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Figure 1: Example pattern (left) and the corresponding pattern detection result using the moment invariants algorithm in a selected subset of
the MPAS ocean dataset (right). The matches are represented by circles, whose diameter correspond to the size for which the match was found
and color to the similarity to the pattern with the colormap shown on the right. The pattern and the field are color coded by the magnitude of
the velocity vector field with the colormap shown on the left.

Abstract
Feature-driven in situ data reduction can overcome the I/O bottleneck that large simulations face in modern supercomputer
architectures in a semantically meaningful way. In this work, we make use of pattern detection as a black box detector of arbitrary
feature templates of interest. In particular, we use moment invariants because they allow pattern detection independent of the
specific orientation of a feature. We provide two open source implementations of a rotation invariant pattern detection algorithm
for high performance computing (HPC) clusters with a distributed memory environment. The first one is a straightforward
integration approach. The second one makes use of the Fourier transform and the Cross-Correlation Theorem. In this paper, we
will compare the two approaches with respect to performance and flexibility and showcase results of the in situ integration with
real world simulation code.

CCS Concepts
• Human-centered computing → Visualization; • Theory of computation → Parallel algorithms; Pattern matching;

1. Introduction

In modern supercomputer architectures, the computational capacity
is generally larger than the I/O bandwidth [CPA∗10]. The goal
in an in situ approach is to perform data processing and analysis
during the generation of the raw data in order to reduce output
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data. Scientists running large simulations need to decide in situ
which parts of their data they want to store for post-hoc analysis,
prioritizing saving the more important regions of the data. Wherever
the data has scientifically meaningful features or patterns, in situ
algorithms must find and save those patterns.

The challenges thereby are that suitable algorithms must be able
to decide what is worth keeping during the run of the simulation in
an autonomous way and they must further be compatible with the
simulation in three ways. First, they must be able to be integrated
with the simulation’s code. Second, they must be able to run in the
same hardware settings and data distribution that the simulation uses.
Third, they may not slow down the simulation run significantly.
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The motivation is the need of a scalable algorithm that can detect
patterns of interest during the runtime of large simulations using data
distribution to achieve data reduction and enable in situ visualization
without sacrificing the accuracy in regions of interest.

For this paper, we assume that the application scientist has a
priori information on patterns within the data that are of interest,
e.g. Figure 1. Therefore, we want to run an in situ pattern detection
algorithm to focus on areas with the patterns of interest. Then we
can either provide an in situ occlusion-free visualization of the
region [BRA18] or reduce the data by storing these regions of
interest in a sufficiently high resolution for post-processing, while
storing other less interesting areas in a coarser resolution.

Pattern detection algorithms often have to look at every possi-
ble orientation of the given template in order to determine if there
is a match, potentially causing a significant load on performance.
This determination is not practical for an in situ environment. In
developing the in situ pattern detection algorithm, we use orienta-
tion invariant characteristics to avoid performance load resulting
from checking every possible angle. These characteristics are called
moment invariants and they are used for determining the degree of
similarity between the given pattern template and the data in our
pattern detection algorithm [FSZ16, BH17].

Moments are projections of a function—in our case the pattern
and the field—to a function space basis. The similarity between
pattern and field corresponds to the reciprocal of the Euclidean dis-
tance of their coordinates in the function space, that is, the moments.
The moments can be transformed into moment invariants using the
right transformation. This process is called normalization and can be
imagined as projecting the function space onto a lower dimension in
the way that all instances of a function that only differ by a rotation
are projected onto the same point. The Euclidean distance in this
reduced space then anti-correlates with the similarity independent
of the orientation difference between the pattern and the field.

In this paper, we analyze two different approaches that we imple-
mented for the in situ data-parallel computation of moment invari-
ants: straightforward integration and fast Fourier transform (FFT)
both in C/C++. If the data were not distributed, the FFT would have
an advantage as the data size increases. But in our setting, this pro-
cess is not obvious because it requires global communication, while
our integration-based implementation only needs communication
across nodes with data that is locally close. Especially in cutting
edge HPC architectures, the communication costs have a great in-
fluence. Our experiments investigate the resulting computation vs
communication speed trade-off.

All algorithms are publicly available through the modules Mo-
mentInvariants and ParallelMomentInvariants [Kit] of the Visualiza-
tion Toolkit (VTK) [SLM04].

The main contributions of this work include the following:

• First presentation of an in situ, data-parallel moment invariants
algorithm.

• Comparison of speed between a direct approach with local com-
munication, and an FFT approach with global communication
w.r.t. parameter variations and weak and strong scaling.
• Open source release of the complete module as part of the Visual-

ization Toolkit (VTK).

