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Abstract
In this paper, we introduce a modified Morse potential as an alternative to the existing spring models within a massively parallel
extended Position Based Dynamics (XPBD) algorithm. To date, stretching is one of the most popular constraint types of XPBD
frameworks due to its simplicity, robustness and efficiency. However, the underneath mathematical expression of stretching
constraint does not fully represent a spring model and behaves too stiff over a certain iteration count or damping coefficient. On
the other hand, Hookean spring potential behaves softer and viscoelastic within the XPBD algorithm under the same conditions
as stretching constraint. Our modified Morse potential addresses this issue by keeping the simulation of deformable models in
between Hooke’s law and stretching constraint. To demonstrate the benefits of modified Morse potential with higher frame rates,
we develop an efficient Independent Edge Grouping algorithm for XPBD method which provides parallel processing on GPU.
We compare the simulation results of cloth and volumetric models with stretching constraint, Hookean and St. Venant-Kirchhoff
(STVK) spring potentials. We believe that our modified Morse potential is easy to implement and seamlessly fit into the existing
XPBD frameworks.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Position Based Dynamics (PBD) [MHHR07] has been a widely
used method in games, movies and medical applications. This can
be explained with its simplicity, stability and performance. PBD
formulates the physical phenomena based on the projected position
constraints and the velocities are computed by using the iterated
positions. Due to the versatile aspect of PBD, large spectrum of
position constraints were explored to simulate geometrically moti-
vated constraints, finite element models, rigid bodies or fluids. Re-
cently, [MMC16] improved the existing PBD algorithm (XPBD) by
applying a total Lagrange multiplier for general material stiffness.
In this paper, we use the XPBD technique as our general simulation
algorithm.

The stretching constraint is the most basic projected position
constraint of PBD. It simplifies the spring potential within the
Gauss-Seidel (GS) iteration portion of the algorithm. The approx-
imation of stretching constraint works fine up to a certain number
of GS iterations. However, it responds too stiff under the high GS
iteration count and dissipate energy quicker than expected under
relatively higher damping coefficients. Due to visually unpleasant
results, this fact is not desired for some arbitrary simulation cases,
such as cloth simulation. On the other hand, [BKCW14] already
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proved that the PBD algorithm is capable of simulating potential
energy density functions of hyperelastic materials. Inspired by the
approach of [BKCW14], we applied the Hookean and St. Venant-
Kirchhoff (STVK) spring potentials within the XPBD algorithm.
Under the exact same conditions of stretching constraint, Hooke’s
law produces relatively softer visual results and STVK spring po-
tential from [RLK18] behaves almost similar to stretching con-
straint.

In this paper, we modify and adapt Morse potential [Mor29] for
XPBD algorithm as an alternative spring model for 2D and 3D de-
formable object simulations. Morse potential defines the potential
energy of the diatomic molecules in the field of molecular mechan-
ics. However, direct application of Morse potential is not feasible to
produce visually pleasant results like the commonly used spring po-
tentials. Therefore, we modified the original formulation of Morse
potential and applied it within the XPBD algorithm as an alterna-
tive spring constraint. We observe that it has a great potential to
produce interactive physics simulations along with the other spring
potentials, such as Hooke’s law and STVK spring. Moreover, we
analyze the advantages and disadvantages of spring potentials and
widely used stretching constraint under collision and damping. Be-
sides, we couple them with the volume constraint to simulate 3D
volumetric models and study their behaviors. We believe that our
modified Morse potential is easy to implement similar to the previ-
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Figure 1: A piece of cloth (with 4880 edges) hangs under constant gravitational force. From left to right: Stretching Const., Hookean Spring
Const., STVK Spring Const., Our Modified Morse Pot. Const. All simulations are executed under the same conditions, such as α = 0.00001,
iteration count = 200, damping coef. varies with 0.0,0.3 and 1.0, step-size = 1/24, spring stiffness = 10.0.

ous potentials, has some advantages under some circumstances and
is a new flavor for mass-spring simulations.

