
Eurographics Symposium on Parallel Graphics and Visualization (2020)
S. Frey, J. Huang, F. Sadlo (Editors)

Alternative Parameters for On-The-Fly Simplification of
MergeTrees

K. Werner1 and C. Garth1

1Technische Universität Kaiserslautern, Germany

Abstract
Topological simplification of merge trees requires a user specified persistence threshold. As this threshold is based on prior
domain knowledge and has an unpredictable relation to output size, its use faces challenges in large-data situations like online,
distributed or out-of-core scenarios. We propose two alternative parameters, a targeted percentile size reduction and a total
output size limit, to increase flexibility in those scenarios.

CCS Concepts
• Human-centered computing → Scientific visualization; • Mathematics of computing → Topology; • Software and its
engineering → Ultra-large-scale systems;

1. Introduction

The contour tree [vKvOB∗97] is one of the most fundamental and
widely used structures for topology driven analysis, for example
mesh cleaning [WHDS04], noise removal [RWS∗17] or allowing
visualization for complex data [BG15]. Contour trees can be con-
structed from the two merge trees of the domain [CSA03], and
some applications can be performed on the merge trees themselves.

Current merge tree construction algorithms are often output-
sensitive [GFJT17, CLLR05] or tailored for memory-constrained
[MSD∗12,CWSA16] or distributed [MW14,LPG∗14] settings and
tend to have a large memory footprint [AN15]. Because of this,
computing the complete merge tree on unsimplified data faces chal-
lenges in large-data applications. To overcome these challenges,
isolated efforts to perform simplification in a single-pass, online
and concurrently during construction have arisen in large data-
focused topological analysis [PSBM07]. This on-the-fly simplifi-
cation proved to be beneficial, as it was able to avoid multiple iter-
ations and reduce output size without ever storing the full output.

For merge tree simplification a user specified persistence thresh-
old ε is required. Merge tree arcs are tested bottom up and arcs
with less persistence than ε are removed from the output. However
it is not possible to estimate resulting output sizes or relative size
reduction of the simplification based on ε, see figure 1. Addition-
ally, ε has to be expressed within the scale of the data values and
thus a satisfactory choice for ε requires domain knowledge, which
often requires multiple costly iterations of analysis to gain. This
is in stark contrast to the above mentioned benefits of on-the-fly
simplification and hurts applicability in large-data scenarios.

We propose the use of two alternative user specified parameters

for simplification, to allow a more direct control over the simpli-
fied output size and increase flexibility in large-data applications.
First, simplification can be controlled by a total desired output size
N, pruning all but the N most persistent merge tree arcs. Second,
simplification can be controlled by a desired relative size reduction
p, pruning all but the p percent most persistent merge tree arcs. We
introduce algorithms to guide simplification based on N or p. This
requires adaptive estimation techniques in online applications of p.

0 1 2 3 4 5 6
 in % of total function range

0

20

40

60

80

100

Re
m

ai
ni

ng
 %

 o
f A

rc
s

Foot
Meteor
Jet

0.0 0.1 0.2
0

2

4

Figure 1: The percentage of remaining arcs after simplification
decreases with larger choices for the persistence threshold ε. The
relation is highly non-linear and depends strongly on the specific
data, making it difficult for the user to control simplification results
by choosing ε. Data was acquired from join trees of data sets pre-
sented in section 5.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

DOI: 10.2312/pgv.20201077 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-7444-0138
https://orcid.org/0000-0003-1669-8549
https://doi.org/10.2312/pgv.20201077

K. Werner & C. Garth / Alternative Parameters for On-The-Fly Simplification of MergeTrees

2. Related Work

A well-defined approach to topological simplification of scalar
functions is based on persistence pairs [ELZ02], minimum-saddle
or maximum-saddle pairs, that can be visualized in the so
called persistence diagram [CSEH07]. From these pairs the ε-
simplification [EMP06] was derived. It allows for the simplifica-
tion of a scalar function on manifolds, by cancelling persistence
pairs, i.e. eliminating exactly all persistence pairs with persistence
less than ε, while guaranteeing a maximal function value change
of ε. However under this guarantee, up to all persistence pairs with
persistence less than 2ε can be eliminated [BLW12].

