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Abstract

We present a maximum-clearance motion planning algorithm for planar geometric models with three degrees of freedom (trans-
lation and rotation). This work is based on recent developments in real-time algorithms for computing the Minkowski sums and
Voronoi diagrams of planar geometric models bounded by G'-continuous sequences of circular arcs. Compared with their coun-
terparts using polygons with no G! -continuity at vertices, the circle-based approach greatly simplifies the Voronoi structure of
the collision-free space for the motion planning in a plane with three degrees of freedom. We demonstrate the effectiveness of
the proposed approach by test sets of maximum-clearance motion planning through narrow passages in a plane.
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1. Introduction

Motion planning has a long history of research and development,
the main results of which are very well documented in several text-
books [Brady et al. (1983), Canny (1988), Choset et al. (2005),
Latombe (2012),LaValle (2006), Lynch and Park (2017), Sacks and
Joskowicz (2010), Scwhartz et al. (1987), Thurn et al. (2006)]. The
concept of Configuration-space (C-space) is widely accepted as an
important conceptual tool for the design and analysis of motion
planning algorithms [Lozano-Pérez (1981), Lozano-Pérez (1983),
Lozano-Pérez and Wesley (1979)], not only in robotics [Sacks
and Joskowicz (2010)] but also in other motion-related applica-
tion areas such as in computer graphics, animation, games, and
virtual/augmented/mixed realities [Akenine-Moller et al. (2018)].
Nevertheless, an explicit construction of C-space obstacles in high-
dimensional space is computationally prohibitive for motion plan-
ning with more than three degrees of freedom. Sampling-based
methods (constructing probabilistic roadmaps in high-dimensional
C-spaces) are thus dominating the design of motion planning algo-
rithms in robotics [Kavraki et al. (1996), Thurn et al. (2006)].

For some special motion planning problems in low-dimensional
cases, however, a precise (and often partial) construction of C-
space obstacles produces effective solutions to the given non-trivial
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geometric problems such as continuous contact (deformable) mo-
tions [Kim et al. (2014),Kim et al. (2016)]. In a hybrid motion plan-
ner, [Foskey et al. (2001)] demonstrated that the number of random
samples can be reduced substantially by using a discrete approxi-
mation of the generalized Voronoi diagram for a 3D workspace.

In this paper, we revisit the rigid-body motion planning prob-
lem in a plane (with three degrees of freedom) with a few highly-
efficient computational tools recently developed for the process-
ing of planar geometric models bounded by G'-continuous circu-
lar arcs (called arc-splines) [Meek and Walton (1995), Meek and
Walton (1999), Sir et al. (2006)]. The computational advantages
of using these circle-based tools are rather too many to articulate
in a few words [Aichholzer et al. (2007)]. Here, we will mainly
consider the efficiency and robustness issues in the construction of
Voronoi diagrams and medial axes for planar objects with smooth
boundaries [Aichholzer et al. (2009), Aichholzer et al. (2010), Lee
et al. (2016)]. (Voronoi diagrams and medial axes are closely re-
lated to each other, as explained using some concrete examples at
the end of Section 3; thus we will use these two terms almost inter-
changeably.) In the planning of maximum-clearance motions, the
construction of Voronoi diagrams is known to be the most crucial
step [() Dunlaing and Yap (1985), Takahashi and Schiling (1989)].

Figure 1 shows two examples of medial axis construction for
planar regions bounded by (a) 2994 and (b) 3906, respectively,
cubic curvature-monotone curves (subdivided at x and y-extreme
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Figure 1: Medial axis construction for complex planar regions.

points). [Lee et al. (2016)] computed these medial axes highly ef-
ficiently, in (a) 90 ms and (b) 124 ms, respectively, which can also
guarantee the correct topology of the branching structures. Using
these medial axes, we can immediately extend the classical re-
sult of [Takahashi and Schiling (1989)] that had been developed
for maximum-clearance motion planning based on a generalized
Voronoi diagram for polygonal obstacles in a plane.

[Takahashi and Schiling (1989)] simplified the motion planning
problem by covering the robot with a small number of circular
disks. This approximation would errorneously block certain narrow
passages due to relatively large error in the disk-coverage. We can
resolve this limitation using a recent circle-based acceleration tech-
nique [Han et al. (2019)] for the construction of three-dimensional
C-space obstacles. The medial surface will then be generated for
these volumetric obstacles in the xy6-space to make the maximum-
clearance motion planning more accurate and efficient than before.

