
Eurographics Symposium on Parallel Graphics and Visualization (2019)
H. Childs, S. Frey (Editors)

Real-time particle-based snow simulation on the GPU
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Figure 1: A sliding wall plowing through the accumulated snow (consisting of 75.6K particles) on the ground simulated using our method,
supporting both physics and visualization at around 282 frames per second.

Abstract
This paper presents a novel real-time particle-based method for simulating snow on the GPU. Our method captures compres-
sion and bonding between snow particles, and incorporates the thermodynamics to model the realistic behavior of snow. The
presented technique is computationally inexpensive, and is capable of supporting rendering in addition to physics simulation at
high frame rates. The method is completely parallel and is implemented using CUDA. High efficiency and its simplicity makes
our method an ideal candidate for integration in existing game SDK frameworks.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Animation—Physical simulation

1. Introduction

Snow can enhance the realistic visual experience in computer
games and other graphics applications. Snow is a cohesive mate-
rial that can be compressed and altered over time into forms of ice
and water. This produces a complexity to simulating the material
as many factors, such as density and temperature, have an impact
on how the material behaves. The existing methods in computer
graphics often deal with static or accumulated snow that does not
need to be animated [FO02]. The presence of snow in such scenes
is usually captured by using textures or procedural noise, especially
where the snow does not interact with other objects.

Efficient real-time methods exist for simulating various materi-
als like fluid [MM13, GSSP10, GEF15], rigid and deformable bod-
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ies [MMCK14, NVI16]. GPU-based simulation method involving
melting of ice to water droplets is given in [IUDN10]. Impressive
offline technique computing snow dynamics using hybrid particle-
Eulerian has recently been proposed in [SSC∗13]. However, most
of the existing methods capturing snow physics are computation
intensive and hence offline, making them unsuitable for real-time
applications. To the best of the knowledge of the authors, there
is no published work on real-time snow simulation that besides
modelling the realistic behavior of snow, can also be employed as
a computionally viable and visually acceptable component in the
games. Given the fact that soft snow is compressible, a simplified
snow simulation can avoid the use of complicated incompressible
solvers unlike those employed in fluid simulation. The efficiency
part is even more important if snow simulation is not the primary
focus of the scene, wherein it should take only an a reasonably ac-
ceptable fraction of the total frame time. In this paper, we introduce
a parallel, purely particle-based technique to simulate snow physics
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in real-time on the GPU. The contributions of this paper are as fol-
lowing:

• A real-time, computationally inexpensive particle-based method
to simulate snow dynamics on the GPU
• Capturing of cohesive bond-like behavior between snow parti-

cles
• Capturing of non-recoverable compression in the particle frame-

work
• Incorporation of thermodynamics to capture phase change to wa-

ter and ice in the particle framework

One major advantage of our proposed method besides its effi-
ciency and simplicity, is that it can be easily incorporated in the
existing unified particle-based frameworks.

2. Related Work

Procedural methods are extensively used in computer graphics
to model snow. Snow simulation using grid based accumulation
maps is one of the approaches used to simulate deposited snow.
In [RLD15], snow accumulation is simulated in real-time by us-
ing surface-bound accumulation buffers mapped to objects in the
scene. Through a shadow mapping technique snow fall is accumu-
lated to buffers that are incremented. In turn, the accumulation dis-
places mesh-geometry. With a similar approach [Tok06] accumu-
lates object-bound maps which are converted into polygon meshes.
Accumulation maps are also used by [CZ13], where vehicle tracks
in snow are simulated in real-time through terramechanics and ter-
rain height displacements. The displacement is calculated by using
the amount of dust particles generated from interaction. In [Fea00],
snow accumulation is calculated through shooting particles up-
wards towards the sky from their accumulation location. A stability
model is applied to cause avalanches at unstable areas.

In [ZCL10], the process of falling snow and snow accumulation
is realized through a real-time particle simulation and displacement
map. Values of the displacement map are accumulated by custom
rules as particles collide with the ground, which in turn change the
geometry. With a similar approach of interaction between particles
and displacement map, [WWXP06], presents a real-time simula-
tion including a three-dimensional wind field. The falling of snow
is simulated in combination with deposition and erosion. Large
scenes with snow are procedurally modeled by [GPG∗16]. The
model uses occlusion and temperature as parameters to offset ver-
tices on an objects surface.