A combinatorical approach to scalar function simplification is
to maintain user-specified minima and maxima of the function
and eliminate the remainder through perturbation of function val-
ues [TP12]. A hierarchical representation called branch decompo-
sition [PCMS05] of merge trees accumulates consecutive tree arcs
into branches according to persistence. Cancelling a persistence
pair of the scalar function results in the same tree as discarding the
corresponding leaf-edge of the merge tree branch decomposition.
Note however, that this does not hold true for contour trees [HC19].

A further merge tree simplification technique is based on iden-
tifying Y-shapes in the tree and comparing the smaller persistence
of the involved non-leaf arcs to a threshold [TTF04]. A similar ap-
proach that is applicable for multi-saddles instead works on a per-
arc basis [CSvdP10]. Both techniques achieve results equivalent to
persistence pair cancelling like in the branch decomposition, when
applied to a merge tree. Again, when applied to contour trees, re-
sults deviate both from branch decomposition and ε-simplification.

For the tree based simplification techniques different alternative
measures, including surface area or volume of represented level-
sets, can be used as a weight for edges to be compared to a threshold
for simplification [CSvdP04, ZT11]. Although we use topological
persistence in this paper, any arc-weight that is compared to a fixed
threshold for simplification purposes can be used in conjunction
with our methods.

To apply simplification during construction, instead of out-
putting the entire tree MT at the end of the construction, one can
consider the output as a concurrent stream S of arcs, with their as-
sociated persistence as weight w. The merge tree MT is now the
full aggregation of all arcs in this stream S. On-the-fly simplifica-
tion is the process of pruning arcs from S according to w and ε as
they arrive and add only unpruned arcs to MT . First appearances of
this idea are found in online reeb graph construction [PSBM07].

Contemporary contour tree construction algorithms follow
[CSA03] in first constructing the merge trees with an ordered sweep
through the data and then combining them to create the contour
tree. This naturally sequential approach has received a divide-and-
conquer based parallelization, both with regular spatial subdivi-
sion [VP03,LPG∗14] and subdivision along isosurfaces [GFJV16].

Contour tree construction without a globally sorted progression
was introduced by output-sensitive parallel algorithms based on
monotone paths between critical points [CLLR05,MSD∗12,RS14].
Such approaches are suitable for massively data-parallel computa-
tion [CWSA16]. Recently, construction methods were introduced,

that are able to identify merge tree arcs independently (with an ex-
ception of inner arcs depending on their children) in a task-parallel
[GFJT17] and ad-hoc network [SZG∗08] setting.

The proposed parameters can be used in conjunction with any
of the above simplification and construction methods, as N and p
will be used to find an appropriate threshold ε, that can be used as
before. However, to be applicable to on-the-fly simplification, sim-
plification or construction methods have to fulfill some conditions
described in section 4. In section , we describe the proposed alter-
native parameters and algorithms to calculate or estimate an ε that
realizes their application.

3. Alternative Parameters for Simplification

3.1. Constrained Branch Count N

One setting of interest is to set ε such that a given number N of
branches remain after simplification. This is for example necessary
if work is performed in a memory-constrained environment.

For conventional post-processing, finding an ε so that N branches
have a larger weight than ε is easily done by an inverse rank query.
However for on-the-fly simplification the decision to prune or keep
a branch must be done before weights for all branches are known.

To this end, we propose to use a priority queue [Pug89] Q. For
each arc in the stream S, the arc is enqueued in Q, with its weight
as priority. If more than N elements have been enqueued, Q is im-
mediately dequeued from, resulting in the arc with N + 1 largest
weight so far. This arc cannot be among the N largest weighted
arcs overall and thus has a weight smaller than the hypothetical ε

we search. Thus it can be immediately pruned.

Substituting ε for N as a decision basis for topological simplifica-
tion allows to maintain maximum detail in a memory constrained
setting. Subsequent simplification may then be performed within
main memory outside of the large-data application.

3.2. Percentile Size Reduction by p

Persistence is expressed in terms of the scalar function values and
thus requires knowledge about the scale of that function to interpret
and use. Reducing the output size by a given percentage however
does not rely on that knowledge. Thus another interesting problem
is to choose ε, such that a given percentage p of branches remain
after simplification.

For on-the-fly simplification based on a given p the problem is
the following: For each arc in the stream S, calculate the percentile
rank of the arc and prune it if it is smaller than p. Of course precise
ranks are only known a posteriori, thus an estimation based on the
streamed arcs so far has to be made.

We next turn to the problem of estimating the percentile rank
of an arc from all previously streamed arcs with minimal memory
overhead.