• Demonstration of in situ integration with MFIX Exa [MEb, MEa]
and WarpX [VAB∗18] simulations of the Exascale Computing
Project.

2. Related Work

Moment Invariants were introduced to the image processing commu-
nity by Hu [Hu62] in 1962. He suggested a set of seven invariants
with respect to translation, rotation, and scaling for two-dimensional
scalar images. Dirilten and Newman were the first to use the moment
tensors. In their seminal work [DN77], they showed that the moment
tensor contractions to zeroth order are invariant under orthogonal
transformations. Sadjardi and Hall [SH80] provided three moment
invariants for three-dimensional scalar fields. Pinjo, Cyganski, and
Orr [PCO85] calculated 3D orientation estimation from moment con-
traction to first-order moments. Flusser [Flu00] presented the first
calculation rule for a complete and independent 2D scalar moment
basis. For the tensor contraction method, as described by Dirilten
and Newman [DN77], it is hard to judge completeness and indepen-
dence of the resulting set of invariants. Suk and Flusser calculated
a complete set and afterwards skipped the linearly dependent ones
in [SF11]. Higher-order dependencies still remain.

Langbein and Hagen [LH09, Lan14] showed that tensor contrac-
tion method can be generalized to arbitrary tensor fields. Schlemmer
et al. [SHM∗07] were the first to introduce a set of five 2D moment
invariants for vector fields and they utilized the FFT for acceleration.
Bujack et al. [BHSH15] present an algorithm that provides a com-
plete and independent set of two-dimensional moment invariants
for vector fields and later an algorithm for invariants of 3D vec-
tor fields [BKH∗15]. For a comprehensive introduction to moment
invariants, we refer the interested reader to [FSZ16]. In our imple-
mentation, we will use the general algorithm presented in [BH17].
This algorithm can compute moment invariants for two-dimensional
as well as three-dimensional scalar, vector, and tensor fields.

There have been several approaches to accelerate the computation
of the moments of scalar data for image comparison tasks. They
include image decomposition [SHF12], Green’s theorem [YA96],
image slicing [PKK08, SB11], and recursive algorithms [Che90].
For some orthonormal moment bases, acceleration can be achieved
through recurrence relations [Kin76, MR95, HSS11]. In this applica-
tion, the moments need to be computed only once in the center of
the template and the image, and no speedup can be gained using an
FFT approach. For pattern detection, a great acceleration option lies
in the convolution theorem and the FFT [SHM∗07].

We will extend the existing work by suggesting a parallel algo-
rithm that is able to run in data distributed setting and in situ, which
will enable these algorithms to be used with large scale simulations
on high performance computers.

In situ visualization is a growing field of interest [RCMS12,
BAA∗16]. Two main approaches of integration can be distinguished,
first direct embedding of the routines as part of the simulation,
e.g. [YWG∗10, WPS∗15, DCH∗16], which cannot be reused, and
second general-purpose libraries that can be included into different
simulations, like ADIOS [LZKS09], ParaView Catalyst [ABG∗15],
Ascent [Asc], Visit libSIM [lib, KPZ11], SENSEI [AWW∗16]. We
will follow both approaches in this work.
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3. Theory

Moments are the projections of a function with respect to a function
space basis. We can think of them as the coordinates that represent
the pattern. They can then be used to construct moment invariants—
values that do not change under certain transformations. We will
follow the normalization approach for the construction of moment
invariants. This approach means a standard position is defined by
demanding certain moments to assume fixed values and all functions
are transformed to match it. Then, the remaining moments form a
complete and independent set of moment invariants.

Dirilten and Newman suggest the use of moment tensors for the
construction of moment invariants through tensor contraction for
scalar functions in [DN77]. Langbein et al. [LH09] generalized the
definition of the moment tensor to tensor valued functions.

Definition 1 For a tensor field T : Rd → Rdn×dm
with compact

support, the moment tensor oM of order o ∈ N takes the shape

oM =
∫
Rd

x⊗o⊗T (x)ddx, (1)

where x⊗o denotes the o-th tensor power of the vector x.

Theorem from [BH17] is the foundation of the algorithm.

Theorem 1 The moment tensor of order o of a tensor field of co-
variant rank m, contravariant rank n, and weight w is a tensor of
covariant rank m, contravariant rank n+o, and weight w−1.

It follows from tensor algebra that all first-rank contractions be-
have like vectors under rotation and reflection [PCO85], which allow
us to define a standard position of a pattern for tensor fields of ar-
bitrary rank analogously to the PCA in the scalar case. A detailed
description of the algorithm and the proof of Theorem 1 can be
found in [BH17].

