that can map a solid material interior to a color value. Our algorithm
generates a material graph that can be used for further topologic
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analysis of the volume. With our approach, we also show robust
background removal and assignment of opacity values for interactive
visualisations.

3. Proposed approach

The main problem that we solve in this work is of robustly discover-
ing various materials in a volume and their spatial interconnectivity.
We define a materialM in a given volume to have an intensity distri-
bution V : (µ,σ) and a mean occlusion value of η. V is represented
by a gaussian of mean intensity µ and a standard deviation of σ.
The occlusion value indicates how deep inside the volume lies a
particular material, which is useful in assigning transparency values
for an effective visualisation of interior of the volume. A material
also has a shape with solid interior (with possible holes and multiple
disconnected components). We denote the boundary of a material by
∂M. Two adjacent materials share a common interface boundary I
which is part of each material boundary. Therefore, it is possible to
define the spatial interconnectivity of materials by a graph G(M,I)
with set of vertices M containing all materials (including the back-
ground material) and set of edges I containing interfaces between
pairs of adjacent materials.

At the onset, M, I, and G are unknowns. A naïve approach to
discover M could be to perform some sort of clustering or segmen-
tation on the input voxel values. In our experiments, we found that
this does not always result in well defined and consistent materials.
Instead, we first look at an initial edge set Î and simultaneously
deduce M, I, and G from it via a local optimization. An initial edge
set is accurately captured by the LH histogram proposed by Šereda
et al. [ŠBSG06]. An LH value is computed for an edge pixel by per-
forming a bidirectional traversal along the local gradient to search
for a low (L) and a high (H) value in a small neighborhood. These
low and high values are indeed samples from two adjacent inten-
sity distributions Vi,1 and Vi,2, and represent a sample from their
interface Ii. The central part of our algorithm is a robust material
deduction from Î and creation of topology in the form of a material
graph G.

3.1. Graph deduction

The initial edge set Î consists of samples from multiple interfaces.
For a large volume, these samples could be high and therefore to
keep the algorithm computationally tractable, we perform subsam-
pling of the interface set from their distribution. We define material
interfaces by clustering LH samples with the HDBSCAN [CMS13]
algorithm.

There are two primary challenges in material graph deduction
from a set of material interfaces. Firstly, a given interface only con-
veys that the two given materials are adjacent, and there exist no
explicit material connectivity. This situation arises since the mate-
rial distributions are not known yet. Secondly, material boundaries
detected by a clustering algorithm may result in repeating bound-
aries of the same interface of two materials due to noise in volume
data and subtle variations of intensities. Our graph deduction as-
sumes that the clustering algorithm provides valid material-material
interfaces and that two materials of an interface are not same. As
a consequence our algorithm does not try to collapse a detected

interface to a single material. However, similar interfaces may be
merged into one interface or similar materials from different inter-
faces may be merged together. We use the Bhattacharyya distance
metric [Bha43] in our algorithm to determine relative separation
between two material distributions. Noise and intensity variations in
our algorithm are considered by modelling material intensities with
a normal distribution.

Our algorithm looks at distances between materials of given inter-
faces to match and merge similar materials. We first create a distance
matrix D of size 2k×2k where k is the number of initial interfaces.
Di j gives Bhattacharya distance dB(Vi,V j) between any two in-
tensity distributions Vi and V j. Materials of an interface appear
consecutively in rows and columns of D and are assigned a distance
value of infinity. Distance to the same material (i.e, dB(Vi,Vi) is
also set to infinity. Thus, the distance matrix is computed as

Di, j =


∞ if i = j,
∞ if i = j−1 and i odd,
∞ if i = j+1 and i even,
dB(Vi,V j) otherwise.

A value of infinity indicates that the connectivity between such
material pairs will not be affected by the algorithm. We compute
a base distance threshold θbase as minimum of the distances of
material pairs in the initial interfaces

θbase = min
i∈{1,...,k}

{
dB
(
Vi,1,Vi,2

)}
,

We choose two multipliers ε << 1 and ζ >> 1 to define a possible
range of threshold values. A threshold θ ∈ [εθbase,ζθbase] is used to
merge materials based on D.

Our graph deduction algorithm is a greedy approach to merge sim-
ilar materials. Initially the material graph G contains disconnected
edges Î. For a particular value of threshold θ, we deduce a feasible
graph in two steps: finding materials to merge, and reconstructing
material graph. In the first step, the algorithm walks through the
distance matrix D to find out similar materials. This is performed by
creating sets of materials that are similar to each other. Such a set
may include a material from an interface, but not both materials. The
later will imply collapsing an interface to a single material. Each set
is reduced to into a single material which gives the set of materials
M. We implement the same by creating parent-child hierarchy and
then merging all children with their respective parents.

