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La VALSE: Scalable Log Visualization for Fault Characterization in

Figure 1: Main user interface of La VALSE: (a) multidimensional view, (b) timeline view that features scalable ThemeRiver and arc diagram,
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(c) physical view.

Abstract

We design and implement La VALSE—a scalable visualization tool to explore tens of millions of records of reliability, availabil-
ity, and serviceability (RAS) logs—for IBM Blue Gene/Q systems. Our tool is designed to meet various analysis requirements,
including tracing causes of failure events and investigating correlations from the redundant and noisy RAS messages. La VALSE
consists of multiple linked views to visualize RAS logs; each log message has a time stamp, physical location, network address,
and multiple categorical dimensions such as severity and category. The timeline view features the scalable ThemeRiver and arc
diagrams that enables interactive exploration of tens of millions of log messages. The spatial view visualizes the occurrences of
RAS messages on hundreds of thousands of elements of Mira—compute cards, node boards, midplanes, and racks—with view-
dependent level-of-detail rendering. The multidimensional view enables interactive filtering of different categorical dimensions
of RAS messages. To achieve interactivity, we develop an efficient and scalable online data cube engine that can query 55
million RAS logs in less than one second. We present several case studies on Mira, a top supercomputer at Argonne National
Laboratory. The case studies demonstrate that La VALSE can help users quickly identify the sources of failure events and
analyze spatiotemporal correlations of RAS messages in different scales.
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1. Introduction

Resilience—the most difficult and underaddressed problem in to-
day’s high performance computing—becomes a significant issue as
the systems approach exascale. For example, in a typical petascale
supercomputer, a failure event that causes job termination could
happen every several days. Such failures arise from hardware, sys-
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tem software, file systems, power, and even the cooling system.
Large-scale scientific simulations and data analysis jobs are vul-
nerable to the errors, because fatal system errors may lead to the
unexpected termination and job failures during execution. To this
end, researchers have been investigating systems and software that
are resilient to failures. Exploring the properties and correlations
of the failure events is nontrivial; however, because of the large-
scale, complicated system architecture that involves hundreds of
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thousands of various types of modules and components, such as
processors, memory units, network modules, and power supplies.

One of the most important ways to study resilience is to per-
form posthoc analysis of the logs that record the error, warning,
and informational messages generated by different components in
supercomputers. These logs provide the key information that can
be used to understand the features of failure events and eventually
help resilience researchers improve checkpoint/restart mechanisms
and system software designs.

In this paper, we present a scalable visualization framework—
La VALSE—to help users explore and understand log data of su-
percomputers. We specifically study Mira, which is a 10-petaflops
IBM Blue Gene/Q supercomputer at Argonne National Laboratory.
The system consists of 786,432 processors, 768 TB of memory, and
24 PB of parallel file system. The interconnection of Mira is a 5D
torus network. In our visualizations, we mainly incorporate the re-
liability, availability, and serviceability (RAS) logs. The RAS logs
accumulated over five years have 55 million entries.

The objectives of La VALSE are derived from the needs of two
target user groups, resilience researchers and system administra-
tors: (1) interactively exploring tens of millions of logs and (2)
correlating errors that occur in different categories, locations, and
times. First, users need to trace the causes of failures and under-
stand error propagation through interactive exploration. With La
VALSE’s scalable visualizations, users can explore the causes of
failures with their domain knowledge. For example, an unexpected
memory error could lead to a bit flipping in the code segment of
a user application. The bit flipping may cause an instruction er-
ror, resulting in failures in functions, threads, processes, and jobs.
Second, it is important to correlate different types of errors in or-
der to understand failures. In addition to the obvious correlations
such as memory error and instruction error in the previous exam-
ple, we must be able to comprehensively identify all correlations
of different types of errors that happen in different spatiotemporal
locations.

Major challenges in designing La VALSE include (1) visual rep-
resentation of noisy and heterogeneous logs and (2) scalability of
handling tens of millions of log records for interactive visualization
and analysis.

We must design new visual representations for logs that are
noisy, heterogeneous, and with hierarchical and high-dimensional
network topologies. First, the RAS logs are so noisy that key mes-
sages can be easily obscured by using traditional visualizations.
In general, most of the RAS records are warnings and informa-
tional messages, and only 1% of the RAS records (~100K mes-
sages per year) are fatal errors. In our observation, the majority of
messages are insignificant, random, or duplicated during a burst.
Second, there are heterogeneous sources of logs incorporating jobs
and RAS. These logs have distinct data structures and reflect dif-
ferent aspects of the system. Third, the errors may be the reason
for other components in a high-dimensional, hierarchical network,
introducing a huge challenge when exploring their correlations. In
Blue Gene/Q systems, for example, compute nodes are installed on
node boards, which are located in different midplanes and racks;
compute nodes are also connected in a 5D torus network.