In [MP06], a real-time pressure driven wind system with parti-
cles for snow is presented. The approach uses a pressure gradient
to calculate the wind speed of the particles. The gradient is calcu-
lated from low pressure zones below terrain peaks and high respec-
tive low pressure points within the world. The wind phenomenon is
also taken into account by [MT10], where a pre-computed radiance
transfer technique is used to calculate the accumulation of snow
subjected to wind in real-time. The method is divided into a pre-
compute step of wind vectors followed by an accumulation step.
Snowflake movement with wind fields and accumulation of snow
has also been modeled by [MMAL05]. [FO02] present a method to
model snow drifts created by wind near obstacles. [FG11] propose
a method to generate snow covers on complex scene geometries.

Previous research shows that the behavior of snow is complex;
it depends on multiple factors such as density, humidity, and time
[SSC∗13]. The previous real-time research approaches have either
simulated snow by two dimensional grids, limiting dynamic inter-
actions in three dimensions, or by not incorporating important as-
pects, such as behavior of non-recoverable compression and phase
transition. To widen the scope of what games current engines can
produce, an approach to simulating snow, with the mentioned be-
haviors, is proposed.

Methods capturing physical behavior of fluids [MCG03, SP09]
and materials like sand [SOH99, ZB05, AO11] are gaining popu-
larity in computer graphics. Recently, some offline physics-based
models for snow simulation have been developed. A real-time
avalanche simulation is proposed by [GÖ14], where a mass spring
model is used to simulate compressibility and attraction between
particles and terrain. The approach simulates snow at a larger scale
and does not take non-recoverable deformation into account. The
motion of avalanches has been simulated by [TYDN10], where
a method that deals with mixed-motion avalanches has been pro-
posed. This is done by dividing snow into different layers that can
interact; the different layers being suspension, dense-flow and ac-
cumulated. A grid-based approach is used for the suspension layer,
while a particle-based method is used for the dense-flow and accu-
mulated.

A semi-implicit material point method for the simulation of de-
formation and behavior of snow, including wet and dense snow,
is presented by [SSC∗13]. The method approximates the snow-
mass as a continuum and evades the modeling of each snow grain.
A method called Smoothed particle hydrodynamics (SPH) is used
by [TF12] to capture an approximation of the behavior of snow.
The simulation includes bond creation between grains and thermal
conduction. [TFN14] model the compression of accumulated snow
by introducing the durability factor which accounts for the amount
of air volume trapped within the snow mass. Their method is based
on Fluid Implicit Particle (FLIP) which is a hybrid method, using
both Lagrangian particles and Eulerian grids.

Unlike the previous methods, our technique relies on a sim-
ple, inexpensive particle simulation instead of SPH to simulate the
physics of accumulated snow in real time. Our approach easily cap-
tures the non-recoverable compression and incorporates thermody-
namic properties of snow within this particle framework. Further-
more owing to the flexibility of particle-based method, the tech-
nique is also capable of handling the phase transition between
snow, ice and water and their mutual interaction.

The remainder of this paper is organized as following. We de-
scribe our snow simulation model together with cohesion, com-
pression and thermodynamics in Sec. 3. Sec. 4 presents the results
obtained using implementation of our method, followed by conclu-
sions and future work in Sec. 5.

3. Method

Our method is purely particle-based and to this end, we discretize
snow into particles of uniform radius r. In order to achieve density
change and phase transformation, the radius of the particle is al-
tered keeping its mass unchanged. This helps us to compute the par-
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ticle density based on its radius without carrying out more expen-
sive kernel summation operation over the neighbors. Soft snow usu-
ally has a density of around ρs = 100kg/m3 whereas hard snow (in-
cluding ice) lies in the density range of ρi = 800kg/m3−900kg/m3

[BBH∗11]. Snow particles begin with a sparse density (larger ra-
dius) and loose the entrapped air during compression to achieve a
denser state. Our method assigns the state to a particle based on
its density between these two extremes. This is achieved by stor-
ing the proportion of snow η and ice (1−η) corresponding to each
snow particle based on its radus where the radius rs implies com-
plete snow and ri complete ice state. Water particles have a constant
density of ρw = 1000kg/m3 in the simulation. Our unified model
can handle all these states of snow and its transition to other forms
like ice and water.

