
Short Paper

Hierarchical Link and Code: Efficient Similarity Search
for Billion-Scale Image Sets

Kaixiang Yang1 Hongya Wang†1,2 Ming Du1 Zhizheng Wang1 Zongyuan Tan1 Yingyuan Xiao3

1College of Computer Science and Technology, Donghua University, Shanghai, China
2Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai, China

3School of CSE, Tianjin University of Technology, China

Abstract
Similarity search is an indispensable component in many computer vision applications. To index billions of images on a single
commodity server, Douze et al. introduced L&C that works on operating points considering 64–128 bytes per vector. While the
idea is inspiring, we observe that L&C still suffers the accuracy saturation problem, which it is aimed to solve.
To this end, we propose a simple yet effective two-layer graph index structure, together with dual residual encoding, to attain
higher accuracy. Particularly, we partition vectors into multiple clusters and build the top-layer graph using the corresponding
centroids. For each cluster, a subgraph is created with compact codes of the first-level vector residuals. Such an index structure
provides better graph search precision as well as saves quite a few bytes for compression. We employ the second-level residual
quantization to re-rank the candidates obtained through graph traversal, which is more efficient than regression-from-neighbors
adopted by L&C. Comprehensive experiments show that our proposal obtains over 30% higher recall@1 than the state-of-the-
arts, and achieves up to 7.7x and 6.1x speedup over L&C on Deep1B and Sift1B, respectively.

CCS Concepts
• Information systems → Top-k retrieval in databases;

1. Introduction

Nearest neighbor search is a fundamental problem in many com-
puter science domains such as computer vision, massive data pro-
cessing and information retrieval [SDI06]. For example, it is a key
component of large-scale image search [LCL04], and classification
tasks with a large number of classes [DSHJ18].

In the last few years, two promising indexing paradigms for simi-
larity search has drawn much attention in both academic and indus-
try fields. The first one called product quantization (PQ) [JDS10]
focuses on compact codes based on various quantization methods,
by which image descriptors consisting of a few hundred or even
thousand components are compressed employing only 8-32 bytes
per descriptor.

In contrast, the graph-based similarity search paradigm offers
high accuracy and efficiency, paying little attention to the memory
constraint. For example, the successful approach hierarchical nav-
igable small worlds (HNSW) by Malkov et al. [MY18] can easily
achieve 95% recall with an order of magnitude speedup over oth-
er search methods [KGr]. Such outstanding performance, however,

† Corresponding author: hywang@dhu.edu.cn

does not come for free – it needs both the original vectors and a ful-
l graph structure to be stored in the main memory, which severely
limits the scalability.

Douze et al. take the first step to conciliate these two trends by
proposing Link&Code (L&C) [DSJ18], which represents vectors
in the compressed domain and builds a search graph using only the
compact codes of vectors. But our preliminary experiments indicate
that L&C still suffers the accuracy saturation problem.

To address this issue, we propose a simple yet effective solu-
tion that fulfills all design goals of L&C and offers much higher
accuracy and efficiency. Specifically, we employ a two-layer graph
structure, instead of a single giant one, to organize all vectors. Such
a hierarchical structure improves the graph search accuracy signif-
icantly using the same number of links as L&C. The other benefit
of this design is that we only need 2 bytes to keep track of one link
identifier if the sizes of all clusters are limited to 216, which is easy
to enforce. Considering that L&C requires 4 bytes for one link, it
saves us quite a few bytes for the compact representation of vectors.