4. Serial Algorithm

The algorithm consists of two main steps. A schematic overview of
the workflow and architecture is given in Figute 2. The first step is
the computation of the moments in the dataset. For all considered
positions in the dataset, we need to approximate Eq. (1) numeri-
cally. It is not complicated, but is computationally expensive. Our
algorithm supports two different ways to compute the moments.

4.1. Integration

Step one performs a discrete approximation to the direct integration
of each moment:

(p+q+r)Mp,q,r,i
j =

∫
BR(0)

xpyqzrT i
j (x,y,z)dxdydz, (2)

where p,q,r ∈ N; p+q+ r = o is the combination of indices that
define one specific basis function of order o; T i

j refers to one com-
ponent of the tensor field T ; and BR(0)⊂ R3 is the ball around the
origin with radius R.

The integration approach has an input parameter
numberOfIntegrationSteps, which steers the accuracy of the
discrete integration. Depending on this parameter, a uniform
stencil (a sliding window) is generated over which we evaluate

Dataset

Algorithm: vtkComputeMoments
Grid

Moments

Algorithm: vtkMomentInvariants

Pattern

Similarity

Figure 2: Generation of the spatial areas of interest through the
moment invariants module with example images.

the finite sum that approximates the moments. If the user sets
numberOfIntegrationSteps to zero, the second option is used in
which the original grid of the dataset is used to evaluate the integral.
Both options takes O(ÑM) operations, where Ñ is the number of
points in the second input dataset “Grid" and M is the number of
points that lie in a ball of the given radius.

4.2. FFT

This approach is based on the FFT and the cross-correlation theorem:

f ?g = F−1{(F{ f}) ·F{g}}, (3)

as Eq. (2) applied to all points in the grid can be interpreted as a
cross-correlation,

(p+q+r)Mp,q,r,i
j (x,y,z) =

∫
BR(x,y,z)

(x− x′)p(y− y′)q(z− z′)r

·T i
j (x
′,y′,z′)dx′dy′dz′

= (xpyqzr ?T i
j )(x,y,z).

(4)

This approach takes O(NlogN) operations with N being the number
of points in the original input dataset.

The FFT approach can leverage existing FFT libraries to compute
the Fourier transform and the inverse Fourier transform. For our
serial FFT implementation, we use the KISSFFT package, a mixed-
radix FFT algorithm in one or more dimensions [Bor]. Before we
invoke FFT library function calls, our algorithm carries out a two-
step padding on the input dataset and then the corresponding kernel
dataset that will offset the cyclic nature of FFT in frequency space
to compute the cross-correlation correctly. The algorithm first pads
the input dataset around all boundaries with half of the size of the
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kernel dataset, which is the radius parameter, and then it pads the
dataset to a square. After the input dataset is padded, the algorithm
makes sure the corresponding kernel dataset is of the same size by
zero-padding. Later, when the algorithm has the output from the
inverse Fourier transform on the element-wise multiplications, the
output is truncated back to the size of the original input dataset.

4.3. Normalization and Comparison

The second part of the algorithm takes the pattern and the moments
of the dataset and obtains moment invariants by normalization as
in [BH17]. It computes the moment tensors of the pattern, computes
all products, contracts them, and chooses the most robust candidates
for the normalization. Then, it normalizes all moment tensors with
respect to this choice and computes the rotation invariant similarity
between the normalized moments of pattern and each point in the
dataset. The similarity value is derived as the inverse Euclidean dis-
tance between the moment invariants of the dataset and the pattern.
The result is a scalar field with the extent of the dataset that is high if
it matches the pattern and low otherwise. This part is more difficult
technically to implement, but not very expensive with respect to
computation time. Figure 1 shows the input dataset overlaid with
the output similarity scalar field that is visualized with circles scaled
by the corresponding radius and colored by the similarity values.

Both parts are incorporated as two separate VTK filters. The
separation allows the search for many patterns without having to
recompute the moments. Since the moments do not depend on the
pattern, this avoids a repeat of the computationally expensive part.

5. Parallel Algorithm

The normalization of the moments and their comparison are com-
pletely local operations. We have a set of moments on each pixel,
one set for the pattern, and do not need any other information. That
means even in a data-parallel environment, the filter vtkMomentIn-
variants of the MomentInvariants module is able to correctly perform
the pattern matching if it is given the correct moments of the data it
owns. The parallel computation of the moments on the other hand
needs special attention if the integration is performed across node
boundaries. The stencil that is used for the numerical integral ap-
proximation needs information from the surrounding areas, and this
area depends on the scale on which the pattern is searched. As a
result, we cannot make use of ghost cells because, for very large
radii, the pattern size might exceed the diameter of the data stored in
one node, which would lead to a prohibitive number of ghost cells.