We must also visualize and handle log data with scalability.
Mira, which consists of ~100K components, has generated 55 mil-
lion RAS messages in the past five years. Existing visualizations are
not able to render so many messages at an interactive speed. The-
meRiver [HHNOO,HHWNO2] and arc diagrams [Wat02], for exam-
ple, are well-known tools to visualize repetition patterns over time,
but such diagrams are not scalable to tens of millions of log records.
La VALSE scales the interactive arc diagram rendering by binning
the messages over time and avoiding overplotting the machine com-
ponents with level-of-detail rendering. We must also scale data
handling to support interactive queries. Although existing online
analytical processing (OLAP) tools such as Nanocubes [LKS13]
and imMens [LJH13] can handle geospatial and multidimensional
queries, they are not directly applicable to RAS logs that contain
complex network information. Instead, we need to redesign scal-
able OLAP query engines to handle RAS log data.

La VALSE features several novel designs in both visualiza-
tion representation and data handling. We propose scalable The-
meRiver, scalable arc diagrams, and a scalable physical view to
enable interactive exploration of tens of millions of log records
through web browsers. The scalable ThemeRiver magnifies and
highlights a small volume of important log messages; the scal-
able arc diagrams reduce geometry primitives by binning logs for
fast and scalable rendering; and the scalable physical view uses se-
mantic zooming and level-of-detail rendering to visualize hundreds
of thousands of components on Mira, such as compute cards, link
chips, optical modules, and power modules. The implementation of
the web-based user interface is based on d3.js, SVG, and HTML5
Canvas. More details on the scalable visualization designs are in
Section 5.

La VALSE also features scalable querying designs. We devel-
oped a customized in-memory database to enable execution of data
cube queries for RAS logs with high dimensionality, large volume,
and complex physical and topological locations. Not only can the
query engine can run in a single machine, but it also is scalable
to distributed and parallel environments. We also use a sparse data
structure to reduce interprocess communication for scalable query-
ing. More details on scalable querying are in Section 6.

To the best of our knowledge, La VALSE is the first visualiza-
tion framework that addresses the challenge of analyzing RAS logs.
Overall, the contributions of this paper are threefold:

e A scalable log visualization framework for fault characterization
in supercomputers

o A redesign of scalable ThemeRiver and scalable arc diagrams
for visualizing tens of millions of log records

e A scalable data cube query engine for interactive queries of tens
of millions of log records

The remainder of this paper is organized as follows. Section 2
summarizes the related work. Section 3 gives an overview of the
system, followed by the description of the data. We then introduce
our scalable visualization and querying techniques in Section 5 and
Section 6, respectively. Cases studies and discussions are in Sec-
tion 7 and Section 8, respectively, followed by the conclusions in
Section 9.
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2. Related Work

We review related work in three aspects: failure log analysis, per-
formance visualization, and spatiotemporal visualization.

2.1. Failure Log Analysis

Log analysis helps understanding failures in large computer sys-
tems such as supercomputers, clusters, and clouds. The resilience
community has developed many automatic log analysis tools, yet
little has been done to understand root causes and correlations of
failures with visualization.

Automatic log analysis methods include pattern mining,
signal analyses, and correlation analyses. Event log mining
(HELO) [GCTK11], for example, is a message pattern mining
tool for extracting templates that describe event formats based on
the log files generated by large scale supercomputers. Event Log
Signal Analyser (ELSA) [GCK12] merges signal analysis con-
cepts with data mining techniques and offers an adaptive, efficient
event prediction module. An adaptive semantic filter [LZXS07] ef-
ficiently filters the duplicated messages in a log by a semantic anal-
ysis of the large amount of log messages. Many other log anal-
ysis methods such as co-analysis of RAS logs [ZYT*11], holis-
tic approaches [SB15], dependency-driven analysis [MCACI17],
LogMaster for clusters [FRZ*12], and LogDiver [MJK*15] do
not provide any visualization methods either. An exception is Lo-
gAider [DGS*17], which mines the potential event correlations in
the system logs. It explores the cross-field correlation by poste-
rior probability analysis, searches the spatial correlations by a torus
topology analysis with a midplane granularity, and mines the tem-
poral correlation. The analysis data can be plotted in LogAider by
using Gnuplot scripts, but it does not provide interactive visualiza-
tion for users. By comparison, not only does La VALSE provide a
rich set of visualization interfaces across different logs to analyze
the events interactively, but it also provides much finer spatial cor-
relation (such as node board) for users.