To sum up, the contributions of this paper are:

• Through preliminary experiments we show that a hierarchical
structure of small graphs provides better accuracy than a sin-
gle giant one. Interestingly, it takes only 1/2 of the space cost

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

Pacific Graphics (2021)
M. Okabe, S. Lee, B. Wuensche, and S. Zollmann (Editors)

DOI: 10.2312/pg.20211397 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-6930-7623
https://orcid.org/0000-0002-5409-9347
https://doi.org/10.2312/pg.20211397


K. Yang & H. Wang & M. Du & Z. Wang & Z. Tan & Y. Xiao / Hierarchical Link and Code: Efficient Similarity Search for Billion-Scale Image Sets

���

���������

���������

������������
������	�
�	

�
���������

�������� ���������

Figure 1: Overview of the two-layer graph structure of HiL&C.

required by L&C for storing link identifiers and saves quite a
number of bytes for compression.
• We demonstrate that the dual residual encoding scheme offers

much less reconstruction error, suggesting better approximation
of original vectors is attained than the regression-from-neighbors
strategy adopted by L&C.
• We introduce a hierarchical graph-based similarity search

method with dual residual quantization (HiL&C), which takes
full advantage of the precious memory budget. Extensive exper-
iments show that our proposal achieves the state-of-the-art per-
formance. To be specific, HiL&C attains 90%+ 1-recall@10 on
two billion-sized benchmarks at the cost of 10ms per query in
the single thread setting.

The paper is organized as follows. After a brief review of related
works in Section 2, Section 3 presents the comparison of different
design alternatives. We introduce our approach in Section 4 and
evaluated it in Section 5, Then we conclude.

2. Related Work

Consider a set of n vectors X = {x1, · · · ,xn} ⊂ Rd and a distance
measure d : Rd ×Rd → R, we focus on the problem of finding the
nearest neighbors NX (y) ⊂ X of a query y ∈ Rd , that is, identi-
fying a set of elements {x} that minimize the distances d(y,x). We
routinely consider the case d = `2, which is of high interest in com-
puter vision applications.

Quantization-based methods. Product Quantization (PQ) [JD-
S10] partitions the original high-dimensional vectors x∈Rd into m
d
m -dimensional subvectors x =

[
x1, ...,xm

]
. Then PQ encodes these

m d
m -dimensional subvectors using m different subquantizers qi(x),

each of which is associated with a codebook ci. Therefore the final
codebook C is the Cartesian product of the m sub-codebooks

C = c1× ...× cm

Each codebook includes s codewords (centroids), where s is typ-
ically set to 256 in order to fit a codeword into 1 byte. Thus, a com-
pressed vector occupies only m log(s) bits. To process a query, all
vectors are reproduced on-the-fly by consulting the codebooks and
their distances to the query are evaluated to get the best answers.

The idea of re-rank with source coding is proposed in [JT-
DA11] to refine the hypotheses of a query with an imprecise post-
verification scheme, i.e., a first-level quantizer produces an approx-
imate version of the vector, and an additional code refines this ap-
proximation.

Graph-based methods. Graph-based methods are currently the
most efficient similarity search method, not considering the main
memory constraint. Malkov et al. [MY18] introduced an hierarchi-
cal navigable small world graphs (HNSW), one of the most accom-
plished graph-based search algorithms. The main idea of HNSW is
distributing vectors into multiple layers and introducing the long-
range links to speedup the search procedure. Empirical study shows
that HNSW exhibits O(logn) search complexity, which is rather
appealing in practice. A recent proposal named NSG outperforms
HNSW by constructing the so-called monotonic relative neighbor
graph [FXWC19]. Quite a number of graph-based algorithms are
proposed in the last few years and we would like to refer readers to
[ZPZ∗19, RZL20]for more details.

Link&Code. HNSW requires to store both the original vectors
and the graph index in main memory, which jeopardize the scala-
bility. In contrast, PQ-based methods supports billion-scale dataset-
s but suffer the accuracy saturation problem. Douze et al. [DSJ18]
introduced Link and Code (L&C) to offer a compromise between
approaches considering very short codes (8-32 bytes) and those not
considering the memory constraint. Specifically, L&C encodes the
vectors using PQ-based methods and organizes them with a single
HNSW graph. It is demonstrated that L&C beats the state-of-the-art
on operating points considering 64-128 bytes per vectors.