XPBD method is known by its unique type of Gauss-Seidel
solver. It provides unconditional stability by the fact that projected
constraints are solved iteratively one after another and this cycle
repeats itself for a certain number of iterations. Besides, XPBD
defines the simulated model as a particle system such that each
particle is connected with each other by predefined constraints. In
this paper, edge and particle couple represents the mass spring sys-
tem. Therefore, the strict connectivity of the model limits us to di-
rectly apply the parallel processing to position based algorithms.
For that reason, we develop an efficient and straightforward algo-
rithm, "Independent Edge Grouping", to overcome this problem.
Our algorithm is an intuitive and simplified version of graph color-
ing method and provides massive parallelization on GPU.

The rest of the paper is organized as follows: section 2 describes
the related work for position-based dynamics techniques and spring
potentials. Section 3 presents the basic background and founda-
tions. Section 4 describes our modified Morse potential in detail.
Section 5 describes some additional required constraints. Section 6
presents our approach to parallelize the XPBD method. Section 7
demonstrates the results and compares with the existing potentials.
Section 8 concludes the paper.

2. Related Work

Mass-spring networks are highly employed models to simulate
elastic materials due to their straightforward theory and implemen-
tation. In practice, the inner forces are derived from the poten-
tial energy of the spring. Hooke’s law (from 1660) is the popular
spring potential for simulating dynamic systems. Early works (Ter-
zopoulos et al. [TPBF87], Breen et al. [BHW94] and Baraff and
Witkin [BW98]) employed Hookean spring potential with implicit
or semi-implicit integration techniques for cloth and deformable
objects simulations. More recently, Lui et al. [LBOK13] presented
a local/global approach for the Hookean spring potential by ex-
pressing the implicit Euler integration as an energy minimization
problem. In terms of applications, mass-spring systems are widely
used to simulate one, two and three-dimensional objects such as

hair (Selle et al. [SLF08]), cloth (Bridson et al. [BMF03]) and vol-
umetric elastic solids (Gripsun et al. [GHDS03]). A detailed infor-
mation on classical mass-spring based simulations can be found in
the survey of Nealen et al. [NMK∗06].

On the other hand, Position Based Dynamics (PBD) is a suc-
cessful technique as an alternative to force and velocity based
algorithms. Early foundations of PBD can be found in [GG94]
for rigid body simulation and in [Fau99] for deformable mod-
els. After a short time, Jakobsen [Jak01] presented the technique
of rigid and deformable body simulations in the first version of
Hitman: Codename 47 game engine. He described the Verlet in-
tegration with the direct position manipulation aspect. Müller et.
al. [MHHR07] generalized the idea of [Jak01] with corrected ve-
locities, and introduced the formal PBD algorithm. PBD defines
the potential energies as projected constraints. Goldenthal et al.
[GHF∗07] applied the constraints for their fast projection algo-
rithm. Besides, Autodesk Maya employs a unified constrained
based solver which is called Nucleus. Stam [Sta09] presented the
details of Nucleus which works similar to PBD. More recently,
Tournier et al. [TNGF15] applied second order derivatives on the
constraints in order to avoid the instabilities. Recently, Macklin et
al. [MMC16] extended the PBD algorithm (XPBD) with a total La-
grange multiplier to address the iteration count and simulation step-
size dependencies. This extension is inspired by [SLM06]. In this
paper, we use the same base algorithm as XPBD. For more detailed
information on PBD, we refer the reader to [BMM17].

Due to simplicity and efficiency, many researchers have taken
advantage of PBD to simulate solid, fluid, rigid body dynam-
ics, cloth and skin deformations. Müller and Chentanez addressed
the details for cloth and skin deformations with wrinkle meshes
[MC10], and later on they introduced oriented particles [MC11]
for rigid, elastic and plastic deformations. Kim et al. [KCMF12]
simulated inextensible cloths with long range attachments. PBD ap-
proach is also advantageous to simulate hair, fur [MKC12] and fluid
dynamics [MM13] as well. Furthermore, Müller et al. [MCKM14]
and Bender et al. [BKCW14] proved that finite element based hy-
perelastic materials can be simulated by PBD. Moreover, it is pos-
sible to see PBD algorithm in facial animation frameworks. Fratar-
cangeli [Mar12] defined a muscle and skinning system for facial
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Figure 2: A flag (with 4880 edges) blows under constant wind force. From left to right: Stretching Const., Hookean Spring Const., STVK
Spring Const., Our Modified Morse Pot. Const. All simulations are executed under the same conditions, such as α = 0.00001, iteration count
= 100, damping coef. = 1.0, step-size = 1/24, spring stiffness = 10.0.

models that incorporates with the PBD method. Cetinaslan and
Orválho [CO16] proposed a framework for local contact deforma-
tions on facial models that has employed the constrained dynamics.
Elastic rod simulations have been taking the advantage of the PBD
method. Umetani et al. [USS14] and Deul et al. [DKWB18] pro-
posed novel PBD based algorithms to simulate complex behavior
of elastic rods.