Figure 3 shows the result of the parallel algorithm compared
to its serial counterpart on the selected subset of an MPAS ocean
dataset distributed over four nodes. The serial algorithm is agnostic
with respect to its neighbors, and therefore cannot compute the
moments near the boundaries. The data-parallel algorithm on the
other hand is able to correctly communicate across node boundaries.
Both approaches return the correct result, which coincides with the
output if the whole data is on one single node.

Here the separation of the algorithm in its two separate filters
(vtkComputeMoments and vtkMomentInvariants) pays off as well
because we can reuse the second filter without any changes in the
parallel setting and only need to parallelize the first one.

(a) Naive serial implementation
causes artifacts on node boundaries.

(b) Both parallel approaches provide
the correct result.

Figure 3: Comparison of the serial and the parallel algorithms
to compute moments on the selected subset of an MPAS ocean
dataset distributed over four ranks. The image shows the zeroth
order moments using an integration radius of 3, which corresponds
to 1/10th of the height of the dataset.

We added a module to VTK that contains the new filter vtkPCom-
puteMoments, which is a subclass of the serial vtkComputeMoments,
Figure 2. It inherits its basic structure and only re-implements the
different options of the computation of the moments. The overall
flow of the parallel pattern detection stays the same. The only differ-
ence is that we call vtkPComputeMoments as the first step instead
of vtkComputeMoments in Figure 2.

5.1. Integration

The first option follows a straight forward integration. The commu-
nication is handled through MPI calls.

In order to provide the necessary information across nodes, the
filter first computes the bounds of all blocks in the dataset and makes
them known to all nodes using MPI_AllGather(). Then, each process
performs four steps.

1. It computes the (potentially partial) moments for all points on
this grid; this works analogously to the serial case. If part of the
integration area lies outside the process’ data, it will just add up
the integral of the data it possesses.

2. It uses the bounds of the other processes to look where points
close to its own boundary fall in the bounds of other pro-
cesses and sends the locations over through MPI_Send and
MPI_Receive. To avoid deadlocks between two rank, the one
with the lower ID sends first, while the one with the higher ID re-
ceives first. The locations are encoded as the indices of the points
in vtkImageData for each dimension. The ranges of possible
indices in vtkImageData are stored in the variable “Extension,"
which is an integer array of length 6. Our encoding can produce
indices outside the natural range of the receiving process because
the location is outside its bounds. Still, the location can easily be
reconstructed from vtkImageData’s parameters. Please note that
it is not necessary to exchange the data across the nodes.

3. It computes the parts of the moments centered in other processes
but intersecting its own domain just like the serial algorithm
does and sends the results back to the owner as before through
MPI_Send and MPI_Receive.

4. It adds up the native and incoming moment parts.

Given that the numerical integration is just a sum and therefore
commutative, we get the true values after all processes have finished
the computations on their areas.
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5.2. FFT

For our parallel C/C++ FFT implementation, we use the DFFTLIB
package, first developed and used in [GMB∗14]. This library sup-
ports fast d-dimensional distributed FFT over MPI using a local
FFT library. The local FFT functions have been abstracted in a way
that allows adding new backends easily [Gla]. One such backend
could be the FFTW package, a C subroutine library for computing
the discrete Fourier transform (DFT) in one or more dimensions,
of arbitrary input size, and of both real and complex data [FJ05].
FFTW is one of the most frequently used C/C++ FFT libraries, but
for licensing issues while developing our algorithm for VTK, we
opted to use the KISSFFT for serial and DFFTLIB for distributed
parallel in our FFT implementation.

The parallel FFT algorithm carries out the padding similar to the
serial FFT algorithm, but now it also needs to make sure that only
the global boundaries, not local boundaries, are padded and that the
padded input dataset is a power of 2. After the padding, the parallel
algorithm has an additional step before FFT library function calls
can be invoked and that is to redistribute the padded input dataset so
that each rank has a same-sized block. Later, when the algorithm has
truncated the output back to its original size, another redistribution
is needed to get back to the original layout of the input data.

6. Experiments

In this section, we describe the datasets, the experimental setups,
and their results. Because the computation of the moments are the
bottleneck of the algorithm w.r.t. runtime and also the part that is not
trivial to parallelize, we only analyze this step of the algorithm. We
validated that the results of the two paralell approaches are identical
to each other and their two serial counter parts up to numerical
errors in the range of the accuracy of floating point precision. The
following step that does the actual pattern detection would be identi-
cal for both approaches and the serial case, and is therefore not of
interest for this study. We want to compare the two approaches w.r.t.
runtime, scalability, and applicability.