Given a set of obstacles O; and a moving object M, (i=1,---,n),
the C-space is generated by computing the following set [Lozano-
Pérez and Wesley (1979)]:

UOi®(-M)=U0;6M=U{p-q|p€0;qeMj},
where the Minkowski sum and difference are defined as follows
A®B={a+blacAbeB}, AcB={a—blacAbeB}

When the moving object M is rotated to Mg by angle 0, the corre-
sponding C-space is generated by UO; © My. (Since —Mg = Mg 1,
from now on, we will use ¢ and © interchangeably, adding 7 to 0
if necessary.) By stacking up these planar sets along the 6-axis, we
can generate the volumetric C-space obstacles in the xy0-space (as
shown in Figures 2 and 3).

For general non-convex objects, the construction of such a volu-
metric C-space had long been considered to be an extremely time-
consuming task. Using the medial axes of O; and M, in a recent
work, [Han et al. (2019)] accelerated the construction of UO; & Mg.
Figure 2 shows three examples of stacking up 3600 slices of the
planar Minkowski sums UO; @& My. The construction of all three
volumetric C-space obstacles took less than one minute. For typi-
cal application scenarios of maximum-clearance motion planning,
we use a much smaller number of 6-slices and the moving robot
M is further approximated by a rotational sweep M = UMy [Kim
and Moon (1990)], where the union is taken on a small interval

(01 © My)

(02 & My) (03 & My)

Figure 2: The Minkowski sum computation for O; & M.

" I

(a) (b)

Figure 3: Medial axis construction for planar slices of the C-space:
(a) the C-space obstacle in the xy0-space, and (b) the medial sur-
face (in green) constructed by stacking up the medial axes along
the ©-axis direction.

6 € [0,A8]. As shown in Figure 3(a), we compute N (= 21t/A6)
different slices of CO; = O; @MJ'AQ, (j=0,---,N—1), for each
obstacle O;. On each of these N slices, the medial axis for the ex-
terior of UCO; is computed [Lee et al. (2016)]. Figure 3(b) shows
a green surface that interpolates these medial axes, which is then
used as a reference medial surface for the maximum-clearance mo-
tion planning.

The start and goal configurations of a moving robot are usually
not located on the medial surface. The medial surface is dynami-
cally expanded by adding certain local visibility maps around the
start and goal configurations. The shortest path is then computed on
the roadmap built around the medial surface. In Section 3, we dis-
cuss more technical details on smoothing and optimizing the path
S0 as to maximize the clearance through narrow passages.

2. Previous Work

[Lozano-Pérez and Wesley (1979)] and [Lozano-Pérez (1981),
Lozano-Pérez (1983)] converted the collision-free path planning
problem for a moving robot among obstacles to a simplified point
navigation problem in the C-space of transformed obstacles gen-
erated as the result of Minkowski sum operations. For a rigid-
body motion in a plane, the C-space obstacles are bounded by
non-convex ruled surfaces in the xy0-space, even when the mov-
ing robot and obstacles are simple (non-convex) polygons. [Av-
naim et al. (1988)] developed the first algorithm for computing
exact C-space obstacles for planar polygons. [Milenkovic et al.
(2013a),Milenkovic et al. (2013b)] presented a robust C-space con-
struction algorithm for planar objects bounded by circular arcs.

© 2021 The Author(s)
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As shown in the examples of Figure 2, the C-space obstacles
have many self-intersections, which correspond to double or multi-
ple contacts between the robot and obstacles. By connecting these
self-intersection curves in a correct topology, [Kim et al. (2014)]
generated a roadmap for a continuous double (or multiple) con-
tact motion in an environment where objects are bounded by cl-
continuous B-spline plane curves. [Kim et al. (2016)] further en-
hanced the roadmap for a deformable robot by adding extra routes
in a partially extended C-space corresponding to the deforma-
tional degrees of freedom. The roadmap can be represented in a
compact network of curve segments. However, the construction is
quite time-consuming. [Han et al. (2019)] accelerated the compu-
tation of Minkowski sums by approximating planar objects by G'-
continuous circular arcs and filling the interior of each object with
maximum touching circles sampled along the medial axis (see the
interior circles of the four objects O, 0;,03, and M shown in Fig-
ure 2). The Minkowski sums are also bounded by circular arcs, but
not necessarily with Gl—continuity, due to the self-intersections in
the boundary curve.