There are some novel algorithms that have addressed the perfor-
mance of PBD. Müller [M0̈8] presented a multi-grid technique to
improve the performance of the solver. Besides, two notable tech-
niques were introduced recently. One is the Chebyshev approach by
Wang [Wan15] that accelerates the iteration process during cloth
and solid simulations. The other is the graph coloring method by
Fratarcangeli et al. [FTP16] that heavily parallelizes the PBD iter-
ations. Both approaches are quite popular due to their significant
performance enhancements. In this paper, we have utilized a sim-
plified version of graph coloring algorithm which only addresses to
group the non-adjacent edges of the mesh similar to [FP14].

In this paper, we have studied and taken advantage of the pre-
vious works. We observe that the stretching constraint of PBD
technique has been used over the years without any alternative.
Although, Strain Based Dynamics [MCKM14] can be considered
as an alternative to stretching and shearing constraints, it requires
more effort for implementation. Due to the molecular mechanics
roots of XPBD method, we modify the original Morse potential
from [Mor29] and adapt it to XPBD algorithm as a novel spring
constraint. The results show that our modified Morse potential can
be considered as a new alternative spring model for the mass-spring
simulations.

3. Background

PBD [MHHR07] and XPBD [MMC16] accept the input model
as a system of interconnected particles with a given set of posi-
tion constraints. Both algorithms work in three steps: As a first
step, the predicted positions of each particle (xi ∈ R3) is com-
puted by employing an integration scheme. In the second step,

the bilateral constraint set (C(x) = 0) is solved by using an it-
erative Guass-Seidel approach in order to locate the particles to
their final positions. Lastly, the velocities are updated according
to the new particle positions. The second step can be considered
as the core of the algorithm. The major goal is to determine the
position correction of each particle (∆xi) such that bilateral behav-
ior is conserved (C(x+∆x) = 0). During this step, linear and an-
gular momentum are conserved implicitly, and the displacements
of the vertices are calculated by employing the Taylor-expansion
(C(x+∆x) ≈C(x)+∇xC(x) ·∆x = 0). Therefore, ∆x is computed
as in Equation (1):

∆xi = wi∇xiC(x)λi (1)

where wi is the inverse particle mass (1/m) and λi stands for the
Lagrange multiplier (in Equation (2)) which is obtained by substi-
tuting Equation (1) into the aforementioned Taylor-expansion:

λi =−
C(x)

∑i wi|∇xiC(x)|2
(2)

XPBD [MMC16] alters the original PBD formulation with to-
tal Lagrange multiplier in order to bring a solution to stiffness de-
pendency on simulation step-size and iteration count. In XPBD, λi
from Equation (1) is replaced with ∆λi. Moreover, ∆λi is extended
with an inverse stiffness parameter, α. As a result, the new position
update is computed as in Equation (3):

∆xi = wi∇xiC(x)∆λi (3)

where ∆λi is redefined as in Equation (4):

∆λi =−
C(x)+ α̃λi

(∑i wi|∇xiC(x)|2)+ α̃
(4)
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Algorithm 1 XPBD Algorithm
1: loop
2: xn+1 = xn +hvn +h2wi fext
3: initialize total Lagrange multiplier λ0 = 0
4: while k < iterationCount do
5: for each Constraint do
6: compute ∆λ (Eq. (4))
7: compute ∆x (Eq. (3))
8: update λk+1 = λk +∆λ

9: update xk+1 = xk +∆x
10: end for
11: k = k+1
12: end while
13: update positions xn+1 = xk
14: update velocities vn+1 = (xn+1− xn)/h
15: end loop

where α̃=α/h2, λi+1 = λi+∆λi that is computed in each iteration,
and h represents the simulation step-size. It should be noted that the
value of λi is updated incrementally for each constraint type at the
instant iteration. The XPBD process is summarized in Algorithm 1.