6.1. Datasets

Figure 4: The geographic projection of MPAS-Ocean dataset. It is
designed for the simulation of the ocean system from time scales
of months to millenia and spatial scales from sub 1 km to global
circulations [RPH∗13]. The magnitude of the velocity is color coded.

In order to explore issues of scalability and choice of parameters
on a range of scientific data, we chose three representative datasets

for our experiments. The first dataset is a single time step from
an MPAS-Ocean simulation [RPH∗13], as shown in Figure 4. The
selected subset of MPAS-Ocean dataset that was presented as the
example in Figure 2 is part of this dataset. For the experiments,
we used the full MPAS-Ocean dataset rather than the subset in
Figure 4. MPAS-Ocean is a simulation of the ocean system from
time scales of months to millenia and spatial scales from sub 1 km
to global circulations. The simulation is intended to facilitate the
ability to reproduce mesoscale ocean activities so that scientists can
study the multiscale anthropogenic climate change [RPH∗13]. The
MPAS-Ocean dataset that we used is a two dimensional dataset; we
focused on the vector field named velocity in our experiments. For
the parameter study, we used a dataset that has a resolution of 2562.
For the scaling study, we used datasets that have resolutions ranging
from 2562 to 81922. For reference, an MPAS-Ocean dataset with a
resolution of 10242 is roughly 35 MB with 1,048,576 points.

Figure 5: The volume rendering of the yA31 asteroid dataset. The
asteroid simulation focuses on the wave formation of the ocean
surface after asteroid impact [PST∗16]. The value of the temperature
variable is color coded and the solid blue is the ocean.

The second dataset is a single time step taken from the yA31
asteroid simulation [PST∗16], as shown in Figure 5. This time step
is a dataset produced by the simulation of an asteroid impact on
deep ocean water using xRage [GWC∗08]. This simulation is in-
tended to imitate the deep water reactions to asteroid impacts so
that scientists can study the likeliest danger level of an asteroid
impact given different asteroid compositions, size, impact height,
and entry angle. The simulation ran for 476 time steps in total, and
the single time step that we used is one of the time steps after the
asteroid impact [PST∗16]. The asteroid dataset that we used is a
three-dimensional dataset; we focused on the scalar field named
tev in our experiments. For the parameter study, we used a dataset
that has a resolution of 64x64x32. For the scaling study, we used
datasets that have resolutions ranging from 64x64x32 to 5123. As a
reference, a yA31 asteroid dataset that has a resolution of 1283 is
roughly 135 MB with 2,097,152 points.

The third dataset is a single time step taken from the NGC [DH16]
Nyx cosmology simulation [ABL∗13], as shown in Figure 6. This
time step is a dataset produced by the simulation of the evolution
of a system of discrete dark matter particles gravitationally coupled
to an inviscid ideal fluid in an expanding universe. The simulation
is intended to replicate large-scale dark matter activities so that
scientists can study the cosmological behaviors [ABL∗13]. The
Nyx cosmology dataset that we used is a three-dimensional dataset;
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Figure 6: The volume rendering of the Nyx cosmology dataset. The
cosmology simulation follows the temporal evolution of a system of
discrete dark matter particles gravitationally coupled to an inviscid
ideal fluid in an expanding universe [ABL∗13]. The value of the
density variable is color coded.

we focused on the scalar field named dark matter density in our
experiments. For the parameter study, we used a dataset that has a
resolution of 64x64x32. For the scaling study, we used datasets that
have resolutions ranging from 64x64x32 to 5123. As a reference, a
Nyx cosmology dataset that has a resolution of 1283 is roughly 182
MB and 2,097,152 points.

6.2. Experimental Setup

All the computations are performed on NERSC’s Cori supercom-
puter (https://docs.nersc.gov/systems/cori/) using the In-
tel Xeon “Haswell" processors. Each node has two sockets, each
socket is populated with a 16-core Intel Xeon Processor E5-2698 v3
(“Haswell") at 2.3 GHz. Each node has 128 GB DDR4 2133 MHz
memory (four 16-GB DIMMs per socket). For the experiments, each
physical core is tasked with at most one MPI process, so if we want
to run 1024 MPI tasks, we would use 32 nodes as each node has
32 physical cores. For better accuracy, the timing measurements
are computed as an average of at least 10 runs with the same pa-
rameters on the same dataset, except for the large convolution runs.
Please note all presented timings were acquired post hoc to avoid
tainting the results with runtimes of the simulations. Proof that our
algorithms are in situ ready will be presented in Section 7.