Limited visual exploration tools have been developed for un-
derstanding failure logs. For example, IBM provides Blue Gene
Navigator [LK13], which is designed for system administrators
to monitor the system through basic visualizations of log statis-
tics. RAVEN [PHGGI10] is another attempt to visually map vari-
ous types of RAS logs on a physical system map for Titan, a Cray
machine at Oak Ridge National Laboratory. However, none of the
existing tools supports scalable and interactive visual analysis of
RAS logs.

2.2. Performance Visualization

Our study is related to but different from performance visualization,
which aims to help high performance computing (HPC) developers
profile their software. A comprehensive review of performance vi-
sualization can be found in [IGJ* 14].

The performance visualization community has developed meth-
ods to visualize communication traffic in different network topolo-
gies, which is critical for HPC developers and administrators for
studying communication patterns [IBJ* 14, WZYK14], investigat-
ing network latencies [IGB*16], and scaling parallel applications.
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For example, Isaacs et al. developed Boxfish [ILG*12],which can
visualize the performance data in 2D and 3D torus networks. Mc-
Carthy et al. [MIB* 14] further generalized Boxfish to 5D torus net-
works. Ring layout [BGI* 12] provides another way to project high
dimensional networks, and Cheng et al. [CDJM14] further combine
parallel coordinates and ring layout for performance visualization.
In our study, we also use parallel coordinates to help users filter
compute nodes in torus networks, as explained in the following sec-
tions.

2.3. Spatiotemporal Data Visualization

Our study is related to spatiotemporal data visualization, which is
a well-studied topic in geographic information systems and visual
analytic systems. Typical examples include visualization of trajec-
tory and movement data [AA13, GWY™*11], and social media vi-
sualization [CYW™16]. A comprehensive review of spatiotemporal
visualization can be found in [AAGO03].

La VALSE uses multidimensional and spatiotemporal aggrega-
tion, or OLAP data cubes, to help users understand correlations
between attributes of failure events. Traditionally, data cubes are
implemented in and supported by relational databases, which pre-
compute every possible combination of aggregation and require
many storage and computing resources. Recently, the visualization
community has developed various light-weight data cube query en-
gines for interactive visualization, such as Nanocubes [LKS13] and
imMens [LJH13].Hierarchical data structures and screen space ap-
proximations are used to reduce the cost and to boost the perfor-
mance. In order to further scale the aggregation on large datasets,
distributed and parallel query engines are developed to support in-
teractive queries [BIM*].

In this work, we redesign a scalable data cube query engine for
La VALSE for three reasons. First, compared with geospatial visu-
alizations, the spatial dimensions, including hierarchical physical
layout of the machine and torus network addresses, are much more
complicated. The spatial dimension must be customized to meet
our analysis requirements. Second, the dimensionality in our data
(tens of variables) is much higher than the existing records (a hand-
ful of variables) in previous literature. Our engine can handle all
dimensions in RAS logs. Third, we need a distributed and parallel
solution to handle the large data and complex queries for interactive
exploration. More details on the scalable data cube query engine
design are in Section 6.

3. System Overview

The main user interface and the system design of La VALSE are
illustrated in Figure 1 and Figure 2, respectively. The main user in-
terface of La VALSE comprises multiple linked views including the
timeline view, physical view, multidimensional view, and correla-
tion view. Through the user interface, users can investigate the log
data from different perspectives, different spatiotemporal regions,
and different query criteria.

The timeline view, which features the scalable ThemeRiver and
arc diagram designs, visualizes the distributions of RAS logs and
job logs over time. All the subviews align with the time axis in the
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Figure 2: Overview of La VALSE.

horizontal direction. The job visualization on the top of the time-
line has two layers, and each layer aligns with the y-axis that en-
codes the midplanes (from RO0-MO to R2F-M1). The bottom layer
is a heatmap that shows the distributions of RAS messages over
different midplanes; the top layer visualizes machine allocations
of jobs as semitransparent rectangles. The middle of the timeline
view is the scalable ThemeRiver with sampled messages embed-
ded in the rivers. The bottom of the timeline view is the scalable
arc diagram that helps users understand time correlations of differ-
ent RAS messages. Users can browse any time period by zooming
in and brushing. More details on the scalable ThemeRiver and arc
diagram designs are in Sections 5.2 and 5.1, respectively.