4. Modified Morse Potential

The main idea of our approach is to reformulate the Morse poten-
tial energy function in a way that allows us to use it as a spring
potential. Morse potential describes the energy and vibration be-
tween two atoms in molecular scale. In its simplest form [DS88],
Morse potential is defined as in Equation (5):

Emorse(x) = D(1− e−a(x−l0))2 (5)

where D and a are energy constants, l0 is the rest length and x is the
norm of the interatomic distance (||x2− x1||). Furthermore, Equa-
tion (5) is not the only representation of the Morse potential. Ac-
cording to its application domain, Morse potential can be redefined
by adding and subtracting constants. Therefore, it is possible to rep-
resent Morse potential in a different form ( [Mor29] and [GW59])
by simply subtracting the constant D from equation (5). The new
form is defined as in Equation (6):

Emorse(x) = De−2a(x−l0)−2De−a(x−l0) (6)

On the other hand, directly applying equation (5) or (6) is not
feasible due to the fact that the constants D and a contain such
small values from the atomic space. However, there exists an obvi-
ous relation between the stretching constraint and the exponential
part of Equation (5). Therefore, we simplify the Morse potential
from Eq. (5) and transform it into the known mass-spring potential
base. Our modified Morse potential as a bilateral spring constraint
is defined as in Equation (7):

Cmorse(x1,x2) = k(1− e(||x2−x1||−l0))2 (7)

where k ≥ 0 is the spring stiffness, x1,x2 ∈ R3 are the spring end-
points and l0 is the rest length. Our modification maintains the de-
sired deformations in edge directions and takes advantage of the
exponential part that produces continuous wrinkles in 2D cloth sim-
ulation cases and loads the constraint for plausible visual results in
the simulation of 3D volumetric models.

The gradients of our modified Morse potential over x1 and x2 are
actually associated with the inner forces of the spring and neces-
sary for the position updates (∆x and ∆λ) within the Gauss-Seidel
iteration of Algorithm 1. The corresponding gradients are obtained
as follows:

∇x1Cmorse(x1,x2) =−2k
e||x2−x1||(e||x2−x1||−1)

||x2− x1||
(x2− x1) (8)

∇x2Cmorse(x1,x2) = 2k
e||x2−x1||(e||x2−x1||−1)

||x2− x1||
(x2− x1) (9)

In order to obtain the final position updates, Cmorse(x1,x2) and its
gradients are plugged into equation (4) for obtaining the instant and
total Lagrange multipliers. After, the position update is computed
by employing equation (3) for each point.

5. Additional Constraints

We need to apply some additional constraints in order to preserve
the volume of the 3D volumetric models, handle the collision and
damping for overall aesthetic. We summarize these constraints as:

5.1. Volume Constraint

Bilateral volume constraint from [BMM17] is employed to con-
serve the overall volume of the 3D model. After obtaining the de-
sired surface deformation from stretching or spring potential con-
straints, the attachment of volume constraint provides the recov-
ery of the volumetric model. Although the application of volume
constraint is common in tetrahedral meshes, we provide a straight-
forward solution to apply this constraint to the volumetric trian-
gle meshes. Despite the fact the triangle does not have volume, we
compute the model’s center of mass (by assuming masses are uni-
form) for each iteration, and use that center point as the tip of each
"ghost" tetrahedron. The mathematical expression of volume con-
straint is shown as follows:

Cvolume(x0,x1,x2,x3) =
1
6

((
(x1− x0)× (x2− x0)

)
· (x3− x0)

)
−V0

(10)

where x1,x2,x3 ∈ R3 are the triangle points, x0 ∈ R3 is the center
of mass and V0 is the rest volume. The corresponding gradients are
obtained as follows:

∇x1Cvolume =
1
6

(
(x2− x0)× (x3− x0)

)
(11)
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Figure 3: Bunny model (with 12288 edges) falls under constant gravitational force. From left to right: Stretching Const., Hookean Spring
Const., STVK Spring Const., Our Modified Morse Pot. Const. All spring constraints are coupled with the volume preservation constraint. All
simulations are executed under the same conditions, such as α = 0.0001, iteration count = 50, damping coef. = 0.0, step-size = 1/24, spring
stiffness = 10.0.