3. Motivations

This section presents several studies that have guided the design of
our approach introduced in Section 4. First, we focus on how the
size of dataset affects the performance when the number of neigh-
bors per vector on the base layer of HNSW are fixed and relative-
ly small. Then we demonstrates the superiority of the hierarchi-
cal graph structure consisting of a number of small subgraphs over
L&C. This leads us to favor dual residual quantization over quan-
tized regression method adopted by L&C.

3.1. The impact of dataset size on accuracy

Due to the limited memory budget, L&C can only use a relatively
small number of links pointing to the corresponding approximate
neighbors for each point. We first examine the impact of dataset
cardinality on the performance of L&C for a fixed number of links,
which is set to 7 by default on the base layer of graph structure. All
these evaluations are performed on Sift10K, Sift1M, Sift10M and
Sift100M datasets, where Sift10K consists of the first 10K descrip-
tors of Sift1B dataset, and so on and so forth.

We select standard parameter settings for vector quantization and
regression coefficient encoding, where OPQ32 (32 bytes) is used
for the first-level vector approximation and the regression coeffi-
cient takes 8 bytes per descriptor. Figure 2 reports the accuracy as
a function of the search time for different datasets. The plot shows
that 1) the accuracy increases as more search time is taken but tend-
s to saturate because of the existence of reconstruction error; 2)

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

82



K. Yang & H. Wang & M. Du & Z. Wang & Z. Tan & Y. Xiao / Hierarchical Link and Code: Efficient Similarity Search for Billion-Scale Image Sets

0 1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8
ac
cu
ra
cy
(re
ca
ll
1@

1)

search time(ms per query)

10K
1M
10M
100M

Figure 2: Accuracy vs. search time. 10K means the first 10 kilo
descriptors of SIFT1B dataset, and so on and so forth.

smaller the dataset is, higher the accuracy will be. Since the mem-
ory footprint for quantization is identical for all evaluations, one
can see that the accuracy is negatively correlated with the size of
datasets for a fix number of links per vector. This motivates us to
consider a set of small subgraphs rather than a big one.

The other benefit of using small subgraphs is that we could re-
duce the memory cost for storing graph links. In the original im-
plementation of L&C, each neighbor identifier occupies 4 bytes to
support billion-sized address space. Suppose we somehow could
partition the big dataset into a set of small ones, of which the cardi-
nality is less than 216. Then, only 2 bytes are enough to store each
neighbor identifier, reducing the space cost by half. This saves us
quite a few bytes for longer compact representation of vectors given
the limited memory budget.

3.2. A big graph or a set of small subgraphs?

The previous experiment shows that using a set of small graph-
s might be promising in improving the accuracy and reducing the
memory occupation for graph links. Inspired by IVFPQ [JTDA11],
we design a hierarchical structure as illustrated in Figure 1 . The
top layer is a standard HNSW graph, of which vertices are the cen-
troids obtained by employing the K-means algorithm over the w-
hole dataset. Please note that these centroids are not quantized, i.e.,
the original centroid vectors are used to build the top layer graph.

Suppose we have K clusters in hand, then we use L&C to index
vectors in each cluster and all these K L&C graphs constitute the
bottom layer. A pointer is associated with each centroid in the top
layer, following which one can visit its corresponding L&C graph.
We call such an index structure the hierarchical graph (HG).

We use Sift100M to evaluate the performance of the standard
L&C and HG. Particularly, a single big graph is constructed follow-
ing the L&C index building strategy. For HG, we first use K-means
to partition Sift100M into 5000 clusters, enforcing the size of each
cluster is less than 216. A HNSW graph is built using these 5000
centroids, and then L&C is applied for each clusters to build 5000
L&C subgraphs. For both L&C and HG the parameter settings are
identical, where the numbers of links are set to 7 and OPQ32 (32
bytes) is used for vector approximation.