The physical view visualizes the spatial distribution of RAS
messages in the time period of interest. The physical view pro-
vides a scalable level-of-detail rendering and semantic zooming
mechanism to enable interactive exploration of RAS messages on
more than 100K components in Mira. The physical view also al-
lows users to quickly explore the interconnections between com-
pute nodes. More details on the physical view are in Section 5.3.

The multidimensional views visualize the statistics of RAS mes-
sages with bar charts. Bar charts show how many RAS messages
exist for each value in the current data cube query. For example,
we show the number of INFO, WARN, and FATAL messages in
the severity bar chart, while we simultaneously show the number
of messages under different RAS log categories.

4. Data Description and Preprocessing

We briefly review the system topology of Blue Gene/Q systems,
describe the data structure of log data, and introduce the data pre-
processing for further visualization and analysis.

4.1. Mira System Topology

As shown in Figure 1(c), Mira consists of 48 compute racks (R)
and 6 /O racks (Q). The racks are organized in three rows and 18

Table 1: Attributes in RAS logs

Attribute Type #Values Example

Record ID int N/A 36212598

Message ID int 86 0x0008000B

Time time N/A 2015-02-15T22:23:08.432574Z

Severity string 3 FATAL

Component string 22 FIRMWARE

Category string 18 BQC (Blue Gene/Q Compute Card)

Description string 86 A hardware eror has been detected
by the Level 1 Prefetch unit of a
BQC.

Location string N/A ROB-M1-N15-J28

Job ID int N/A 4713291

Job Partitionf string N/A MIR-40000-73FF1-8192

Message string N/A L1P Machine Check:. ..

columns; the first 16 columns (0 to F) are compute racks, and the
last two columns (G and H) are I/O racks.

Compute racks Figure 3 illustrates the hierarchical structure of
a compute rack, which consists of two midplanes (MO and M1).
Each midplane has 16 node boards (NOO to N15) and one service
card (S). A node board further contains 32 nodes (so-called com-
pute cards). Each node connects to its neighbor nodes in the 5D
torus network. The locations of different elements are encoded in
a hierarchical manner. For example, R1A-M0-N03-JO5 is the sixth
compute card on the fourth node board in the first midplane of rack
RI1A.

I/O racks As shown in Figure 1(c), I/O racks are also organized
hierarchically. Unlike compute racks, each I/O rack contains 8 I/O
drawers (I). Each I/O drawer has 8 compute cards, which are also
encoded in a hierarchical manner.

Torus network The interconnect of the nodes (compute cards
in compute racks) on Mira is a 5D torus. The dimensionality of
the torus is 8 X 12 x 16 x 16 x 2, and each node can be mapped
uniquely to a torus coordinate.

4.2. RAS Logs

The RAS infrastructure on Blue Gene/Q systems provides the
means to record both hardware and software events occurring in
the system. Since the start of production use of Mira, there are 55
million messages totaling 21 GB.

Table 1 illustrates that each RAS message has a unique record
ID, message ID, time, location, job ID, job partition, and textual
message. Among the variables, message ID is the most important;
it determines the severity, component, category, and control actions
of the message. Blue Gene/Q systems have 822 distinct types (86
types in our data) of message IDs, which can be stored as a dictio-
nary called the RAS book. The following describes other important
variables that we consider.

Severity is informational (INFO), warning (WARN), or fatal
(FATAL). The percentage of INFO, WARN, and FATAL is
29.7%, 69.4%, and 1%, respectively. In previous studies on RAS
logs [ZYT*11,DGS*17], only FATAL messages were processed.
We instead provide a comprehensive solution to analyze and visu-
alize messages at all severity levels.

Category has of 22 different values. The most significant values

(© 2018 The Author(s)
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Figure 3: Hierarchy of IBM Blue Gene/Q systems.

Component records the RAS software component that detects
and reports the messages. The values include service related fa- 5.1. Scalable ThemeRiver
cilities (BAREMETAL), control system (MMCS), processes that

monitor the control system (BGMASTER), common I/O service
(CIOS), compute node kernel (CNK), diagnosis functions (DI-
AGS), machine controller (MC), firmware (FIRMWARE), control
net (CTRLNET), memory unit (MDUM), and Linux (LINUX).

Location records the location code of the RAS message. The loca-

95

Supercomputer

ponents that are not scalable with respect to the number of RAS
messages. We describe their redesign in the following subsections.