∇x2Cvolume =
1
6

(
(x3− x0)× (x1− x0)

)
(12)

∇x3Cvolume =
1
6

(
(x1− x0)× (x2− x0)

)
(13)

∇x0Cvolume =−∇x1Cvolume−∇x2Cvolume−∇x3Cvolume (14)

By employing equations (4) and (3), we update the positions for
the volume preservation except x0 which is associated with the cen-
ter of mass. We assign zero to its mass which indicates that the cen-
ter of mass is locked with the infinite mass and does not have any
effect in the final position updates.

5.2. Collision and Damping

Collision: In our framework, we employ two different unilateral
collision constraints for sphere and convex object collisions. Sphere
collision (Figure 5) is defined by C(x) = R−|x− Scen| ≥ 0 where
R is the sphere radius and Scen is the sphere center. For the col-
lision of convex objects, we use the contact detection of the ar-
bitrary surfaces. This is adapted from [BML∗14]. We search the
nearest collision point p with a surface normal ns for the collid-
ing particle x. Convex object collision (Figure 4) is satisfied by
C(x) = (x− p) ·ns ≥ 0.

Damping: In dynamic simulations, damping is a significant fac-
tor to obtain the overall aesthetics. We use the damping model
of [MMC16] in which Rayleigh dissipation function is employed:
R = 1

2Ċ(x)T
βĊ(x) where C(x) is the constraint function and β is

the diagonal matrix of damping coefficients. Due to the fact that

the damping model is derived directly to the total Lagrange mul-
tiplier in XPBD [MMC16], it performs damping locally for each
position correction within the Gauss-Seidel iteration. This pro-
vides a modest performance gain when compared to the damping
of [MHHR07]. Nevertheless, extending the total Lagrange multi-
plier with the Rayleigh dissipation function makes the damping
fully dependent on the compliance parameter (α). Therefore, as-
signing a lower value to the compliance parameter inherently de-
creases the damping. Therefore, we prefer keeping the value of α

greater than 10−6.

6. Parallel XPBD

Position Based Dynamics algorithm computes the projected con-
straints in a Gauss-Seidel type solver. Therefore, each constraint
is solved sequentially from the first target primitive (in our case,
the target primitives are the edges of the mesh which represent the
conventional spring network) to the last one for every iteration. Al-

Figure 4: Duck Lifebuoy model (with 9261 edges) is simulated
with our modified Morse potential and volume constraints cou-
ple. Collision handling is tested. Left: Sphere collision constraint.
Right: Convex objects collision constraint.
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Figure 5: A piece of cloth (with 4880 edges) falls under constant gravitational force and contacts with a static sphere object. From left to
right: Stretching Const., Hookean Spring Const., STVK Spring Const., Our Modified Morse Pot. Const. All simulations are executed under
the same conditions, such as α = 0.00001, iteration count = 200, damping coef. = 0.3, step-size = 1/24, spring stiffness = 10.0.

though high number of iterations increases the visual quality and
precision, it causes a serious performance loss. GPU based par-
allelization may address this performance issue. However, the di-
rect application of parallelization to the XPBD algorithm may lead
to unpredicted results. For example, two primitives that share the
same particle can be processed by two different threads at the same
time. This fact ends up with the race condition and causes a viola-
tion to update the position of the particle.

To avoid this problem and take advantage of parallelization on
GPU, we applied our own algorithm to split the mesh into nonad-
jacent edges groups. In each group, none of the members share the
same particle. We have inspired from the Graph Coloring algorithm
in [FP15] and [FTP16]. However, our algorithm is simplified and
reduced to the edge space of the mesh. It is an iterative two phase
algorithm that is summarized in Algorithm 2: In first phase, we cre-
ate a list of arrays where each array contains the indices of all non-
adjacent edges of each edge (lines 1-14 in Alg. 2). In the second
phase, we compare each array members with each other accord-
ing to their connectivity. If any two edges are connected to each
other or exist in other independent edge groups, they are located
to different groups (lines 15-37 in Alg. 2). Since our models are
consist of triangular meshes, we noticed that 6 groups of edges are
sufficient to hold all independent edges. This whole process is per-
formed during the initialization phase. After, all independent edge
groups are solved for XPBD simulation in parallel on the GPU. Fig-
ure 6 demonstrates our algorithm with a straight-forward triangular
mesh example.