To answer a query, L&C traverses the graph, evaluates the dis-
tances between query y and reconstructed vectors in the candidate
set, and outputs the best results after the refinement stage. Since
HG owns a two-layer index structure, it starts the search procedure

1 100.5 2 5
0.30

0.35

0.40

0.45

0.50

ac
cu
ra
cy
(re
ca
ll
1@

1)

search time(ms per query)

L&C
HiL&C

Figure 3: L&C vs. HG on SIFT100M: accuracy as a function of
the search time.

by traversing the top-layer HNSW graph first, and identify k∗ cen-
troids that are closest to y. Then, the corresponding k∗ L&C sub-
graphs are searched and the results from each subgraph are merged
into a temporary candidate set, in which the closest vectors to y are
chosen and output as the final answers.

We adjust the number of visited L&C subgraphs, i.e., k∗, to make
the search times are identical for both L&C and HG. Figure 3 re-
ports the accuracy as a function of search time for both methods.
As one can see, HG provides much higher accuracy than L&C with
the same time cost. The reasons are 1) the k∗ clusters already cover
most nearest neighbors of y, and 2) recall increases as the dataset
cardinality decreases for a fixed number of links as discussed in
Section 3.1.

4. Hierarchical link and code with dual residual encoding

In this section, we introduce our approach named hierarchical link
and code with dual residual encoding (HiL&C). It uses a hierar-
chical graph structure and two-level residual quantization to build
an index that scales to billion-sized datasets for efficient similarity
search. After describing an overview of our indexing structure and
search procedure, we present the detailed indexing and search al-
gorithms of HiL&C. Finally, we conduct an analysis to discuss the
trade-off between connectivity and coding for fixed memory bud-
get.

4.1. Overview of the index structure

Hierarchical graph-based structure. Motivated by the discussion
in Section 3.2, we employ a two-layer HSNW index structure as
illustrated in Figure 1, except that we modify it so that it work-
s with our data partitioning and dual residual encoding strategies.
To be specific, each vector is stored in a cluster centroid plus com-
pact code format, but the Add and Query operation are performed
using asymmetric distance computation [JDS10]: the query vector
to insert is not quantized, only the vectors already having been in-
dexed are.

Vector approximation. All vectors are first partitioned into K
clusters via the K-means algorithm, and the K corresponding cen-
troids are inserted into the top-layer graph and stored in the original
vector format. Please note that the number of clusters is rather small
compared with the dataset cardinality, and thus is not a dominating
factor of the index size. After subtracting each vector from its cor-
responding centroid, all first-level residuals are compressed with a

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

83



K. Yang & H. Wang & M. Du & Z. Wang & Z. Tan & Y. Xiao / Hierarchical Link and Code: Efficient Similarity Search for Billion-Scale Image Sets

coding method independent of the structure. Formally, it is a quan-
tizer, which maps any vector x∈Rd 7→ q(x)∈ C, where C is a finite
set subset of Rd meaning that q(x) is stored as a code. Although
vector residuals are assigned to different bottom-layer subgraphs,
they share the same first-level codebook for coding and decoding.

Candidate refinement. Recall that HiL&C adopts a two-stage
search strategy similar to [DSJ18, JTDA11]. To re-rank a short-
list of potential neighbor candidates, we compute the second-level
residual for each vector and compress them using the other quantiz-
er. To answer a query more precisely, the short-list of candidates are
re-ranked using the vector estimation reconstructed on-the-fly from
their second-level compact code. This trades a little extra computa-
tion per vector for better accuracy.

It is worth noting that HiL&C is a more generalized index-
ing framework for similarity search than L&C. Actually, if we set
K = 1 and replace the second-level residual encoding with the re-
gression method for candidate refinement, HiL&C will reduce to
L&C.

4.2. Algorithm description

This subsection presents the details of the indexing and query pro-
cessing algorithms of HiL&C.

The algorithm for building a HiL&C index.

1. Learning K clusters on a training dataset using K-Means and
insert all centroids into the top-layer HNSW graph. The value
of K is chosen judiciously to make the sizes of all clusters are
smaller than 216. For example, K is set to around 40000 for the
billion-scale datasets in our experiment setup. Each x ∈ X is
assigned to its closest centroid qc(x).