We first present a study of the impact of the most important
algorithm parameters on the run time. We use the three datasets as
described in Section 6.1, with five different resolutions, orders of
basis functions ranging from 0 to 5, and 5 different radii. The results
are found in Figures 7, 8, and 9. We have presented only the serial
results because the parallel results exhibit the same behavior for all
the parameter studies.

Then, we present the scaling study for the three datasets from Sec-
tion 6.1. For the scaling study, we use representative values for the
order and integration radii parameters that are kept constant across
runs. We vary the number of MPI ranks up to 1024. The different run
times for weak and strong scaling are shown in Figures 10 and 11.

6.3. Parameter Study

The major inputs to the pattern detection algorithm for both ap-
proaches are the dataset and the pattern that is to be searched within
the dataset. An example flowchart is shown in Figure 2. In addition
to these major inputs, there are three parameters that affect the com-
putation and performance of the algorithm significantly. The results
for these parameters—the resolution, the order of the basis function,
and the radius—are shown in Figures 7, 8, and 9, respectively.

Consider first the resolution on which the moments are computed.
In a data-distributed environment, the storage capacity is limited.
Further, just like a Taylor decomposition, the moments contain
information about the underlying function in the region of their
center. Thus, we often do not need to compute the moments at
every point of the original dataset, but only on a subset. Note that
the full resolution is still used for the computation of the moments
at each of the chosen points. A coarser resolution will allow the
integration approach to save computation time as fewer operations
are needed. However, the FFT approach will not benefit from a
coarser resolution as we need to transform the whole dataset no
matter how much of the available information will finally be stored.

The second parameter is the order up to which the basis functions
are used for building the kernel. Theoretically, there are infinitely
many moments and the function can be restored exactly, if we could
consider all the information. Practically, we will cut off the computa-
tion at a given order. The remaining information is an approximation
to the original function analogous to a Taylor series.

The final parameter is the radius used to build the stencil for the
pattern matching. The radius parameter is the product of the spacing
given in the dataset and the number of steps in each dimension. This
radius corresponds to the feature size for which we are searching.
In real applications, that radius will usually be a range of different
sizes corresponding to features (patterns) with physical meaning.

We designed the experiments to cover a relevant span of the pa-
rameter space. The resolution parameter describes the total number
of points on which the moments will be computed. The resolution
experiments range from 100% resolution (the total number of points
that the original dataset possesses), down to 6.25% resolution, where
we reduce the resolution by half each time. For the order parameter,
we ran experiments with basis functions going up to order 5. For
the radius parameter, we examined a maximum radius of one half
of the minimum bound in all dimensions of the dataset. The radius
parameter is reduced by one half each time for the next radius, and
this reduction is done four times.

As we can observe from the parameter study graphs, when the
order of basis functions is increased (Figure 8), the run time of both
approaches grows. Note, however, that the difference between the
two approaches increases as the order increases. Given any higher
order of basis functions or larger datasets, the FFT approach will
outperform the integration approach. In Figure 9, we can see that
the performance of the FFT approach is not affected by the size
of the radius for the stencil, whereas the performance time of the
integration approach does increase noticeably. On the other hand,
Figure 7 shows that, as expected, the integration approach benefits
from computing the moments on only a subset of the original data
whereas the FFT approach remains unaffected by this radius size.
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(a) MPAS dataset.
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(b) Asteroid dataset.
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(c) Cosmology dataset.

Figure 7: Performance in seconds for varying the grid resolution using the three datasets from Section 6.1 with order 2 and radius ratio 1/16.
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(a) MPAS dataset at 2562.
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(b) Asteroid dataset at 64x64x32.
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(c) Cosmology dataset at 64x64x32.

Figure 8: Performance in seconds for varying the order parameter for the three datasets from Section 6.1 with radius ratio 1/16.

Notice that in the performance graphs for all the datasets, the
FFT approach demonstrates better performance than the integration
approach in the majority of the experiments. It is only when the
resolution is extremely low, or reasonably small and combined
with low order or radius, that the integration approach outperforms
the FFT approach. However, scientists are not likely to choose an
approach that limits their output data to such a low resolution, order,
or radius, so the FFT approach will generally be the preferred option.

6.4. Scaling Study

Scalability is the capability of the algorithm to handle an increasing
amount of work. An algorithm is considered to be scalable if it is
suitably efficient and practical when it is applied to large data com-
putations. The amount and the size of output data from simulations
are growing along with the growth of supercomputers’ capabilities

and capacities. Therefore, scalable algorithms gain importance as
more and more large datasets are being produced. Consequently,
scalability is the focus of this next study. The different run times for
weak and strong scaling of our algorithm with the MPAS-Ocean,
asteroid, and cosmology datasets are shown in Figures 10 and 11.