3.2.1. Quantile Summary

To this end we propose the use of a biased quantile (bq-)summary
[CKMS06]. When restricting the range of possible weights for the

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

76

K. Werner & C. Garth / Alternative Parameters for On-The-Fly Simplification of MergeTrees

arcs, we can store those arcs as leafs in a binary tree over this range.
The bq-summary instead stores a subset of nodes of this tree with
associated counts, to approximate the distribution of stored leafs.
By maintaining a set of invariants upon insertion, and running an
amortized compression of the tree, sublinear memory consumption,
insertion and estimation runtimes are achieved.

The data structure as proposed by the authors depends on a dis-
cretized range restriction of possible weights, containing U differ-
ent weights. Insertion of a weight to the summary has an amortized
cost of O(log logU). Rank estimation technically has the same
cost, however as we will estimate the rank of every inserted weight
(thus for every arc) we can slightly adapt the insertion method to
yield the rank estimation as a byproduct. Memory consumption of
the data structure isO(logU

ε
log(εN)), with N the overall size of the

stream and ε the maximal relative error of the estimation.

Since we do not want to rely on previous domain knowledge,
we choose the range restriction to contain the whole range repre-
sentable by floating point variables. Overall estimation accuracy
achieved on real world data sets and runtime penalties paid for
maintaining the data structure will be shown in Section 5.

3.2.2. Statistical Estimation

Online rank estimation inevitably suffers from irregular distribution
of weights within the stream. With this, ranks of arcs within the
history of the stream upon their arrival will deviate from the ranks
of those arcs in the overall data. In other words, if a lot of short arcs
are finalized first, the resulting summary data structure will rank
short arcs too high.

To alleviate this problem one can try to introduce a measure of
uncertainty into the summary, that represents size and variance of
the observed part of the stream. If uncertainty is high, rank estima-
tion can be adjusted to, for example, prune less arcs.

The simplest approach to statistical online rank estimation, is
to assume arc weight distribution to be Gaussian. If arc weights
are distributed according to a normal distribution, we can estimate
this distribution by interpreting the previously observed stream as a
sample. Small sample sizes will result in pessimistically estimated
distributions, that will prune less arcs. Consider the following up-
date mechanism for each arc a:

1. Filter the weight of a with Tukey’s Fences [Tuk77] to reduce
impact of outliers. Small outliers are pruned, large outliers are
stored to the output.

2. If a is not an outlier, increase the sample size n by 1 and update
overall empiric mean and empiric variance of the sample with a
numerically stabilized Steiner Translation [CGL83].

3. From the sample, calculate a Students t and χ squared distribu-
tion with n− 1 degrees of freedom. For a given significance ε

find the smallest explainable mean and variance.
4. These mean and variance correspond to the most pessimistic

normal distribution that can explain the sample with significance
ε. Evaluate the upper p percent quantile of this distribution and
compare it to the value of a.

With this, after each arrival of an arc a, we calculate a confidence
interval around the empiric mean, in which the true mean of the arc

weights lies with ε percent certainty. To be most pessimistic and
thus try to keep arcs instead of pruning them when in doubt, we
choose the smallest mean in this range. Similarly we calculate an
interval around the empiric variance, in which the true variance lies
with ε percent certainty and choose the smallest variance. From this
mean and variance we derive a pessimistic normal distribution. The
upper p percent quantile of this distribution is a value, below which
most probably at most 1− p percent of the actual arc weights lie.
Thus if the weight of a is below that value it can most probably be
pruned.

4. Application

To perform benchmarks for performance impact and estimation
precision of the techniques above, an implementation of contour
tree construction has been extended with on-the-fly simplification.
The used algorithm, see Algorithm 1, is a task-parallel sweeping
method that identifies arcs individually; it is a variant of the al-
gorithm used in the TTK [TFL∗17, GFJT17]. Growing monotone
regions around local extrema allows identification of their saddles,
once all child arcs have identified a given saddle, all but the largest
are tested and either pruned or added to the output. Simplification
was done symbolically without augmentation, thus the pruned arcs
were simply removed from the output, potentially resulting in a
vertex reduction of the saddle.