2. For all vectors, the first-level residuals r1(x) are computed by
r1(x) = x− qc(x). After learning the first-level PQ quantizer
qr1(·) with a sample set of r1(x), we insert r1(x) into its corre-
sponding HNSW subgraph, where r1(x) is stored in the compact
form of qr1(r1(x)). Please note that we use the internal ID of x
rather than the global one to store the neighbor identifier in the
subgraph. This design saves two bytes per link. To map an in-
ternal ID to a global one during query processing, we maintain
a lookup table for each subgraph, which occupies extra 4 bytes
per vector.

3. To re-rank the short-list of potential candidates, we learn a
second-level PQ quantizer qr2(·) with a sample of second-
level residuals r2, which is computed by r2(x) = x− qc(x)−
qr1 (r1 (x)). Similarly, the codebook is shared by all r2(x).

The algorithm for similarity search.

1. To get the nearest neighbors of a query vector y, HiL&C starts
the search by traversing the top-layer HSNW graph and return
k∗ closest centroids to y. The residual r1(y) = q−qc(y) is com-
puted for each of the k∗ subgraphs. k∗ is an important parameter
by tuning which we can trade speed for accuracy.

2. For each of the k∗ subgraphs, we perform the graph-based sim-
ilarity search using r1(y) and get t best answers. The first-level
residuals r1(x) of the results are reconstructed on-the-fly by first

bytes/vector R1 R2 recall@1 @10 @100

16 16 0 0.416 0.834 0.887
8 8 0.408 0.735 0.833

32 32 0 0.593 0.886 0.891
16 16 0.624 0.874 0.886

64 64 0 0.749 0.897 0.897
32 32 0.783 0.890 0.891

Table 1: Trade-offs for allocating bytes to quantizers for the first-
level and second-level residuals on SIFT1M.

0 8 16 24 32 40 48 56 64

28 24 20 16 12 8 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of graph links per vector

ac
cu
ra
cy
(re
ca
ll
1@

1)

code length (bytes)

k*=1
k*=5
k*=8
k*=10

Figure 4: Performance on Deep1M by varying the number of links
for a fixed memory budget of 64 bytes.

consulting the lookup table to map the internal ID into the glob-
al one, and then approximated using the corresponding compact
code.

3. The short-list of potential candidates consists of all k∗ ∗ t result-
s obtained in Step 2. The second-level residual r2(x) are used
to re-rank these candidates. Specifically, the distance between
y and x in the short-list is computed as d (x,y) = ‖y− qc (x)−
qr1 (r1 (x))− qr2 (r2 (x))‖. We select the best results based on
d (x,y) as the final answers.

4.3. Memory allocation trade-offs

In this subsection, we analyze HiL&C when imposing a fixed mem-
ory budget per vector. Four factors contribute to the marginal mem-
ory fingerprint: (a) the number of graph links per vector (2 bytes per
link); (b) the code used for the first-level residual approximation,
for instance OPQ32 (32 bytes); (c) the R2 bytes used by the refine-
ment method to re-rank the short-list of candidates; (d) the lookup
table mapping internal ID to the global ID (4 bytes per vector).

Since the memory occupation for the lookup table is fixed, we
only focus on the compromise among the first three factors next.

Linking vs Coding. We first study the impact of the number of
links on the performance of HiL&C. Note that increasing the num-
ber of links means one has to reduce the number of bytes allocated
to the compression codec. Figure 4 illustrates the trade-off using a
simple example on Deep1M with R2 = 0. We consider all possi-
ble setups reaching the same budget of 64 bytes(the lookup table
is not included), and report results for several choices of k∗, which
controls the total number of distance evaluations. t is set to 150 by
default.

One can observe a clear trade-off enforced by the memory con-
straint. The search is ineffective with too few links, as the search

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

84



K. Yang & H. Wang & M. Du & Z. Wang & Z. Tan & Y. Xiao / Hierarchical Link and Code: Efficient Similarity Search for Billion-Scale Image Sets

graphs are too sparse to offer high accuracy. On the contrary, the
precision is also crippled by the large quantization error, when the
memory budget allocated to compression is not enough. Examin-
ing more subgraphs shifts the curves upwards, meaning improved
accuracy at the cost of more time consumption.