We redesign ThemeRiver [HHNOO, HHWNO2]—a tool that visu-
alizes trends of different input volumes—to scale to the dynamic
range of the input volumes and to highlight individual messages.
We define the dynamic range as the maximum value over the min-

imum value for a given input volume. For example, if the number

tion code is in the hierarchical format (e.g. ROB-M1-N15-J28) ex- respectively, the dynamic range is 10,000.
cept that in rare cases (0.05%) the location is undefined. We further

derive two additional variables based on the location code, includ-
ing the location type and torus coordinates. Details on the derived
attributes are in the following sections.

4.3. Definition of Levels of Detail

We define levels of detail (LOD) for elements in Mira for both vi-
sualization and analysis purposes. For the visualization of message
distributions on the machine, we must adapt the levels of detail
to the available pixels on the screen, and we must also reduce the
burden of human perception by aggregating the results into fewer
elements in the visualization results. For the analysis of message
propagation, we also need to study the patterns in different levels
of detail, such as the midplane level and the node board level.

We have defined four levels of details (LO to L.3). LO is the finest
level and contains more than 120K elements including compute
cards, link modules, optical modules, and direct current assemblies.
L1 and L2 are the node board level and midplane level, respec-

of INFO, WARN, and FATAL messages is 10,000, 5000, and 1,

Our improvement is based on two observations of visualizing
RAS logs with ThemeRiver. First, the dynamic range is limited in
ThemeRiver. In the above example, if we faithfully create a The-

meRiver with a linear scale, the single important FATAL message
can hardly be seen, as shown in Figure 4(a). Second, individual

ThemeRiver, as described below.

tively. L3 is the rack level, which contains only compute racks and
I/0 racks. Notice that the lower level always contains the elements

in the higher levels. For example, the L3 element R1C is also a W(m) = 0
member of the LO elements.

5. Scalable RAS Log Visualization

The key to achieving our analysis goals is the scalable visualiza-
tion of log data. We have identified at least three major visual com-

(© 2018 The Author(s)
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messages are not visible in traditional ThemeRiver. Both resilience
researchers and system administrators need to know the specific
RAS messages that lead to the failure. Thus, we need to redesign

First, we redesign the mapping from the number of occurrences
to the river width, in order to magnify the messages with fewer oc-
currences. In RAS log analysis, because the machine may generate
a burst of duplicated and similar messages, the number of messages
is less important than the occurrence of individual messages. That
is, for each time bin in ThemeRiver, users care more about whether
a message occurs under a certain category than how many mes-
sages occurred under this category. We thus use a logarithmic scale
to map the number of occurrences to river width W:

m=0

&)

where m is the number of messages. Based on this mapping, the
scalability with respect to the dynamic range is improved. As
shown in Figure 4(b), the FATAL message appears more promi-
nently than in the linear mapping in Figure 4(a).
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Figure 4: ThemeRiver designs in La VALSE: (a) the original ThemeRiver, (b) scalable ThemeRiver, and (c) scalable ThemeRiver with

sampled RAS messages embedded.

Second, we embed sampled messages in the river. In the inves-
tigation of root causes of failures, as shown in Figure 4(a) and
4(b), users cannot directly access the individual RAS messages
with ThemeRiver, because only message statistics are visualized.
In our design, for each time bin, we randomly sample the messages
from each category in the ThemeRiver and then plot the messages
as glyphs overlaid on the rivers. The number of sampled messages
is min{m, oW (m)}, where o is a constant related to the height of
the ThemeRiver chart. If m < aW (m), all messages in the specific
time bin and category will be shown as solid circles; otherwise only
oW (m) messages are sampled and visualized as hollow circles.
Users can further investigate the message by moving the mouse
over the glyph. Compared with Figure 4(b), the embedded glyphs
can show detailed messages, given available spaces in the rivers.

We regard our design as a scalable visualization, not only be-
cause it scales well with large numbers of messages, but also be-
cause it can emphasize details when the number of messages is
small. Based on the overview provided by the scalable ThemeRiver,
users can further zoom in on the timeline to explore the messages
until the most important messages are identified.

Although the logarithmic scale is nonlinear and does heavily dis-
tort the number of messages, the distortion is acceptable and suit-
able for our application. Based on discussions with the users, the
number of messages is usually not critical to the analysis, because
the logs usually have many duplicated noisy messages. For exam-
ple, a burst of failure messages could be generated due to a single
root cause. On the one hand, the users care mainly about the first
failure message that led to the problem, and care less about how
many follow-up messages are there. On the other hand, important
messages with few occurrences are magnified and emphasized by
the distortion.

5.2. Scalable Arc Diagram

We propose a scalable solution to render arc diagrams to help users
understand time correlations between different RAS messages. The
arc diagram, which was proposed by Wattenberg [Wat02], is used
to visualize repetition patterns in time sequences.