The second step constructs a valid and connected graph from M.
This is performed by merging nodes of similar materials together
and merging repeating interface edges into one interface edge. Since
each material intensity is a distribution function with its mean and
standard deviation, the resulting material intensities are computed
by a weighted average of the constituent material distributions.

3.1.1. Optimal graph search

A particular value of θ may result in a suboptimal graph configura-
tion. We search for a material graph that maximises the separation
energy

Esep (G(M,I)) = 1
|I|

|I|

∑
j=1

dB(V j,1,V j,2). (1)
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Figure 1: Log-log plot of separation energy Esep vs. distance thresh-
old θ. A robust and optimal graph is obtained by maximizing this
energy. The graphs for three values of theta indicate that an optimal
theta ensures minimal material nodes.

Intuitively, maximising Esep results in a graph that prefers fewer
but well separated interface edges. It can be seen in (1) that Esep is
directly proportional to the sum of the all edge distances in the graph
and maximising the total distance will result in a better separation
for the graph. Further, Esep does not increase with a large number
of small interface edges since the energy term represents average
interface separation in the graph. This results in a robust selection
of the material graph. Variation of Esep is shown in Figure 1 for the
Bonsai dataset.

3.2. TF design and volume visualization

We use the synthesised material graph to implicitly represent a high
dimensional transfer function. We hide complexity of TF manipula-
tion by providing the user with very few and meaningful controls
for changing appearance of the volume rendering. Our TF widget
consists of materials displayed as graph nodes with edges drawn
between adjacent materials (see Figure 2). The user can select any
node and change material color and transparency to change the
volume rendering. This is particularly useful in hiding a set of ma-
terials and displaying only a few or manually changing the opacity
for better visualization. To start with, materials are automatically
assigned visually separated colors and occlusion derived opacities.
Graphically, invisible materials are indicated with a black dot on
the corresponding graph node. By default, the detected background
material (always colored as a white node) is set to invisible to hide
it from the volume rendering.

4. Results

We apply our fully automated pipeline for graph deduction and
volume rendering on several volumetric datasets. Our real-time
GPU volume renderer is written in C++ with a Python backend.
The 3D volume datasets are obtained from The Volume Library
[Roe12]. Figure 3 shows renderings of these volume datasets along
with their voxel classification and computed material graphs. The
occlusion values are scaled to derive transparency of the voxels.

Detected background
material in white

Selected material is en-
circled

A black dot indicates
material hidden in
rendering

Widget allows chang-
ing material color
and opacity

Figure 2: Graph-based TF widget where vertices represent materi-
als and edges indicate material adjacency.

Table 1: Running times (in sec.) for various steps in the pipeline.
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Bonsai 8.69 11.23 62.83 1.51 19.19 103.46
CT Head 3.67 4.99 40.04 0.44 4.08 53.21
Engine 2.12 2.53 24.35 0.26 1.88 31.05
Mouse 4.33 4.63 32.05 0.37 4.05 45.43
Tooth 1.14 1.11 2.01 0.31 0.86 5.43

Computationally, our approach is tractable which can be seen in
Table 1 for running times. These running times are on an Intel Xeon
2.4 GHz processor with 64 GB memory.

The graph deduction algorithm itself is robust due to multi-stage
nature of the algorithm. In designing transfer functions, one of
the tedious tasks is to look for an intensity value corresponding to
the background material. We simplify and automate background
removal by detecting the same using minimum of occlusion and
intensity values and suppressing the entire background cluster. In our
renderer, we give the user flexibility to change colour and opacity of
any detected material via our simplified material graph widget. Such
a simplified interface gives semantic control to volume rendering
and hides the complexity of designing a full-fledged TF with high
dimensional controls.

We observed that classical clustering approaches applied directly
to intensity values do not provide meaningful clusters for TF cre-
ation. On the other hand, volume segmentation approaches tend to
be time consuming. Our algorithm performs local optimisation to
search for an optimal material graph which yields a robust graph
even in the presence of noise. Presented approach is near real-time
and gives a reasonable material definition. The most challenging
part of our approach is material deduction that merges and connects
interface edges. The input to this stage requires well separated in-
terface edges. A good clustering algorithm is crucial in identifying
these edges from a feature space like LH.
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Bonsai CThead Engine Mouse Tooth

Figure 3: Results of our automatic volume rendering using material graphs. For each sample data we show the original volume cross-section,
materials identified in the cross-section, deduced material graph, and a color volume visualization.

5. Conclusions

With this work, we have presented a robust approach to simultane-
ously create material definitions and their connectivity graph in a
volume. These two pieces of information are crucial in designing
high fidelity interactive TFs. Our TF creation reduces the space
of parameters involved in its design. Further our results indicate
that the algorithm is capable of segmenting the materials very well
and resolution of detection is constrained only by the amount of
subsampling performed.
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