Algorithm 1 TASK-PARALLEL ON-THE-FLY SIMPLIFIED
MERGE TREES

procedure MAIN(Scalar function f , Domain M)
for each Vertex v in M do

if is_local_extremum(v, f , M) then
schedule_task(SWEEP(v, f , M));

procedure SWEEP(Vertex v, f , M)
while Vertex saddle == null do

saddle = visit_next_neighbor(v, f , M);
schedule_task(UPDATE_SADDLE(saddle, v, f , M));

procedure UPDATE_SADDLE(Vertex s, Vertex v, f , M)
s.children.add(v);
if all_children_arrived(s) then

schedule_task(SWEEP(s, f , M))
for each Vertex c in s.children do

if on-the-fly-test(persistence(c, s)) then
add_arc_to_output(c, s);

The function is_local_extremum returns a bool, that is true, if v
is a local minimum (for join trees) or maximum (for split trees) in
M regarding f . The procedure schedule_task creates a new task for
the parallel runtime environment to execute. For details on the func-
tions visit_next_neighbor and all_children_arrived please refer to
the original algorithm [GFJT17]. schedule_task() represents the use
of the task-parallel runtime scheduler and persistence() is a function
that returns the arc weight for simplification w, add_arc_to_output
creates an arc in the resulting merge tree. Lastly, the function on-
the-fly-test() uses our methods in section 3 (e.g. insert the argument
to the BQ-Summary and test resulting rank against p) to decide

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

77

K. Werner & C. Garth / Alternative Parameters for On-The-Fly Simplification of MergeTrees

whether the arc is pruned or added to the output, the consecutive
concurrent calls to this function can be interpreted as the stream S.

Note, that this implementation was derived for benchmarking
and represents only one possible application of on-the-fly simpli-
fication and the novel simplification parameters. On-the-fly simpli-
fication as described in section 2 can be applied to different simpli-
fication schemes and merge tree construction algorithms, under the
following conditions.

First, it is assumed that the merge tree construction output can
be expressed as a stream of finalized arcs. Thus individual arcs are
identified gradually over time and will not be modified afterwards.
This assumption for example only holds partially true for paral-
lel peak pruning [CWSA16], where the stream would be filled in
batches, after each iteration of the algorithm.

Second, it is assumed that the decision whether to prune an arc
is solely dependent on its persistence and ε. This is generally not
the case, as in most simplification methods described above, arcs
are pruned from leaves upwards, and an arc is protected from prun-
ing if it has the largest w among all its siblings. However, in the
construction methods described above, construction of an arc only
happens after construction of all its children, thus this assumption
can be enforced by buffering finalized arcs until a larger valued or
all siblings appeared in S. For example in [GFJT17] all merge tree
arcs connected to the same saddle are finalized at once.

Third, it is noteworthy, that while constructing a contour tree
from simplified merge trees is possible, it may not result in the
same tree as simplifying the contour tree itself, even when utilizing
the same simplification method. This is due to the existence of w-
structures in contour trees, that may protect additional arcs from
pruning, which can not be detected in merge trees alone.

5. Results

All results emerged from experiments run on processors of type
Intel XEON SP 6126 (2.6 GHz, 12 CPU cores, 96GB RAM).

Resulting estimation accuracy has been benchmarked for both
percentile estimation techniques on four datasets, seen in Figure 2.
The used data sets are a CT scan of a foot [TFL∗17], a simulation
of a meteor impacting in the ocean [PG17], and a jet fluid stream
simulation. Additionally, a fourth data set is identical to the meteor
simulation, but arcs are assigned a random weight, sampled from a
Gaussian normal distribution. Note, that the Gaussian based statis-
tical estimator has excellent accuracy for this data set. However it
suffers heavily from skewness in the weight distribution of arcs in
real life data sets, thus pruning not enough arcs. Additionally it is
outperformed by the more accurate BQ-Summary.

Table 1: Runtimes of simplification based on classical fixed thresh-
old, summary and statistical based percentile threshold and fixed
memory budget

Data set Fixed ε BQ-Summary Gaussian Budget
Foot 6.24 7.01 7.17 6.48

Meteor 0.42 0.48 0.44 0.44
Jet 46.81 48.03 48.98 47.2

0.5% 1% 5% 10% 20% 50%
p - desired percentage of remaining branches

1%
5%

10%

20%

50%

re
m

ai
ni

ng
 b

ra
nc

he
s

Statistical Estimation Accuracy
Foot
Meteor
Jet
Normal

(a)

0.5% 1% 5% 10% 20% 50%
p - desired percentage of remaining branches

1%
5%

10%

20%

50%

BQ-Summary Accuracy
Foot
Meteor
Jet
Normal

(b)