We employ a model similar to [Gre10] for neighborhood com-
putation wherein a virtual grid is established in the simulation do-
main. A hash value is computed for each particle which maps it to
a unique cell in this grid. The neighbors of each particle are found
by querying its current and the 26 adjacent cells for particles that
fall within support radius. In our case, this support radius is simply
composed of neighboring particles touching the particle in ques-
tion.

The major processes governing snow formation and its transfor-
mation are cohesive forces, compression and thermodynamics, see
also Algo. 1 for the overview of our approach. In the following, we
describe these processes in detail as applied to our model. Hereafter
the particles in simulation are grouped to one of the sets of S, I and
W , which refer to snow, ice and water respectively when used in
the algorithms.

Algorithm 1 Snow Simulation
1: while (animating) do
2: for all particle i do
3: find neighborhoods Ni(t)
4: for all particle i do
5: compute CohesionForcesi(t)
6: compute T hermodynamicsi(t)
7: compute Compressioni(t)
8: for all particle i do
9: update velocity~v(t +∆t)

10: update particle position~x(t +∆t)

3.1. Cohesion

Snow particles bind together with each other through different
forces in different states of matter. High liquid contents cause the
snow to be cohesionless and slushy, while low liquid snow is well
bonded [Col97]. In our work, we have focussed on the cohesive
forces between solid particles ranging in the state from snow to
ice. The cohesion present between particles in a heterogenous snow
mixture is captured using the following forces.

3.1.1. Cohesive forces

We adopt our cohesion model from [HCN15]. Since their model
deals with only hardened snow, we extend it for soft snow and a

mixture consisting of all intermediate densities for our purpose.
The normal force acting between two snow particles in contact with
each other, which includes both elastic compression and cohesive
attraction, is given by Eq. 1.

~Fn =

{
−(Erδ)~n if −Erδ < 4σnr2

0 and cohesion is broken if −Erδ≥ 4σnr2 (1)

Here n is the normal direction connecting the particles, σn is
the cohesive strength in the normal direction, δ is the overlap be-
tween the two particles, E is the Young’s modulus and r the radius
of the particles in the system. Notable is the fact that this model
uses spring-based force between the particles to simulate the elastic
deformation according to Hooke’s law with the spring coefficient
k = Er. An interesting property of ~Fn is that the force between two
particles in proximity is attractive when they do not overlap (δ≤ 0)
and repulsive otherwise (δ > 0). Furthermore, the strength of this
force is governed by the rigidity of snow; for solidified snow/ice
larger E creates stronger force than for the soft snow.

However, we need to modify this formulation for our purpose
since we assume that the snow mixture is heterogenous consisting
of snow, ice and in-between transition particles. Soon after the cre-
ation most snow particles exist at densities between ρs and ρi due
to the effects of compression and temperature. This is accounted by
interpolating particle attributes like E, σn in proportion to its snow
η and ice content (1−η). As different radii and Young’s modulus
are used for different particles, the equation is modified to account
for Newton’s third law of opposite and equal forces for a pair of
interacting particles j and k to

~Fn =

{
−E jr j+Ekrk

2 δ~n if − E jr j+Ekrk
2 δ < 4

σn jr2
j+σnkr2

k
2

0 and cohesion is broken, otherwise
(2)

In addition to the normal force, the particles also experience
shear friction with their overlapping neighbors which inhibits their
tangential movement. The tangential contact force in [HCN15] is
simplified to only use the frictional part to Eq. 3

~Ft = (~ut/|~ut |)|~Fn| ~tan(ϕ) (3)

which excludes the use of parameter σt . Here ~ut is the accu-
mulated shear displacement between two particles and ϕ the fric-
tion angle. This modification in essence amounts to the assumption
that no tangential bonds exist between the particles. This simplifies
our computations to keeping only normal bonds between particles
without having to account for tangential bonds. Note that these con-
tact forces are applied only to snow and ice and not water particles.
The complete procedure to compute cohesive forces is outlined in
Algo. 2 and these forces are described in detail below. Additionally,
all particles in touch with the ground experience a frictional force.