First-level approximation vs refinement codec. We now fix
the number of links to 6 and consider the compromise between
the number of bytes allocated to the first-level and second-level
residuals under fixed memory constraint. Recall that the first-level
residual is used to generate a short-list of potential candidates and
the second-level quantization is used for the re-rank procedure. We
denote the number of bytes allocated for them by R1 and R2, re-
spectively. The number of subgraphs examined are fixed to 5.

Table 1 shows that the effectiveness of refinement procedure de-
pends heavily on the amount of memory budget. When the total
number of bytes per vector is very small, say 16, allocating bytes
to the second-level residual codec hurts recall at all ranks listed,
i.e., recall@1, @10 and @100. We have investigated the reason for
this observation, and discovered that 1) 16 bytes are essentially not
enough to obtain precise approximation of the first-level residuals,
considering the size of the dataset; 2) the reconstruction error of
the first approximation increases dramatically when decreasing R1
from 16 to 8.

The picture is totally different if the memory budget is more suf-
ficient, which is the operating point we are interested in. For exam-
ple, in the case of 64 bytes per vector, allocating these bytes evenly
to the two-level residual codecs improves recall@1 significantly
but hardly affects recall@10 and @100, compared with R2 = 0.

5. Experiments and analysis

In this section we present the experimental comparison of HiL&C
with several state-of-the-art algorithms. All experiments are carried
out on a server with E5-2620 v4@2.10GHz CPU, 256GB memory
and 2TB mechanical hard drive.The accuracy is measured as the
fraction of cases where the actual nearest neighbor of the query
is returned at rank 1 or before some other rank, say recall@10.
Following the methodology in [DSJ18], the search time is obtained
with a single thread and given in milliseconds per query.

5.1. Baselines and algorithm implementation

We choose Inverted Multi-Index [BL14b] (IMI) and L&C as
two baseline methods because most recent works on large-
scale indexing build upon IMI [BL16, BL14a, DJP16, KA14],
and L&C outperforms IMI for most operating points as re-
ported in [DSJ18]. We use the implementation of Fais-
s(https://github.com/facebookresearch/faiss) (in CPU mode) as the
IMI and L&C baselines. All results are obtained using the optimal
parameters selected by automatic hyperparmeter tuning for them.
HiL&C is implemented using the same code base of Faiss as L&C.
OPQ is used to facilitate the encoding in both levels. By default,
we set K = 40000 and t = 150 for billion-sized datasets.

The indexing cost is an important factor for real applications. It
takes much less time for HiL&C to build the index compared with
L&C (20 vs. 28 hours on SIFT1B and 28 vs. 34 hours on DEEP1B).

1 100.5 2 5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
ee
p1
B
ac
cu
ra
cy
(re
ca
ll
1@

1)

search time(ms per query)

IMI(2x14,PQ96)
L13&C2x14+PQ40 M=8
HiL18+PQ48 R2=0
HiL18+PQ48 R2=16

(a) The performance on Deep1B for recall@1

Figure 5: Performance comparison of HiL&C, L&C and IMI on
Deep1B.

1 100.5 2 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Si
ft1
B
ac
cu
ra
cy
(re
ca
ll
1@

1)
search time(ms per query)

IMI(2x14,PQ64)
L7&C2x14+PQ32 M=8
HiL10+PQ40 R2=0
HiL10+PQ40 R2=8

(a) The performance on Sift1B for recall@1

Figure 6: Performance comparison of HiL&C, L&C and IMI on
Sift1B.

The main reason is that building multiple small graphs is cheaper
than constructing a giant one.