In La VALSE, the rationale of using an arc diagram is to make
comparisons of repeated patterns between different types of RAS
messages, which are encoded by message IDs. If two message IDs
have similar occurrence patterns, their arc shapes are also similar in

the arc diagram, and thus the two message IDs are highly correlated
in time.

Direct drawing of arc diagrams, however, does not scale with
tens of millions of messages. In the direct drawing algorithm, an
arc connects two adjacent messages with the same message ID on
the timeline. Both the storage and time complexity of the direct
drawing algorithm is O(the number of messages), but keeping and
rendering tens of millions of message in the client side are impos-
sible.

We instead design a scalable way to render arc diagrams. First,
we filter all messages that happen during the time period of interest
and then sort the messages into n bins that uniformly partition the
time, where n is the number of pixels along the timeline. For each
message ID, we create a vector with n elements. Each element is
1 if at least one message with the message ID falls into the corre-
sponding time bin; otherwise it is 0. Second, we draw a group of
arcs for each message ID based on the vector. An arc connects the
ith and jth bins if the value on i and j are 1 and all elements between
the ith and jth bins are 0. With our scalable solution, the complex-
ity of rendering is O(number of pixels ) instead of O(number of
messages), where n << m.

Our scalable arc diagram view supports various user interactions
for data exploration, including mouseover highlighting, brushing,
zooming, and panning. Mouseover highlighting enables users to
probe a message ID by moving the mouse pointer to the corre-
sponding arc without clicking, which reduces the extra action for
efficient exploration. The highlighted message ID will also be re-
flected in other views. Brushing allows users to select one or multi-
ple message IDs for interactive queries. Users can also zoom in on
and pan over the arc diagram to change the time period of interest.

5.3. Scalable Physical View

We design a scalable physical view that is capable of visualiz-
ing frequencies of RAS messages across more than 100K different
components on Mira, with LOD rendering, semantic zooming and
panning, and network topology probing. Figure 1(c) demonstrates
the user interface of the physical view, whose layout follows the
physical location of the components.

The spatial view supports semantic zooming and panning. As
shown in Figure 5, the LOD changes with the viewport during the

(© 2018 The Author(s)
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Figure 5: View-dependent and level-of-detail rendering in the spatial view: (a) midplane level, (b) node board level, and (c) compute card
level. The dashed box in (a) and (b) represents the region shown in (b) and (c), respectively. The color encodes the number of RAS messages
on each element. The colored shadows indicate the neighbors of the current element under the mouse cursor.

user interaction. We map the current zoom factor into the corre-
sponding level of detail; if the LOD changes, we update the ren-
dering results by requesting a new query. The semantic zoom also
keeps the context when zoomed in. For example, when the user
zooms into the compute card level, the upper-level racks and mid-
planes remain visible.

The spatial view also allows users to interactively probe neigh-
bors in the torus network in different levels of detail, in order to help
users investigate spatial correlations and how RAS messages prop-
agate over the network. For example, in Figure 5(a), in the midplane
level, when the mouse pointer moves over the midplane R0O9-M1,
both one-hop and two-hop neighbors, including both midplanes on
computing racks and I/O boards on I/O racks, are highlighted with
halos. Likewise in Figure 5(b) and 5(c), neighbors in the node board
and compute card levels are highlighted.

The rationale for the semantic zooming is threefold. First, it
enables users to “overview first, zoom and filter, then details-on-
demand" [Shn96] in different LODs. For example, users can first
explore how RAS messages are distributed in different midplanes
and then drill down to the node board level or compute card level.
Users can investigate how messages propagate between midplanes,
node boards, and compute cards. Second, it reduces the burden of
perception. Users have difficulty seeing the patterns, given hun-
dreds of thousands of elements. Different levels of abstraction and
aggregation are needed for users to explore the data. Third, the se-
mantic zooming avoids overflowing the rendering pipeline, because
only a small number of elements are rendered at once.

Because the LOD rendering of more than 100K geometries is
not currently supported by SVG, we use HTMLS canvas to cus-
tomize the rendering pipeline in the machine view. A hierarchi-
cal data structure is built to manage the rectangles that represent
different elements in the machine. Upon zooming in and panning,
a culling test is performed to filter all elements that intersect the
viewport; only the elements that pass the culling test are rendered.

6. Scalable RAS Log Queriying

In addition to scalable visualizations, we must also scale the han-
dling and querying of tens of millions of RAS messages. We have
developed both standalone and parallel versions of the query en-
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gines for users with different amounts of resources, as described
below.