3.1.2. Bond formation

Bond formation plays a crucial role in the snow physics. As is vis-
ible from Eq. 1, the cohesion or bond between a pair of neigh-
boring particles is broken beyond the threshold force limit when
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they are not overlapping. This implies that once the bond between
a pair of particles is broken, it is not reestablished. Such particles
therefore, do not exert cohesive influence on each other, even if
they come within the force range of −Erδ < 4σnr2 thereafter. The
capturing of this bond breaking phenomenon in snow is essential
to realistically model its behavior, especially during impact with
other objects. In a naive manner, this can be implemented by stor-
ing the information on existing and broken bonds between each
pair of particles (bond creation time, bond strength etc.). However,
this not only creates a much higher memory requirement to store
all bond information but also entails fetching and iterating through
the list of valid bonds in order to compute cohesion force. Our ex-
periments confirmed a significant reduction in the efficiency while
implementing the aforementioned bonding on the GPU.

In order to circumvent this limitation, we introduce a lightweight
approximation to mimic the normal bonding behavior between
snow particles. We store the maximum count of neighbors nmax for
each particle encountered so far and update it in each loop with the
current figure ncurr. Any particle with ratio ncurr

nmax
less than a certain

threshold (set to 0.75) is tagged to have broken bonds. This kind of
sudden reduction in number of neighbors can happen during colli-
sions or breaking of snow mass since these particles are otherwise
bonded together and undergo only slow and gradual relative move-
ments. Any two particles with broken bonds within contact range of
each other do not enter into bond formation or cohesive influence.
However, the repulsive and the tangential forces between these par-
ticles continue to act if they come within overlapping contact (line
5-6 in Algo. 2).

3.1.3. Weak forces

Weak attractive forces come into play between water-ice
molecules. For the sake of simplicity and efficiency, the cohesive
interaction is handled using interfacial tension forces model simi-
lar to [IUDN10], given by Eq. 4, where kw, ks and ki are interfa-
cial constants. If colliding with a snow or ice particle, the water
particle is repelled by a force proportional to the overlaps δ. How-
ever, a more sophisticated way could be used to handle these inter-
actions. Interaction between water particles can be handled using
SPH forces.

~Fweak = ∑
w∈Nwater

kw
~xw−~x
||~xw−~x||2

+ ∑
s∈Nsnow

ks
~xs−~x
||~xs−~x||2

+ ∑
i∈N ice

ki
~xi−~x
||~xi−~x||2

(4)

The sum total of all obtained forces ~F ( = ~Fn + ~Ft + ~Fweak + ~Fg)
is used to update the particle velocity and its position.

3.2. Compression

Snow compresses due to self weight and external forces applied on
the snow mass. The interconnecting bonds in snow are relatively
small compared to the grain size and thus initially most of the de-
formation occurs in the bonds and not in the grains. As those bonds

Algorithm 2 CohesionForcesi(t)
1: for all neighbor particle k of i do
2: if (i ∈ S ∪ I and k ∈ S ∪ I) then
3: if (i has no broken bonds) and (k has no broken bonds)

then
4: calculate cohesive and tangential contact forces using

(Eq. 2, 3)
5: else if (i and k overlap) then
6: calculate repulsive and tangential contact forces using

(Eq. 2, 3)
7: if (i ∈W) or (k ∈W) then
8: calculate interfacial tension forces (Eq. 4)
9: Determine if the particle i has broken bonds

Figure 2: Free body diagram for the compression on a snow/ice
particle illustrated for 2D case. The net compressing force (~Fc) act-
ing along each axis is the minimum of two forces ~F−x(or ~F−y) and
~Fx(or ~Fy) such that an equivalent non-zero force is opposing it.

fail, stress is transferred to the remaining bonds that are intact lead-
ing to plastic deformation and hence energy loss.