7. Implementation and Results

We have implemented our own version of parallel XPBD algorithm
[MMC16] as a plugin for Autodesk Maya by using C++/CUDA that
works on GPU. Each independent edge group member has been
implemented in a different kernel function. Therefore, all kernels
have been processed on GPU simultaneously. This allows us to uti-
lize massive number threads during the computations. Besides, we
have implemented a sequential version of XPBD on CPU by us-
ing C++ for comparison purpose. 2D and 3D triangle meshes have
been used for the experiments. All test scenarios presented within
this paper have been performed on a 4-core Intel i7-2600 3.4 GHz
machine with 8 GB of RAM and an nVidia GTX 570 GPU.

Algorithm 2 Independent Edge Grouping Algorithm
1: NumberofEdges = TotalNumberofEdges
2: while EdgeID < NumberofEdges do
3: AdjArray = GetConnectedEdges(EdgeID)
4: for i = 0 to NumberofEdges do
5: if i is EdgeID then
6: continue
7: else if i ∈ AdjArray then
8: continue
9: else

10: NonAdjArray
pushback←−−−−− i

11: end if
12: end for
13: NonAdjArraysList[edgeID] = NonAdjArray
14: end while
15: for all IndEdgesArray ∈ IndEdgesArraysList do
16: if IndEdgesArray is IndEdgesArraysList[0] then
17: IndEdgesArray

pushback←−−−−− 0
18: end if
19: SourceArray = NonAdjArray from the list
20: for i = 0 to sizeofSourceArray do
21: TargetIndex = SourceArray[i]
22: TargetArray = NonAdjArraysList[TargetIndex]
23: for j = 0 to sizeofSourceArray do
24: if SourceArray[j] is TargetIndex then
25: continue
26: else if SourceArray[j] ∈ TargetArray or

SourceArray[j] ∈ ∀IndEdgesArray then
27: continue
28: else
29: Erase SourceArray[j]
30: j = j - 1
31: end if
32: end for
33: end for

IndEdgesArray = SourceArray
34: end for
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Figure 6: Simple demonstration of our Independent Edge Grouping Algorithm. Left: An example triangulated mesh with corresponding
edge indices. Middle: After the first phase of the algorithm, all edges are listed with their nonadjacent edges arrays. Right: After the second
phase of the algorithm, all the edges are grouped in six different groups such that none of the array members are connected with each other.

In order to compare our modified Morse potential with the ex-
isting spring potentials and stretching constraint, we have imple-
mented the Hookean [LBOK13] and STVK [RLK18] spring po-
tentials as position based constraints along with the stretching con-
straint [MHHR07]. The mathematical definitions of those poten-
tials are defined as:

Cstretching(x1,x2) = k(||x2− x1||− l0) (15)

Chookean(x1,x2) =
1
2

k(||x2− x1||− l0)
2 (16)

CSTV K(x1,x2) =
1
2

k(||x2− x1||2− l2
0)

2 (17)

where k ≥ 0 is the spring stiffness, x1,x2 ∈ R3 are the spring end-
points and l0 is the rest length.

We have tested the falling cloth example shown in Figure 1 un-
der three different damping conditions. In the first case, we have
not applied any damping to the global motion and observed that the
cloth oscillates almost same with all constraints. One difference
can be noted that Hookean spring behaves slightly softer than other
springs. The relative errors can be seen in Figure 8. However, when
we increase the damping coefficient slightly higher, stretching and
STVK spring constraints damp the motion faster than Hookean
spring and our modified Morse potential constraints. Furthermore,
when we increase the damping notably, STVK spring and stretch-
ing constraints move almost identical and damp the motion in a

peculiar way. On the other hand, Hookean spring and our modified
Morse potential damp the motion more smoothly and still produce
tiny and plausible wrinkles. The relative error plot supports this fact
in Figure 7. In this example, the model consists of 4880 edges and
200 iterations have been applied for each simulation cycle due to
gain high precision. The simulation performances have been ob-
served as 6-7 FPS (frames per second) on CPU and 24-25 FPS on
GPU.