0 100 200 300 400 500 600
Number of finalized Arcs

0

10

20

30

40

50

Ar
c

pe
rs

ist
en

ce

 [%
 o

f m
os

t p
er

sis
te

nt
 a

rc
] Pruned

Retained

(c)

0 100 200 300 400 500 600
Number of finalized Arcs

0

10

20

30

40

50
Pruned
Retained

(d)

Figure 2: (a) and (b) show achieved estimation accuracy for the
Gaussian estimation and the bq-summary with different p on all
data sets. (c) and (d) show the first 600 (of ca. 400.000) deci-
sions/arcs for the Gaussian estimation and bq-summary. Each fi-
nalized arc is represented by a triangle in sequence of their arrival
in the stream on the x-axis and their (relative) persistence/weight
w on the y-axis. One can see some initial fluctuation, that stabilizes
towards a mostly constant threshold (for the rest of the 400.000
decisions). (c) and (d) stem from the Foot data set and p = 20%

Performance penalties for maintaining the data sets for fixed
memory limit and percentile estimation are shown in Table 1. All
figures given represent the average of 50 measurements.

6. Conclusion

For on-the-fly simplification and especially within large-data re-
lated scenarios, two alternatives to a user specified fixed persistence
threshold ε become both interesting and non-trivial to use: Simpli-
fying all but the N branches with highest persistence and simplify-
ing all but the p percent branches with the highest persistence of
the output. This allows for example to reduce the output size by
90% or force the output to fit into a fixed memory budget.

We introduced and evaluated algorithmic structures to guide sim-
plification with these alternative parameters. Both performance im-
pact and estimation accuracy showed satisfactory in the bench-
marks. For future research, replacing the Gaussian density esti-
mation by more sophisticated kernel density estimation techniques
might be an interesting topic.

7. Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - 398122172.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

78

K. Werner & C. Garth / Alternative Parameters for On-The-Fly Simplification of MergeTrees

References
[AN15] ACHARYA A., NATARAJAN V.: A parallel and memory efficient

algorithm for constructing the contour tree. 2015 IEEE Pacific Visual-
ization Symposium (PacificVis) (2015), 271–278. 1

[BG15] BIEDERT T., GARTH C.: Contour Tree Depth Images For Large
Data Visualization. In Eurographics Symposium on Parallel Graphics
and Visualization (2015), Dachsbacher C., Navrátil P., (Eds.), The Euro-
graphics Association. doi:10.2312/pgv.20151158. 1

[BLW12] BAUER U., LANGE C., WARDETZKY M.: Optimal topolog-
ical simplification of discrete functions on surfaces. Discrete & Com-
putational Geometry 47, 2 (Mar 2012), 347–377. doi:10.1007/
s00454-011-9350-z. 2

[CGL83] CHAN T. F., GOLUB G. H., LEVEQUE R. J.: Algorithms
for computing the sample variance: Analysis and recommendations.
The American Statistician 37, 3 (1983), 242–247. doi:10.1080/
00031305.1983.10483115. 3

[CKMS06] CORMODE G., KORN F., MUTHUKRISHNAN S., SRIVAS-
TAVA D.: Space- and time-efficient deterministic algorithms for bi-
ased quantiles over data streams. In Proceedings of the Twenty-fifth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (New York, NY, USA, 2006), PODS ’06, ACM, pp. 263–272.
doi:10.1145/1142351.1142389. 2

[CLLR05] CHIANG Y.-J., LENZ T., LU X., ROTE G.: Simple and opti-
mal output-sensitive construction of contour trees using monotone paths.
Computational Geometry 30 (02 2005), 165–195. doi:10.1016/j.
comgeo.2004.05.002. 1, 2

[CSA03] CARR H., SNOEYINK J., AXEN U.: Computing contour trees
in all dimensions. Computational Geometry 24, 2 (2003), 75 – 94.
Special Issue on the Fourth CGC Workshop on Computational Ge-
ometry. doi:https://doi.org/10.1016/S0925-7721(02)
00093-7. 1, 2

[CSEH07] COHEN-STEINER D., EDELSBRUNNER H., HARER J.: Sta-
bility of persistence diagrams. Discrete & Computational Geometry 37,
1 (Jan 2007), 103–120. doi:10.1007/s00454-006-1276-5. 2

[CSvdP04] CARR H., SNOEYINK J., VAN DE PANNE M.: Simplifying
flexible isosurfaces using local geometric measures. In Proceedings of
the Conference on Visualization ’04 (Washington, DC, USA, 2004), VIS
’04, IEEE Computer Society, pp. 497–504. doi:10.1109/VISUAL.
2004.96. 2