[Kim and Moon (1990)] simplified the swept volume compu-
tation for a rotating object Mg (about the origin in the xy-plane)
by converting the problem to a translational motion along the 6-
axis in the r@-plane. The boundary of the rotational sweep M =
Up<g<ag Mg consists of some boundary curve segments of M and
Mg, and additionally some circular arcs generated by rotating cer-
tain critical points on the boundary of M. Starting with a moving
object M bounded by G'-circular arcs, the rotational sweep M will
be bounded by circular arcs, possibly with some sharp corners as
the result of intersections among the circular arcs from the bound-
aries of M and Mg and also those additionally generated from the
critical points of M. The sharp corners can be treated as a circular
arc of radius 0. Thus the C-space obstacles UO; © M can be gener-
ated by [Han et al. (2019)], again bounded by circular arcs possibly
with some sharp corners.

[Aichholzer et al. (2009), Aichholzer et al. (2010)] presented an
efficient and robust algorithm for computing the Voronoi diagram
and medial axis of planar regions bounded by circular arcs. Based
on the theory developed there, [Lee et al. (2016)] further accel-
erated the construction by considering curvature-monotone curve
segments. Connected sequences of G'-circular arcs with monoton-
ically increasing/decreasing radii can also be treated as such curve
segments. These results can be applied to the medial axis construc-
tion for the collision-free space in the exterior of the C-space ob-
stacles UO; © M.

3. Motion Planning Algorithm

The construction of exact C-space obstacles (in the xyB-space) is
quite time-consuming and numerically unstable even for the pla-
nar objects bounded by circular arcs. Following the slicing tech-
nique of [Lozano-Pérez (1981), Lozano-Pérez (1983)], in each re-
stricted xyB-subspace in the O-range: jAB < 0 < (j+ 1)A0, we
slightly expand the C-space obstacles O; S Mg by cylindrical vol-
umes with cross-sections O; @MjA(-L where the rotational swept
volume M = Up<g<ag Mp- (Thus M ;g is the rotation of M by an-
gle jAB.) This approximation slightly shrinks the free-space; how-
ever, the approximation error introduced in this simplification pro-
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cess is not as serious as in the case of continuous contact motion
planning such as those discussed in [Kim et al. (2014), Kim et
al. (2016)]. As a result, we essentially reduce the construction of
volumetric C-space obstacles to a simple problem of computing
N =21 /A® slices of planar C-space obstacles, for j=0,---,N —1.
On each slice, we constuct the medial axis of the planar free-space.

3.1. Roadmap construction

The construction of maximum-clearance motion path starts with
three basic components. The first and last components are projec-
tion line segments Iy and g from the start and goal configurations
(denoted as s = (x5, ys,05) and g = (xg,yg,6)) to their projections
m; and mg on the medial axes of their respective 8-slices. The main
component 7y, is the shortest path connecting the two projection
points mg and mg on the medial surface (shown as a green surface
in Figure 3(b)). Our algorithm makes local changes to the main
part ¥, so that it becomes smoother. After that, we bend the other
two components (I and lg) so that they are connected a bit more
smoothly to the main part ¥y;. In fact, this is essentially the same
as the conventional retraction method for maximum-clearance mo-
tion planning [O Dinlaing and Yap (1985), Takahashi and Schiling
(1989)]. However, there are some technical problems — the start and
goal configurations are often located in relatively open areas. The
conventional retraction methods usually start with the projections
of these configurations to the medial surface, thus increasing their
distances from obstacles. However, this may construct an unnec-
essarily long paths for the moving robot. Thus we discuss how to
add local visibility maps (around the start and goal configurations)
to the global roadmap constructed on the medial surface. Note that
these local maps are removed once the start and goal configurations
are updated for the next stage of motion planning. In the rest of this
paper, we employ the shortest path y(7), (0 <7 < 1), constructed be-
tween the start and goal configurations (s and g), on the expanded
roadmap built around the medial surface.