For the weak scaling study, the size of data given to each processor
is constant and additional processors are added accordingly as the
data size increases. As a result, this type of measurement is used
as justification for algorithms that take a lot of memory and system
resources, or are memory bound. In the case of weak scaling, linear
scaling is achieved if the run time stays constant while the data size
is increased in direct proportion to the number of processors.

For the strong scaling study, the size of the data is fixed but
the number of processors is increased. As a result, this type of
measurement is used as justification for algorithms that run for a
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(a) MPAS dataset at 2562.
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(b) Asteroid dataset at 64x64x32.
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(c) Cosmology dataset at 64x64x32.

Figure 9: Performance in seconds for varying the radius parameter using the three datasets from Section 6.1 with order 2.
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(a) MPAS dataset 2562 - 81922.
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(b) Asteroid dataset 64x64x32-5123.
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(c) Cosmology dataset 64x64x32-5123.

Figure 10: Performance in seconds for weak scaling using the three datasets from Section 6.1 with order 2 and constant radius.

long time or are CPU bound. In the case of strong scaling, linear
scaling is achieved if the speedup factor is equal to the number of
processors used.

For both scaling studies, the experiments are run on numbers
of MPI ranks from 1 to 1024. All three datasets, MPAS-Ocean,
asteroid, and cosmology, are run with the order parameter set to 2
and the radius parameter set to a representative value. The spacing
is also kept constant in order to have a constant kernel size. The
weak scaling for cosmology and asteroid uses the dataset that is a
resampled resolution of 64x64x32 all the way up to a resampled
resolution of 5123. The weak scaling for the MPAS-Ocean uses
the dataset that is a resampled resolution of 2562 up to 81922. The
strong scaling for cosmology and asteroid uses the dataset that is a
resampled resolution of 1283. The strong scaling for MPAS-Ocean
uses the dataset that is a resampled resolution of 10242.

Looking at the weak scaling experiment in Figure 10, we see
that the run time of the integration approach increases exponentially
whereas the run time of the FFT approach demonstrates better scal-
ability with overall lower values and a moderately slower rate of
increase. On top of that, the larger configuration runs for the integra-
tion approach of moments computation did not finish running even
given a job wall time of 24 hours with all the datasets. Therefore, the
FFT approach, choosing realistic parameter combinations, offers the
ability to run in a more reasonable time given the necessary number
of ranks than the integration approach. Notice that the run time for
the FFT approach increases over time, but with a certain wave-like
behavior. This behavior is because the algorithm of the FFT ap-
proach is very dependent on the geometry of the input dataset and
the processors’ grid. In particular, the FFT approach prefers square
datasets in two dimensions or cube datasets in three dimensions.
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(a) MPAS dataset at 10242.
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(b) Asteroid dataset at 1283.
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(c) Cosmology dataset at 1283.

Figure 11: Performance in seconds for strong scaling using the three datasets from Section 6.1 with order 2 and constant radius.

The FFT approach demonstrates relatively better weak scalability
when compared to the integration approach, but the FFT approach
will not perform as well when compared to other algorithms that
employ a nearest-neighbor communication pattern. Because the FFT
approach employs heavy global communications for its computa-
tions such as transposes, the communication overhead increases in
proportion to the number of processors, whereas the algorithms that
employ nearest-neighbor communication patterns have relatively
constant communication overhead.

Looking at the strong scaling experiments in Figure 11, we see
that initially the overall rate at which the run time of the FFT ap-
proach speeds up is slightly better than, though very similar to, the
rate at which the integration approach speeds up as the number of
processors increases. While the rate at which the integration ap-
proach flattens out as its communications overhead start to offset
the benefit of having more processors share the work, the commu-
nication overhead actually starts outweighing the benefit of having
more processors share the work in the case for the FFT approach.
Although the strong scalability of the integration approach is better
later on, the FFT approach still offers better actual performance.

As discussed above, the communication overhead for the FFT
approach increases relative to the number of processors, and this
increase is more noticeable for the FFT approach than for the in-
tegration approach, so it is harder for the FFT approach than for
the integration approach to achieve strong scaling. The goal in the
strong scaling study is to find the best configuration, 64 ranks in this
particular case, that allows the moment computations to complete
in a reasonable amount of time, yet does not waste too many cycles
caused by parallel overhead, such as global communications. As a
result, even though the FFT approach does not offer as effective of
a strong scaling as the integration approach, the FFT approach will
still be a more realistic option given its faster physical run time.

7. In Situ Integration

As example of the in situ application of our algorithm, we demon-
strate an end-to-end integration with two real world ECP applica-
tions MFIX-Exa [MEb, MEa] and WarpX [VAB∗18].