The compression itself is caused as a result of pair of oppos-
ing forces acting on a body. As illustrated for 2D counterpart in
Fig. 2, only the force component receiving a non-zero opposite re-
action contributes towards compressing a body. The balance force
leads to other forms of movements like translation, rotation etc. To
determine the compressive component ~Fc, all acting non-cohesive
forces on the particle are resolved along ±Fx, ±Fy and ±Fz axes.
The magnitude of ~Fc is captured by Eq. 5.

Fc =

√
min(~F−x,~F+x)2 +min(~F−y,~F+y)2 +min(~F−z,~F+z)2 (5)

The compression function in Algo. 3 starts with calculating the
compressive force Fc with the help of Eq. 5. In the last step, the
new radius is calculated by using the compressive force Fc. Similar
to [TFN14], compression is implemented with a durability vari-
able d which is kept for every particle. The durability represents
the proportion of air trapped within a snow particle which is high-
est (d = 1) when the snow particle is uncompressed. The term d
is linearly transformed to reduce the particle radius which in turn
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changes the density of snowpack. The original formulation was
modified by adding a conditional statement, see Eq. 6.

d←

{
d− kq pc, if ~Fc > ~D(ρi)

d otherwise
(6)

where pc is the pressure generated from the compressive force
Fc. kq denotes the durability change coefficient, defined as the ra-
dius change caused by unit pressure. The threshold function for
plastic compression D(ρi) is calculated by approximating the shape
of the stress-density curve for snow from [BBH∗11] as

~D(ρi) = ~FminW +(
e

ρi
100−1−0.000335

2980.96
)~FmaxW (7)

where FminW is a constant of the minimum amount of force a
particle can withstand prior to initial compression. It is defined as
a value with a magnitude that is slightly larger than mg (where m is
particle mass and g gravitational constant).

Algorithm 3 Compressioni(t)
1: calculate compressive force using Eq. 5
2: mirror forces on boundary particles for boundary reaction
3: calculate compressed radius using Eq. 6

3.3. Thermodynamics

In [IUDN10], the heat transfer between SPH particles for melting
is formulated as

∆Ti

∆t
= α ∑

j∈Ni

m j
(Tj−Ti)

ρ j
∇2W (xi j,Hh) (8)

where α is the thermal diffusion coefficient, Ni a set of neighbor-
ing particles whose distances are smaller than Hh or support radius
from particle i, W is the smoothing kernel and xi j is the distance be-
tween xi and x j. The diffusion coefficient α = kc

ρCp
is constant with

parameter kc set to thermal conductivity and Cp to the specific heat
capacity value. However, in our case in order to show the heat trans-
fer between particles in real-time the thermal diffusion coefficient
is scaled up by a factor S f . The symbol ∆Ti is the obtained change
in temperature for particle i which is then employed to compute the
heat loss/gain with the neighboring particles as

Qineighbors =Cpm∆Ti (9)

Heat exchange between the snow particle i and the air, Qiair is
computed using Newton’s law of cooling air

Qiair = hT (Tair−Ti) δAair (10)

where hT is the heat transfer coefficient, Tair the temperature for

air, Ti the temperature for a particle i and δAair is the area of par-
ticle i exposed to the air. A similar expression is obtained for heat
exchange between the particle and the ground, Qiground by replacing
δAair with δAground which is the exposed area of particle to ground.
The area exposed to ground or air for each particle is determined by
the expression δA = 6−n

6 A as laid out in [IUDN10], where n is the
number of neighboring snow, ice and water particles and A is the
total surface area for the particle in consideration. δA is clamped to
0 when n exceeds 6. hT for a snow particle is interpolated using its
snow content η and hTsnow and hTice .

As a particle does not melt directly as it reaches to 0◦ C, the la-
tent heat is stored in terms of amount of water melted within the
particle using parameter β. The latent heat is calculated by modify-
ing the standard equation into

Q f = mLβ (11)

where L is the specific latent heat of fusion for the material. The
entire particle is converted into water as soon as β reaches a value
of 1.

The total heat value received for a particle is calculated by

Qi = Qiair +Qiground +Qineighbors +Q f (12)

and is used to change its temperature. The temperature change
computation is limited to the melting point of snow, after which
further heat is used for phase transition.