At the start configuration s = (xy,ys,05), we consider a vertical
line segment (passing through s) along the 8-axis: 1(0) = (xs,ys,0),
O, <0< 0;), where the rotating robot My with its center fixed
at the start location (xs,ys) makes no collision with the obstacles.
For each 6-slice (8; = jA® € [ngs]), we project (xs,ys,0;) to
(Xm;,ym;,8;) on the medial axis of the 8;-slice. In the neighbor-
hood of the projected point (xu;,ym;,0;), we sample vertices on
the medial axis and connect each of them to the configuration
(x5,¥s,0;) when certain local visibility conditions are met, namely,
when the rotated robot Mg, can translate from (xs5,ys,9;) to the cor-
responding vertex without colliding with obstacles.

The local visibility test can be done very efficiently using the
medial axis, where each vertex (x;,ym, 0 j) has at least two differ-
ent closest points on the C-space obstacles on the 6;-slice. Tak-
ing (xm,ym,0;) as the circle center and the distance to the closest
points as the radius r;,;, we can construct a maximum touching cir-
cle whose interior contains none of the C-space obstacles on the 6 ;-
slice. When the distance between (X, ym, ;) and (xs,ys, ;) is less
than the radius r,,; > 0, the linear translation of Me_,- from (xs,ys,0 j)
to (Xm,Ym,0;) is guaranteed to be collision-free. Thus the local vis-
ibility can be tested in a straightforward manner. In Figure 4, the
green area is the union of all maximum touching circles that con-
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(a) (b)
Figure 4: Adding local visibilty from the start configuration s.

tain the point (xs,ys,0;) in their interiors. The local visibility map
is generated by connecting the point (xs,s, ;) to the center of each
of the circles (corresponding to the vertices sampled).

We assume the medial surface is tesselated by sampled vertices
along the medial axis on each 0;-slice. The connection between
adjacent vertices by edges may introduce interference with the C-
space obstacles. Moreover, we also connect nearby vertices be-
tween adjacent 6 j-slices, which may introduce some interferences
as well. The interference can also be tested very efficiently using
the maximum touching circles associated with the sampled vertices
on the medial axes.

3.2. Path smoothing and optimization

Let C(¢) denote the projection of () to the xy-plane. As shown
in the examples of Figure 5 for the motion paths through narrow
passages, it is important to make the swept volume of the moving
robot smaller so that the robot can maintain maximum clearance
from nearby obstacles in both sides. The major axis of the moving
robot is almost lined up with the tangent direction C’(¢) in nar-
row passages. Thus we mainly focus on the smoothing of C(z) in
narrow passages, while making the robot orientation more or less
dependent on C’(r) and thus on the trajectory C(¢) itself. In open
spaces with relatively large clearance, the orientation control is less
important and the robot can even flip its orientation there so that
it can end up with the orientation given at the goal configuration.
Note that the orientation flipping is the result of a connected path
construction on the roadmap.

The shortest path 7, is initially constructed on the discretized
roadmap. The projected curve C(¢) is thus a polygonal path in the
xy-plane. Using the distribution of the discrete curvatures of C(t),
we can segment the curve C(¢) into several pieces, each of which is
then approximated by a G'-continuous connected sequence of cir-
cular arcs. An important advantage of using arc-splines is in the
simplicity of measuring the maximum deviation (Hausdorff dis-
tance) error between C(r) and its approximation with arc-splines,
which is quite important in applications dealing with maximum
clearance [Kim et al. (2010)].

Let Cy(s) denote the arc-spline approximation of C(), where s
is the arc-length parameterization of C,. (Note that the arc-length
reparameterization is non-trivial for general curves [Farouki and
Sakkalis (1991)]; but, it is easy for arc-splines, simply by adding
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Figure 5: Maximum-clearance paths through narrow passages.

the lengths of their constituent circular arcs.) When the moving
robot M has its major axis direction making a constant angle with
the tangent direction Cj, () of the arc-spline path, the swept volume
of M along Cy(s) can be computed using the rotational sweep vol-
ume technique of [Kim and Moon (1990)]. In particular, we can
also compute the clearances from both sides of the narrow pas-
sage quite precisely, since the rotational sweep volume of M is also
bounded by circular arcs. (Note that the rotation of M is now about
the center of a circular arc of Cy(s), but not around the center of
M.) We can maximize the local clearance by adjusting the center
and radius of each circular arc of Cy4(s) in the neighborhoods of
close proximity locations. The swept volume of M is often mini-
mized when the major axis direction of M is aligned to the tangent
direction C}(s). Thus we make the motion of M completely decided
by the arc-spline Cy(s) through narrow passages.