[CSvdP10] CARR H., SNOEYINK J., VAN DE PANNE M.: Flexible iso-
surfaces: Simplifying and displaying scalar topology using the contour
tree. Computational Geometry 43, 1 (2010), 42 – 58. Special Issue
on the 14th Annual Fall Workshop. doi:https://doi.org/10.
1016/j.comgeo.2006.05.009. 2

[CWSA16] CARR H. A., WEBER G. H., SEWELL C. M., AHRENS J. P.:
Parallel peak pruning for scalable smp contour tree computation. In IEEE
Symposium on Large Data Analysis and Visualization 2016, LDAV 2016
(2016), IEEE. 1, 2, 4

[ELZ02] EDELSBRUNNER, LETSCHER, ZOMORODIAN: Topological
persistence and simplification. Discrete & Computational Geometry 28,
4 (Nov 2002), 511–533. doi:10.1007/s00454-002-2885-2. 2

[EMP06] EDELSBRUNNER H., MOROZOV D., PASCUCCI V.:
Persistence-sensitive simplification functions on 2-manifolds. In
Proceedings of the Twenty-second Annual Symposium on Computational
Geometry (New York, NY, USA, 2006), SCG ’06, ACM, pp. 127–134.
doi:10.1145/1137856.1137878. 2

[GFJT17] GUEUNET C., FORTIN P., JOMIER J., TIERNY J.: Task-based
augmented merge trees with fibonacci heaps. In 2017 IEEE 7th Sym-
posium on Large Data Analysis and Visualization (LDAV) (Oct 2017),
pp. 6–15. doi:10.1109/LDAV.2017.8231846. 1, 2, 3, 4

[GFJV16] GUEUNET C., FORTIN P., JOMIER J., VIJAY: Contour forests:
Fast multi-threaded augmented contour trees. In IEEE Symposium on
Large Data Analysis and Visualization 2016, LDAV 2016 (2016), IEEE.
2

[HC19] HRISTOV P., CARR H.: W-structures in contour trees. 2

[LPG∗14] LANDGE A. G., PASCUCCI V., GYULASSY A., BENNETT
J., KOLLA H., CHEN J., BREMER P.: In-situ feature extraction of
large scale combustion simulations using segmented merge trees. In SC
(2014), IEEE Computer Society, pp. 1020–1031. 1, 2

[MSD∗12] MAADASAMY, SENTHILNATHAN, DORAISWAMY, HARISH,
NATARAJAN, VIJAY: A hybrid parallel algorithm for computing and
tracking level set topology. In HiPC (2012), IEEE Computer Society,
pp. 1–10. 1, 2

[MW14] MOROZOV D., WEBER G.: Distributed contour trees. In Topo-
logical Methods in Data Analysis and Visualization III (2014), pp. 89–
102. URL: http://escholarship.org/uc/item/9k99z474.
1

[PCMS05] PASCUCCI V., COLE-MCLAUGHLIN K., SCORZELLI G.:
Multi-resolution computation and presentation of contour trees. 2

[PG17] PATCHETT J., GISLER G.: Deep Water Impact Ensemble
Data Set. Tech. rep., 2017. LA-UR-17-21595. URL: https:
//datascience.dsscale.org/wp-content/uploads/
2017/03/DeepWaterImpactEnsembleDataSet.pdf. 4

[PSBM07] PASCUCCI V., SCORZELLI G., BREMER P.-T., MASCAREN-
HAS A.: Robust on-line computation of reeb graphs: Simplicity and
speed. ACM Trans. Graph. 26, 3 (July 2007). doi:10.1145/
1276377.1276449. 1, 2

[Pug89] PUGH W.: Concurrent maintenance of skip lists. Institute for Ad-
vanced Computer Studies, Department of Computer Science, University
of Maryland, College Park, CS-TR-2222.1 (1989). 2

[RS14] RAICHEL B., SESHADHRI C.: A mountaintop view requires
minimal sorting: A faster contour tree algorithm. CoRR abs/1411.2689
(2014). 2

[RWS∗17] ROSEN P., WANG B., SETH A., MILLS B., GINSBURG A.,
KAMENETZKY J., KERN J., R. JOHNSON C.: Using contour trees in
the analysis and visualization of radio astronomy data cubes. 1