3.4. Discussion

Our approach of computing particle density using its radius and not
with kernel based summation over the neighbors directly comes
from the observation that solid snow is neither fluid nor incom-
pressible and hence employing SPH or incompressible solvers
would be a computational overkill for snow simulation. Owing to
this simplification, we do avoid expensive interpolation kernels in
a separate CUDA kernel. In Eq. 8,∇2W (xi j,Hh) is calculated from
a simple box kernel.

In order to capture the relative density between snow and ice
and also to simplify our computations, we have set rs = rw = 2∗ ri
in our simulations. We continue to keep single grid for neighbor-
hood computation for all particle sizes. However, the implementa-
tion could be made more efficient by keeping two separate grids for
particles with size rs and ri. The particle set is divided into chunks
of 32/64 and a CUDA kernel is launched for each of these chunks.
Each particle is assigned a CUDA thread for attribute computation
and separate kernels are launched for force, thermodynamics and
compression computation.

4. Results

The presented method was written in C++ and CUDA (version 9.1)
and tested on a Windows PC with Intel(R) Xeon(R) 2.9 GHz quad
core processor and Nvidia GeForce GTX 1080 graphics card. Since
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Figure 3: Sphere composed of fresh snow (4.2K particles) dropped
from a height, (left) without broken bonds, (right) with our tracked
bonding approximation between snow particles. Particles with bro-
ken bonds (colored brown) do not enter into cohesive interaction or
bond formation with similar neighbors.

Figure 4: Varying weights w dropped on a block of compressed
snow (left)w = 2 kg and (right)w = 5 kg. Particle visualization for
corresponding scenes is shown in the images below where non-
white particles represent broken bonds.

Variable Datatype
Position + Radius (~x(t)) float4

Velocity (~v(t)) float4
Neighbor count uint16

Phase (η) float
Amount of Water (β) float

Temperature (T) float

Table 1: Attributes stored for each particle in our CUDA imple-
mentation.

Parameter Meaning Value
rs Sparse snow radius 0.05 m
ri Dense snow/ice radius 0.025 m

Esnow Young modulus snow 100 kg/m3 5000 Nm−2

Eice Young modulus ice 900 kg/m3 35000 Nm−2

ϕ Angle of repose 38◦

kq Durability coefficient 0.000005 m3N−1

σns Normal cohesion strength snow 625 Nm−2

σni Normal cohesion strength ice 3750 Nm−2

FminW Min force a particle can withstand 0.12275 N
FmaxW Max force a particle can withstand 104 N

Cpwater Specific heat capacity water 4186 Jkg−1K−1

Cpsnow Specific heat capacity snow 2090 Jkg−1K−1

Cpice Specific heat capacity ice 2050 Jkg−1K−1

ks/ki/kw Interfacial tension coefficients 0.00012
hTwater Thermal conductivity of water 0.602 Wm−2K−1

hTsnow Thermal conductivity of snow 0.1 Wm−2K−1

hTice Thermal conductivity of snow 0.7 Wm−2K−1

Table 2: Parameter setting in our simulation. Some values have
been altered and experimentally tuned in order to allow for a rea-
sonably large time step for real-time purposes. We verified through
our experiments that these alterations did not have a significant
impact on the nature of simulation.

the primary focus of this work is to simulate snow efficiently, we
have chosen to render the surface using Nvidia FLEX framework
which is highly efficient. The quality of the rendered surface can
be further improved by using dedicated rendering methods such
as [NIDN97]. In order to keep the simulation progress in real-time,
the actual Young’s modulus for ice cannot be used as this would re-
quire a very small time-step which would slow down the simulation
significantly. Stable values for the lowest density snow Es and that
of ice Ei were instead captured by testing. These values are inter-
polated for other densities throughout the simulation. Other density
dependent attributes for particles, for example cohesive strength,

Particle count Scene Rendering-surface Rendering-particles
8000 Fig. 8 734 1023
20000 Fig. 6 580 783
35937 Fig. 4 430 607
75615 Fig. 1 282 335

111000 Fig. 5 230 268

Table 3: Performance statistics: frame rates per second for the
scenes with varying particle counts, both when rendered as surface
and particles (sprites).
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(a) (b) (c) (d)

Figure 5: Various snow shapes composed of fresh snow are dropped on an existing snow block leading to a total particle count of 111K.