[Kim et al. (2010)] presented a simple technique for construct-
ing the distance field from a set of circular arcs, which is based
on the GPU hardware rendering of truncated circular cones to the
graphics depth buffer. This technique was originally developed for
an efficient computation of Hausdorff distance for measuring the
maximum deviation between two plane curves. The distance field
can also be used for accelerating the computation of minimum dis-
tances in close proximity locations. In particular, we can render
the distance fields from both sides of each narrow passage into the
GPU depth buffer and read the changes in minimum distance, while
walking along the swept volume boundary of M, for the detection
of clearance value and the corresponding location.

Figure 6 shows three examples of computing the distance field

© 2021 The Author(s)
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Figure 6: Distance fields and Voronoi cell decompositions.

(shown in the left column) and the Voronoi diagram (in the right
column) for obstalces in the plane. In the Voronoi diagrams, the
Voronoi cells for obstacles are shown in different colors. The com-
mon boundary curves of adjacent Voronoi cells are the collection of
equi-distance points to the corresponding obstacles. These bound-
ary curves belong to the medial axis for the exterior region of all
obstacles. The medial axis is the set of exterior points that have at
least two different closest points on the obstacle boundaries. The
two different closest points may be on the boundary of the same
obstacle; in this case, note that the obstacle must be non-convex.
Thus the medial axis may contain some points in the interior of
Voronoi cells for non-convex obstacles. These points are on the bi-
sector of the obstacle boundary on the concave side. By adding (or
removing) the self-bisector curves to the Voronoi diagram (or from
the medial axis), we can construct the medial axis (or the Voronoi
diagram). Thus the two concepts and their constructions are closely
related to each other.

4. Experimental Results

‘We have implemented our maximum-clearance motion planning al-
gorithm in C++ on an Intel Core 17-6700K 4.0 GHz PC with a 32
GB main memory. To demonstrate the effectiveness of the proposed
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Table 1: The construction time (in ms) for the C-space, the
roadmap, the polygonal path Y(t), and the arc-spline path Cy(s).

Examples | #Arcs | C-space  RMap Y(t) Ca(s)

Top(a) 143 1159 5001 285 114
Top(b) 297 96
Middle 32 222 2111 443 25

Bottom 187 1303 4987 910 52

approach, we have tested the algorithm to the three examples shown
in Figure 6, some motion planning results of which are also shown
in Figure 5.

We compare the result of our G'-circular motion against the
polygonal motion generated by the shortest path y(f) on the
roadmap built around the medial surface of the C-space obstacles.
Due to the self-intersection of the C-space obstacle boundary sur-
faces and the complex topology of the medial surface, the polygo-
nal motion Y(¢) has many sharp corners. Moreover, the strict con-
straint of keeping an equal distance to nearby obstacles also makes
the resulting orientation of a moving robot somewhat awkward. By
smoothing the result using G'-circular arcs, we have improved the
motion planning results while relaxing the maximal-clearance con-
straint and thus leaving slightly away from the medial surface of
C-space obstacles.

The peanut-shaped moving robot M has 4 circular arcs on the
boundary. Table 1 shows the experimental results for the four path
constructions of Figure 5 on the three examples given in Figure 6.
For the first example, there are two path constructions shown in
Figure 5(a)-(b), the results of which are reported in the two rows
of Top(a) and Top(b), respectively. In Table 1, the second column
is about the total number of circular arcs used in the representation
of obstacle boundaries in each example. The C-space construction
means the Minkowski sum computation for 360 different slices
along the O-direction, whereas the roadmap construction includes
the medial axes on 360 slices and the local visibility maps around
the start and goal configurations. The shortest path y(z) is com-
puted using Dijkstra’s algorithm, and the arc-spline path is gener-
ated quite efficiently compared with other steps. The overall motion
planning can be handled in several seconds for these examples.

5. Conclusions

In this work, we have presented circle-based geometric acceleration
techniques for maximum-clearance rigid-body motion planning in
a plane among obstacles bounded by G'-circular arcs. By con-
structing the roadmap that contains the medial axes for collision-
free spaces, we have generated an initial polygonal path that is near
optimal in the sense of maximum clearance through narrow pas-
sages. Using G'-circular arcs and circular motions around the cir-
cle centers, we have generated G'-continuous robot motions while
maintaining the maximum-clearance within a reasonable bound. In
future work, we plan to apply the circle-based optimization tech-
niques to other geometric problems.
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