The key to achieving interactive exploration of tens of millions of
RAS logs is a customized in-memory database implemented with
C++. The in-memory database consists of an offline data converter
and online query engine.

The offline data converter encodes all chronological and cate-
gorical variables in the RAS data into a compact and binary for-
mat, which is loaded by the query engine for fast online queries.
The data conversion of categorical variables is based on the enu-
meration of all possible values during preprocessing. For example,
locations require 10 bits, because there are at most 127,357 possi-
ble locations in the data. We use 16-bit integers for ease of access.
Likewise, users, projects, and queues are also encoded with 16-bit
integers. Variables such as severity, component, and category are
not stored because they can be directly derived from the message
ID on the fly. The storage size of the converted binary data is only
480 MB per year, which is memory efficient for even commodity
laptops.

The online engine supports fast in-memory queries, even though
it checks every single entry to determine whether the entry matches
the query. The engine is also in charge of sampling the RAS data
and returning the record IDs of the results for visualizing individual
logs in ThemeRiver, in order to further accelerate the process with
multithreading. First, we subdivide the RAS data into equal number
of entries for each thread. Second, we compute the query results
with each thread in parallel. Third, we merge the query results from
different threads into the final results.

The performance of the query engine can achieve interactive
speed for various queries. On a 2014 MacBook Pro laptop with
a 2.5 GHz Intel Core i7 CPU and 16 GB of RAM, the engine can
always return results in less than one second. Compared with Mon-
goDB with optimal settings, our engine typically runs 10 to 100
times faster. Because the performance varies for different queries,
a comprehensive performance study is not available. We instead
conducted benchmarks for several arbitrary queries to verify the
conclusion. For example, for the simple query {location=ROB-M1-
NO06-J00, component=FIRMWARE}, MongoDB returns the results
in 31.210 seconds, while our search engine returns the full results
in 0.78 seconds.
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Figure 6: Demonstration of daily message count based on 5-year
MIRA RAS log.

To further improve the user experience for interactive queries,
we implemented a distributed and parallel query engine to boost
the performance. We used the MPI programming model to imple-
ment the query engine: RAS data are evenly partitioned into dif-
ferent processes, and then each process queries the corresponding
data independently. After the independent queries, query results are
summed up, gathered, and stored in the root process with parallel
reduction operations.

7. Example

We demonstrate three failure examples that are identified and char-
acterized with La VALSE.

Overview of five-year data Figure 6 presents an overview of
the daily message count based on MIRA RAS log through the five-
year period. One can clearly observe a typical zigzag pattern about
the daily number of FATAL messages in the five years, and the
daily FATAL message count spans a large range—from O to 1 mil-
lion. By contrast, the daily amounts of INFO and WARN messages
do not exhibit such a clear zigzag pattern because a large number
of such messages (tens of thousands of messages or even more)
are always generated every day. One can also learn from the figure
that the daily count of FATAL messages generally is not correlated
with the daily count of other types of severity messages (i.e., INFO
messages and WARN messages). This observation implies that the
FATAL events may not be closely related to other severity mes-
sages.

Exploring periodical patterns As shown in Figure 7, fatal
messages with the event ID 0004010B may occur every 14 days for
a certain period starting from February 8, 2015. One can also ob-
serve that this event ID likely appears in the period with peak fatal
message count. All these observations help understand the occur-
rence of fatal events and the periodicity.

Identifying significant attributes involved with fatal severity
LA VALSE can also present the distribution of fatal messages across
different values of fields such as components, categories, location
types, based on the user’s interactive choices customized online.
Specifically, when a user selects one or more particular severity
levels, the visualization page will immediately show the distribu-
tion of the corresponding messages on different fields. In Figure 8,
for example, the user clicked on the FATAL severity with the entire
5-year period, so the component panel presents the volumes of the
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Figure 7: Demonstration of daily message count based on half-
year MIRA RAS log and periodic occurrence of particular fatal
messages.
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Figure 8: Demonstration of components, categories, and location
types with FATAL messages.

FATAL messages on different values overall. Based on this visu-
alization, one can clearly see that the FATAL messages may never
happen to some components such as Blue Gene Performance Mon-
itor (BGPM) and Memory Unit (MUDM). We can also observe
that MC and MMCS are the most error-prone components and the
FATAL messages fall into many different categories. All such ob-
servations can help system administrators narrow the range of the
diagnosis of errors.