5.2. Empirical evaluation on billion-sized image sets

We perform all the experiments on the two publicly available
billion-scale datasets, which are widely adopted by the computer
vision community:

1. SIFT1B [JTDA11] contains 1 billion 128-dimensional SIFT
vectors, where each vector requires 512 bytes to store.

2. DEEP1B [BL16] consists of 1 billion 96-dimensional feature
vectors extracted by a CNN, where each vector occupies 384 bytes.

Both datasets come with a set of 10,000 query vectors with pre-
computed ground-truth, as well as a set of unrelated training vec-
tors to learn the codebooks for the quantizers. IMI codebooks are
trained using 2 million vectors, and the regression codebooks of
L&C are trained using 250k vectors and 10 iterations. The code-
books of HiL&C are learned using the same training set as L&C.

For encoding, all three methods use 104 bytes per vector for
Deep1B and 72 bytes per vector for SIFT1B. Please note HiL&C
requires only two bytes for each link, and maintains an additional
lookup table (4 bytes per vector) for ID mapping.

Figure 5 compares the performance in terms of search time vs ac-
curacy for different algorithms. As depicted in Figure 5 (a), HiL&C
is much faster than L&C and IMI for almost all operating points.

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

85



K. Yang & H. Wang & M. Du & Z. Wang & Z. Tan & Y. Xiao / Hierarchical Link and Code: Efficient Similarity Search for Billion-Scale Image Sets

SIFT1B
R@1 R@10 R@100 tims(ms) bytes

Multi-LOPQ [KA14] 0.430 0.761 0.782 8 16
OMulti-D-OADC-L [BL14b] 0.421 0.755 0.782 7 16

FBPQ [BL14a] 0.179 0.523 0.757 1.9 16
0.186 0.556 0.894 9.7 16

PolySemous [DJP16] 0.330 / 0.856 2.77 16
Link&Code [DSJ18] 0.461 0.608 0.613 2.10 72

HiL&C 0.542 0.694 0.697 2.06 72

Deep1B
R@1 R@10 R@100 tims(ms) bytes

GNO-IMI [BL16] 0.450 0.8 / 20 16
Polysemous [DJP16] 0.456 / / 3.66 20
Link&Code [DSJ18] 0.668 0.826 0.830 3.50 104

HiL&C 0.767 0.832 0.833 3.69 104

Table 2: Performance evaluation on two billion-sized datasets

For example, HiL&C achieves 6.1x and 3.1x speedup at 65% recal-
l@1 compared with L&C and IMI, respectively. Moreover, HiL&C
attains much higher accuracy, e.g., it provides around 85% recal-
l@1 using 10ms per query whereas L&C has already saturated at
65%, indicating a 30%+ gain in accuracy.

Recall@10 is an important metric to evaluate if one would like to
pay extra random access to the original data stored on the external
memory. IMI is inferior to the other two algorithms due to its low
selectivity as discussed in [DSJ18].

Figure 6 compares three algorithms on Sift1B. For most operat-
ing points, HiL&C delivers much higher accuracy than L&C and
IMI. To be specific, HiL&C is 7.7x and 1.12x faster than L&C and
IMI to attain a recall@1 of 51% (the saturation point of L&C), re-
spectively. Around 39% improvement in recall@1 is achieved by
HiL&C compared with L&C at the operating point of 10ms per
query. For recall@10, HiL&C also demonstrates the superiority
over the others. We do not report the results for recall@100 since
all algorithms exhibit the similar trends as recall@10.

5.3. Comparison with other competing algorithms

Table 2 lists the comparison of HiL&C with other results reported
in the literature. Note that HiL&C and L&C uses more memory
than others since the design goal of both methods is optimizing
the compromise between memory and accuracy. Our proposal is
very competitive when one is interested in high accuracy. The other
algorithms are either much time-consuming, or significantly less
precise. Considering recall@1, HiL&C outperforms the state-of-
the-arts by a large margin with respect to the accuracy/speed trade-
off.

Providing more memory with other methods would increase the
accuracy, but would also invariably increase the search time. Con-
sidering the increasing popularity of servers with 256G+ main
memory, our approach offers an appealing and practical solution
for most real-life computer vision applications.