(a) (b) (c)

Figure 6: Time-lapse visualization of the density of snow particles
in a tall snow column consisting of 20K particles (initially fresh
snow), gradually undergoing self-compression. The particles are
colored in accordance to their density, with white representing the
minimum (100) and black maximum (900) in kg m−3.

are similarly obtained by interpolating between σns and σni based
on snow/ice content η. We used a time step ∆t = 10−3 for all the
shown examples and the particle radius range from 0.025 to 0.05
meters. The parameter values used in our setting are as listed in Tab.
2. The attributes stored for each particle in our implementation are
given in Tab. 1. Another advantage of our method is that no manual
setting of unintuitive, complicated parameter values is required to
produce the simulation.

Fig. 1 shows a scenario with 75.6K particles where accumulated
snow is plowed with a plane. The simulation together with render-
ing is running at around 282 frame rates per second. In Fig. 3, a
snow sphere consisting of 4169 particles is dropped on the ground
and comparison is made between broken bonds using our method
(right) vs. no broken bonds (left) between the particles. The inter-
action of different weights when dropped from the same height on a
pile of somewhat solidified snow using our method is demonstrated
in Fig. 4. Both these scenarios reinforce our assumption of the im-
portance of capturing bond breaking phenomena for realistic snow
simulation. Further, it is evident from Fig. 4 that a heavier weight
breaks more bonds in the solidifed snow than the lighter one. Fig.
6 shows the time-lapse of compression of fresh snow due to self
weight, where higher density is represented by darker color. The
volume of the condensed snow reduces considerably as compared

Figure 7: Time spent in various CUDA kernels in our simula-
tion for three different particle counts (rendering excluded). Base
physics and sorting takes up most of the CUDA time while other
kernels like those computing particle compression and thermody-
namics have negligible impact.

to its initial state owing to particle compression and state trans-
formation thereof. The melting behavior of snow using our method
which includes snow, ice and water particles is shown in Fig. 8. The
ground and air temperature is first raised to 5◦C that melts snow and
then reduced to -1◦C making the melted snow freeze to ice. The
method runs at high frame rates when rendered with surface even
for 111K particles, see also Fig.5 where different snow shapes are
dropped on top of each other. Tab. 3 lists the performance statistics
for our method for the shown scenes with increasing particle count.

Fig. 7 graphically represents the time spent on individual CUDA
kernels as a percentage of total physics time using CUDA. For
high particle counts, the rendering takes about 70% of the total
frame time with the surface and 65% with the opengl sprites. There-
fore, the physics computation part is relatively lightweight and can
run at real-time rates even for higher particle counts. Of the total
time spent on CUDA kernels, about 63% is on the physics kernel,
23% on sorting while compression and thermodynamics take less
than 1% each. Furthermore, our bond tracking estimation consumes
negligible physics time.

5. Conclusions

We have presented a particle-based, computationally inexpensive
and yet convicingly realistic method for real-time snow simulation.
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(a) (b) (c) (d)

Figure 8: Fresh snow slowly melting at ground and air temperature of 5◦ C (a-c). Water refreezes to ice (in light grey color) in (d) when the
air temperature is reduced to -1◦ C.

The presented method is tailored for applications like games and
provides a good trade-off between efficiency and realism. Our tech-
nique captures the bonding behavior between particles using a sim-
ple approximation and the non-recoverable compression of snow
to ice. Furthermore, our framework can effectively incorporate the
thermodynamics to capture phase change from snow to ice and wa-
ter. The presented model is easy to implement and can be efficiently
incorporated to simulate snow in computer games and virtual en-
vironments. To this end, the method can support very high frame
rates even for relatively large particle counts, and hence can easily
exist as one of the background components in any game.

For future direction, better interaction of snow with the mate-
rial boundaries can be studied. Currently we model only dry snow.
Our technique can be made richer by incorporating more parame-
ters from [SSC∗13] to enhance the wetness/dryness ratio of snow
material. Another promising research direction could be to develop
dedicated models to simulate hardened (incompressible) snow.
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