Investigating the root cause of a burst of network errors
One of the failure events that we explored with La VALSE is a
burst of network errors that happened on December 14, 2015. As
shown in Figure 9, a user uses the multiple linked views to itera-
tively zoom on the details of a possible failure event and find the
root cause. From the overview depicted by the ThemeRiver view,
an outbreak of FATAL messages can be easily identified in Decem-
ber 2015. When we zoom into details at the minute level, from the
multidimensional view we can find out that most of the FATAL
messages belong to network device issues, such as receiver/sender
link errors. From the physical view, we can see that the errors are
distributed in a few racks that are interconnected. The timeline view
also demonstrates the how the errors are distributed over racks and
time. However, we cannot conclude that the root cause is the net-
work failure. After further zooming in on the timeline, we note sev-
eral FATAL errors at the beginning of this event, indicating that the
node board R26-MO0-N15 has one or more invalid power rail volt-
ages. Since no other RAS messages could lead to this voltage error,
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Figure 9: Burst of network errors caused by a power failure on

December 14, 2015.

Figure 10: Example of message propagation over torus network.
Red halo: one-hop neighbors of R20-MO, orange halo: two-hop
neighbors of R20-MO.

one can conclude that the root cause for the burst of network errors
is the voltage error on R26-M0-N15.

Discovering spatial correlations As shown in Figure 10,
when the user hovers on one midplane, the physical view panel
will immediately show various colors on the edges of the close
midplanes in the torus network. Red-edged midplanes indicate that
they have only one hop difference from the selected midplane, and
orange-edged midplanes mean two hops in the network. Through
the visualizations, we can clearly see the correlations between mes-
sage occurrences and the number of hops from the selected mid-
plane. We can also see that the error seems to propagate from the
selected midplane through the torus network, such that the system
administrators can infer that the source of the errors is likely related
to the network component.

8. Discussion

Although the current implementation of La VALSE is tailored for
Mira, the scalable design of La VALSE has generality and thus can
be extended to analyze logs in other systems, with modifications
depending on the architecture.

For IBM Blue Gene systems, the extension is straightforward

and requires the least effort. First, the system hierarchy (e.g., rack,
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Table 2: An example CSV file that defines the physical layout of a
system. For Blue Gene systems, the CSV file can be automatically
generated from a template by specifying the number of columns and
rows. For other systems, users need to configure the LOD and ge-
ometry of each individual component of the target system, in order
to explore the distribution of logs with La VALSE.

1D LOD X y width  height text
R0O0-MO 2 4 12 30 41 R00-MO
R0O0-MO-S 1 25 13 8 3 S
R00-M0O-NOO 1 4 17 7.5 9 NOO

midplane, node board, and compute card hierarchy) of different
IBM Blue Gene system is similar or even identical. Users can sim-
ply write down the specifications of a Blue Gene systems in the
configuration file, such as the number of rows and columns of both
compute and I/O racks in the system. Second, RAS logs of differ-
ent Blue Gene systems follow almost the same protocol. As long as
the system specification is given, users can directly import the RAS
log data into La VALSE query engine without any additional effort.

For other systems, additional efforts are necessary in order to
define the system hierarchy and the properties of logs. The map-
ping between individual components and geometries in the physical
view must be defined in a CSV file, as exemplified in Table 2. The
logs also need to be categorized by severity, location type, and other
properties for the interactive exploration with data cubes. Such in-
formation is directly available in mainstream supercomputing sys-
tems. For example, Cray systems have similar types of RAS logs to
that of Blue Gene systems. One can redefine the data dimensions in
the query engine, and then import the logs for interactive queries.

9. Conclusions and Future Work

The objective of La VALSE is to provide a scalable user interface
for exploring large amounts of log data in supercomputers. The
scalability is reflected in two aspects: visualization and querying.
In the visualization aspect, we designed scalable versions of The-
meRiver, the arc diagram, and the physical view. In the querying
aspect, we developed scalable query engines to support interactive
exploration. We demonstrated interactive exploration results of 55
million RAS logs of the IBM Blue Gene/Q supercomputer Mira.
Resilience researchers and system administrators can benefit from
La VALSE to locate root causes of failures and discover correlations
between different log messages. We provide several use cases that
are conducted by users.

In the future, we would like to generalize La VALSE to visualize
logs for other supercomputers and clusters, such as Cray systems
and Linux clusters. In addition to RAS and job logs, we plan to
add I/O logs, communication logs, and performance logs to sup-
port comprehensive analysis over the entire machine. We also plan
to incorporate new criteria to show representative messages in the
ThemeRiver. We would also like to incorporate automatic log anal-
yses into the workflow of La VALSE.
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