In the flag example shown in Figure 2, the wind produce less
wrinkles in stretching constraint than the other three spring con-
straints. This fact does not surprise us due to the fact that three
spring potential constraints tend to produce more motion than
the stretching constraint because of their potential formulations.
Stretching constraint is approximated by the XPBD algorithm as
if it is an actual potential energy function. In this flag example, the
model consists of 4880 edges and 100 iterations have been applied.
The simulation performances have been observed as 9-10 FPS on
CPU and 34-35 FPS on GPU.

In another test case, we have tested a 3D volumetric triangular
mesh model. We have coupled the volume preservation constraint
with stretching and spring potential constraints. We hang the bunny
model from the ears and observe that all three spring potentials be-
have more stretchy than the stretching constraint. Therefore, vol-
ume is better preserved with stretching constraint. On the other
hand, our modified Morse potential constraint perform better vol-
ume preservation than the Hookean and STVK spring constraints
that is shown in Figure 3. The change in damping does not effect
this fact which can be seen in Figure 7. The bunny model consists
of 12288 edges and 50 iterations have been applied. The simulation
performances have been observed as 30-31 FPS on GPU.
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Figure 7: The relative error of springs are compared. Top row shows the hanging cloth with damping coef. = 0.3 on left and damping coef.
= 1.0 on right. The plots show that our modified Morse potential and Hookean spring can still produce wrinkles while the others damp the
motion immediately. Bottom row shows the hanging bunny model with damping coef. = 0.3 on left and damping coef. = 1.0 on right. The
plots show that our modified Morse potential and stretching constraint preserve the volume of the model better than the others. The relative
error values are defined as, err = log( C

I.V. ), where C represents the corresponding constraint, and I.V. represents the initial value of each
corresponding primitive.

We also tested the deformation behaviors under collision. When
the cloth falls and contacts with the sphere as shown in Figure 5,
all spring potentials almost behave similar to each other. Although
there exist very slight differences, those can not be observed im-
mediately. Besides, we have tested the collision on a 3D volumet-
ric model and compared our proposed Morse potential - volume
constraints coupling with STVK and Neo-Hookean finite element
hyperelastic materials (FEM). We implemented those hyperelastic
FEM materials from [BKCW14]. The results did not surprise us.
Although FEM materials produce slightly more vivid reaction dur-
ing the collisions, our modified Morse potential produces visually
attractive results that can be seen in Figure 4. All collisions have
performed in interactive rates on GPU.

8. Conclusion and Future Work

In this paper, we have modified the Morse potential function from
molecular mechanics and presented it as an alternative to the exist-
ing spring potentials. We have adapted our modified Morse poten-
tial on parallel XPBD algorithm as a projected position constraint
along with the existing spring potential functions such as Hookean
and STVK springs. In order to maintain a stable parallelization,
we developed an efficient and intuitive "Independent Edge Group-
ing" algorithm that provides a massive multi-thread computation
on GPU. We compared the behavior of our proposed Morse po-
tential with other springs as well as PBD’s stretching constraint.
We presented the strong and weak points of each spring constraint
including our proposed technique. Although there is not any par-
ticular definition that indicates one spring model is better than the
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Figure 8: The relative error of springs are compared without
damping. Top row shows the hanging cloth. The plot shows that our
modified Morse potential and Hookean spring move more dynamic
than the others. Bottom row shows the hanging bunny. The plot
shows that all spring potentials stretch to a certain end such that
the volume preservation can be handled within the tolerable lim-
its. The relative error values are defined as, err = log( C

I.V. ), where
C represents the corresponding constraint, and I.V. represents the
initial value of each corresponding primitive.

other, our modified Morse potential is a promising spring potential
constraint that can be considered as an alternative to the existing
spring potential functions. Besides, it is straightforward, stable and
easy to adapt to the existing XPBD (or PBD) frameworks.

Currently, our implementation supports only simple static object
collisions. In the future, we pursue to improve our collision han-
dling with advanced methods similar to [MCKM15].
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