Figure 12: (Left) The pattern is a vortex. (Right) in situ visualization
with reduced occlusion through in situ rotation-invariant pattern
detection of the magnetic field of the WarpX simulation.

Our first example shows the application of our algorithm
for an in situ visualization task with WarpX [VAB∗18],
which is a simulation modeling particle accelerators. We
use our algorithm after integrating the in situ infrastructure
with WarpX (https://warpx.readthedocs.io/en/latest/
visualization/ascent.html) on the OLCF machine Summit
(https://www.olcf.ornl.gov/summit/) through Ascent [Asc],
which provides a general integration with ParaView [AGL05].
Once, the connection to Ascent is established on the simulation
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side, it allows importing the data in a VTK format and call-
ing VTK filters as modules integrated into ParaView through a
ParaView trace in python (https://www.paraview.org/Wiki/
ParaView_and_Python).

We use the pattern detection to visualize vortical behavior in the
magnetic field using the vortex pattern in Figure 12 left. The right
image shows the isosurface of the largest connected component
detected by our algorithm. This isosurface shows a vortex core that
branches off several times. As reference, we show the magnetic field
using line integral convolution (LIC) right before (third from left)
and right after (right) the biggest branching occurs. It can be verified
that the central vortex indeed splits into two cores.

Figure 13: (Left) The pattern is a step function. (Middle) The origi-
nal dataset of MFIX-Exa bubble bed simulation with particles ren-
dered as spheres. (Right) The dataset reduced to 0.5% of its original
size to only the bubble boundaries through in situ rotation-invariant
pattern detection.

Our second example showcases the application of our algorithm
for data reduction to a real world bubble bed simulation running
with MFIX-Exa, which is a computational fluid dynamicsâĂŞ-
discrete element model (CFD-DEM) code developed for efficient
runs on current and next-generation massively parallel supercom-
puting architectures [MEb, MEa]. Our code was successfully in-
tegrated with the simulation and ran in situ on NERSC’s Cori
(https://docs.nersc.gov/systems/cori/). MFIX-Exa does
not have an Ascent or Catalyst [ABG∗15] integration yet. We there-
fore built MFIX-Exa with the VTK libraries linked in. The conver-
sion of the raw particle data into the VTK data that contains the
particle density field and the setup of the VTK pipeline of our work-
flow were done explicitly in the MFIX-Exa classes and AMReX_
Particles.H and AMReX_ ParticleContainerI.H.

We identify regions of interest using the moment invariants algo-
rithm in situ and then subsample the original particle dataset at a
coarser resolution for regions of less interest before saving any data
to disk. In this example, we have used a step function as a pattern
on the particle density field because we know from the application
scientists that they are particularly interested in the boundaries of the
bubbles. As the discarded regions had a very homogeneous behavior,
the loss of information in the final output is small even though the
reduction is tremendous, Figure 13.

8. Discussion and Conclusion

We have successfully presented a moment invariants algorithm avail-
able through VTK in the distributed data environment and demon-

strated the acceleration of the algorithm through the FFT and the
cross-correlation theorem. In addition, we conducted and discussed
experimental results from a relevant parameter study and a scaling
study of both, the integration approach and the FFT approach. Fur-
thermore, we have showcased the benefit in data reduction with the
bubble bed simulation MFIX-Exa by subsampling according to the
result we get from the moment invariants output and its in situ readi-
ness with both simulations by integrating the moment invariants
analysis into the simulation codes and running them in situ.

Both approaches successfully generalized the original moments
computation algorithm to run in a distributed setting. The results are
identical to the serial run up to numerical errors.

Overall, the FFT approach to moment computation has been
shown as the preferred option because of the great run time perfor-
mance with different input parameter combinations. That approach
shows that the favorable local communication pattern of the inte-
gration approach does not compensate its computational overhead.
However, the FFT approach requires structured datasets and has
certain assumptions, or limitations, in the area of expected data
distribution. In particular, the DFFTLIB expects the data to be dis-
tributed regularly across all the ranks. As in situ algorithms could
have difficulties influencing the structure or the distribution of the
dataset, this colorredrequirment makes the integration approach
preferred when non-structured datasets are used or irregular dis-
tributions arise. Further, the FFT approach needs more storage to
pad the data, which may cause issues in an in situ setting where
resources are scarce. Therefore, we conclude that the best option is
a combination of using the FFT approach whenever applicable and
providing the option of the integration approach in the other cases.

As future work, we plan on optimizing and integrating the mo-
ments filter into VTK-m where they will become GPU-enabled algo-
rithms. We are also planning on implementing the algorithms that
we have developed in VTK directly into ParaView to make them
more readily available and allow easier access to users.
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