6. Conclusion

In this paper, we introduced a simple yet effective approach for
efficient approximate nearest search on billion-scale datasets on a
single commodity server. The proposed method, HiL&C, adopts
the hierarchical graph index structure and dual residual encoding

to take full advantage of the limited memory budget. The search
efficiency and quantization error are both improved thanks to the
delicate design choices. Empirical study shows that HiL&C out-
performs the state-of-the-arts significantly.

Acknowledgements

This work is supported by the Fundamental Research Funds for
the Central Universities under grant number (No: 2232021A-
08), NSF of Xinjiang Key Laboratory under grant number
(No:2019D04024).

References
[BL14a] BABENKO A., LEMPITSKY V.: Improving bilayer produc-

t quantization for billion-scale approximate nearest neighbors in high
dimensions. arXiv preprint arXiv:1404.1831 (2014). 5, 6

[BL14b] BABENKO A., LEMPITSKY V.: The inverted multi-index. IEEE
transactions on pattern analysis and machine intelligence 37, 6 (2014),
1247–1260. 5, 6

[BL16] BABENKO A., LEMPITSKY V.: Efficient indexing of billion-scale
datasets of deep descriptors. In CVPR (2016), pp. 2055–2063. 5, 6

[DJP16] DOUZE M., JÉGOU H., PERRONNIN F.: Polysemous codes. In
ECCV (2016), Springer, pp. 785–801. 5, 6

[DSHJ18] DOUZE M., SZLAM A., HARIHARAN B., JÉGOU H.: Low-
shot learning with large-scale diffusion. In CVPR (2018), pp. 3349–3358.
1

[DSJ18] DOUZE M., SABLAYROLLES A., JÉGOU H.: Link and code:
Fast indexing with graphs and compact regression codes. In CVPR
(2018), pp. 3646–3654. 1, 2, 4, 5, 6

[FXWC19] FU C., XIANG C., WANG C., CAI D.: Fast approximate
nearest neighbor search with the navigating spreading-out graph. VLDB
12, 5 (2019), 461–474. 2

[JDS10] JEGOU H., DOUZE M., SCHMID C.: Product quantization for
nearest neighbor search. IEEE transactions on pattern analysis and ma-
chine intelligence 33, 1 (2010), 117–128. 1, 2, 3

[JTDA11] JÉGOU H., TAVENARD R., DOUZE M., AMSALEG L.:
Searching in one billion vectors: re-rank with source coding. In ICASSP
(2011), IEEE, pp. 861–864. 2, 3, 4, 5

[KA14] KALANTIDIS Y., AVRITHIS Y.: Locally optimized produc-
t quantization for approximate nearest neighbor search. In CVPR (2014),
pp. 2321–2328. 5, 6

[KGr] KGraph Project–https://github.com/aaalgo/kgraph. URL: https:
//github.com/aaalgo/kgraph. 1

[LCL04] LV Q., CHARIKAR M., LI K.: Image similarity search with
compact data structures. In CIKM (2004), pp. 208–217. 1

[MY18] MALKOV Y. A., YASHUNIN D. A.: Efficient and robust approx-
imate nearest neighbor search using hierarchical navigable small world
graphs. IEEE transactions on pattern analysis and machine intelligence
(2018). 1, 2

[RZL20] REN J., ZHANG M., LI D.: HM-ANN: efficient billion-point
nearest neighbor search on heterogeneous memory. In NeurIPS (2020).
2

[SDI06] SHAKHNAROVICH G., DARRELL T., INDYK P.: Nearest-
neighbor methods in learning and vision: theory and practice (neural
information processing). The MIT press, 2006. 1

[ZPZ∗19] ZHAO K., PAN P., ZHENG Y., ZHANG Y., WANG C., ZHANG
Y., XU Y., JIN R.: Large-scale visual search with binary distributed
graph at Alibaba. In CIKM (2019), pp. 2567–2575. 2

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.

86

https://github.com/aaalgo/kgraph
https://github.com/aaalgo/kgraph