[SZG∗08] SARKAR R., ZHU X., GAO J., GUIBAS L. J., MITCHELL
J.: Iso-contour queries and gradient descent with guaranteed delivery in
sensor networks. In INFOCOM 2008. The 27th Conference on Computer
Communications (2008), IEEE. 2

[TFL∗17] TIERNY J., FAVELIER G., LEVINE J. A., GUEUNET C.,
MICHAUX M.: The Topology ToolKit. IEEE Transactions on
Visualization and Computer Graphics (2017). URL: https://
topology-tool-kit.github.io/downloads.html. 3, 4

[TP12] TIERNY J., PASCUCCI V.: Generalized topological simplification
of scalar fields on surfaces. IEEE Transactions on Visualization and
Computer Graphics 18, 12 (Dec. 2012), 2005–2013. doi:10.1109/
TVCG.2012.228. 2

[TTF04] TAKAHASHI S., TAKESHIMA Y., FUJISHIRO I.: Topological
volume skeletonization and its application to transfer function design.
Graph. Models 66, 1 (Jan. 2004), 24–49. doi:10.1016/j.gmod.
2003.08.002. 2

[Tuk77] TUKEY J. W.: Exploratory Data Analysis. Addison-Wesley,
1977. 3

[vKvOB∗97] VAN KREVELD M., VAN OOSTRUM R., BAJAJ C., PAS-
CUCCI V., SCHIKORE D.: Contour trees and small seed sets for isosur-
face traversal. In Proceedings of the Thirteenth Annual Symposium on
Computational Geometry (New York, NY, USA, 1997), SCG ’97, ACM,
pp. 212–220. doi:10.1145/262839.269238. 1

[VP03] V. PASCUCCI K. C.-M.: Parallel computation of the topology of
level sets. Algorithmica 38(1) (2003), 249–268. 2

[WHDS04] WOOD Z., HOPPE H., DESBRUN M., SCHRÖDER P.: Re-
moving excess topology from isosurfaces. ACM Trans. Graph. 23, 2
(Apr. 2004), 190–208. doi:10.1145/990002.990007. 1

[ZT11] ZHOU J., TAKATSUKA M.: Importance driven contour tree
simplification. Internet Computing and Information Services, Interna-
tional Conference on 0 (09 2011), 265–268. doi:10.1109/ICICIS.
2011.169. 2

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

79

https://doi.org/10.2312/pgv.20151158
https://doi.org/10.1007/s00454-011-9350-z
https://doi.org/10.1007/s00454-011-9350-z
https://doi.org/10.1080/00031305.1983.10483115
https://doi.org/10.1080/00031305.1983.10483115
https://doi.org/10.1145/1142351.1142389
https://doi.org/10.1016/j.comgeo.2004.05.002
https://doi.org/10.1016/j.comgeo.2004.05.002
https://doi.org/https://doi.org/10.1016/S0925-7721(02)00093-7
https://doi.org/https://doi.org/10.1016/S0925-7721(02)00093-7
https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1109/VISUAL.2004.96
https://doi.org/10.1109/VISUAL.2004.96
https://doi.org/https://doi.org/10.1016/j.comgeo.2006.05.009
https://doi.org/https://doi.org/10.1016/j.comgeo.2006.05.009
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1145/1137856.1137878
https://doi.org/10.1109/LDAV.2017.8231846
http://escholarship.org/uc/item/9k99z474
https://datascience.dsscale.org/wp-content/uploads/2017/03/DeepWaterImpactEnsembleDataSet.pdf
https://datascience.dsscale.org/wp-content/uploads/2017/03/DeepWaterImpactEnsembleDataSet.pdf
https://datascience.dsscale.org/wp-content/uploads/2017/03/DeepWaterImpactEnsembleDataSet.pdf
https://doi.org/10.1145/1276377.1276449
https://doi.org/10.1145/1276377.1276449
https://topology-tool-kit.github.io/downloads.html
https://topology-tool-kit.github.io/downloads.html
https://doi.org/10.1109/TVCG.2012.228
https://doi.org/10.1109/TVCG.2012.228
https://doi.org/10.1016/j.gmod.2003.08.002
https://doi.org/10.1016/j.gmod.2003.08.002
https://doi.org/10.1145/262839.269238
https://doi.org/10.1145/990002.990007
https://doi.org/10.1109/ICICIS.2011.169
https://doi.org/10.1109/ICICIS.2011.169

