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Figure 1: An illustration of our technique on the HEPTANE volume data set. Left: a volume rendering of the HEPTANE data set using our
chosen transfer function. Center: the same HEPTANE data set, with our low-resolution and GPU-generated boundary geometry. We use this
boundary geometry to quickly and cheaply find where rays enter and respectively leave regions of non-zero opacity, thus focussing all volume
integration to only those non-empty regions. Right: heat map renderings of the HEPTANE data set, once with our technique disabled for the
left half of the image, and once with out technique enabled for the right half (blue is cheap, red is costly).

Abstract
We describe a technique for GPU and RTX accelerated space skipping of structured volumes that improves on prior work by
replacing clustered proxy boxes with a GPU-extracted triangle mesh that bounds the active regions. Unlike prior methods, our
technique avoids costly clustering operations, significantly reduces data structure construction cost, and incurs less overhead
when traversing active regions.

CCS Concepts
• Human-centered computing → Scientific visualization; Visualization techniques; • Computing methodologies → Ray
tracing; Graphics processors;

1. Introduction

Direct volume rendering is an important tool for visualizing 3D
scalar data. To shade a given ray, that ray is marched through the
volume by sampling the volume at discrete positions along this ray.
These sampled scalar values are fed into a so-called transfer func-
tion that maps the sampled scalar to a color and opacity. Successive
samples along the ray are then composited using the “over” oper-
ator. This ray marching process keeps on stepping, sampling, and
compositing until either a maximum opacity has been reached, or
the ray exits the volume, at which point the ray can be terminated.

There are many variations of this general ray marching scheme:
for example by using more than one transfer function and/or scalar
field, by using gradient shading in the color computation, etc. How-

ever, at its core, volume rendering is a process of using a transfer
function to make regions of the volume partly or fully transparent,
which in turn makes this rendering process useful for scientific vi-
sualization. By changing the transfer function interactively, users
can choose to either emphasize or hide different parts of the vol-
ume, and can thereby explore the 3D structure of the underlying
data.

The downside of direct volume rendering is that, if the chosen
transfer function ends up making large parts of the volume fully
or mostly transparent, rays passing through these regions end up
taking lots of samples—and thus are costly, without useful impact
on the image. Avoiding sampling such fully-transparent regions is
called space skipping, and in and of itself refers to an entire family
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of techniques. Of particular relevance to this paper is the technique
introduced by Ganter and Manzke [GM19], which leveraged the
then newly introduced RTX hardware ray tracing capabilities of
NVIDIA’s Turing architecture to realize fast, hardware accelerated
space skipping. In their approach, Ganter and Manzke build a set of
proxy boxes that represent active regions of the volume, then trace
each ray into a (hardware accelerated) BVH over these boxes using
OptiX, and only sample the volume within these proxy boxes.

Though this method is very effective in skipping empty regions,
it also has several drawbacks: In particular, whenever the user
changes the transfer function, proxy boxes over the voxels are com-
puted on the CPU, followed by a BVH build over these boxes. This
host-to-device proxy box transfer and BVH build hinder interac-
tive transfer function edits used to explore the volume. In addition,
during ray marching, only the BVH traversal part of the proposed
space-skipping rays is hardware accelerated, and the actual ray-
proxy box tests have to be done in a user intersection program,
requiring costly back-and-forth’s between hardware ray traversal
and user defined intersection programs (in particular if there are
several such boxes behind each ray).

In this paper, we introduce an extension of Ganter’s method that
follows the same core idea of using RTX accelerated rays for space
skipping, and that even starts with the same basic active grid mask
as their framework—but which significantly reduces these costs:
Instead of a set of boxes that cover all active regions, we generate a
low-resolution triangle mesh that describes only the boundary be-
tween active and inactive regions of the volume (See Figure 1). This
boundary mesh is small, and can be generated in a CUDA kernel,
entirely on the GPU. Since this boundary mesh is generated on the
GPU, we can avoid any expensive host-to-GPU data transfers, im-
proving RTX BVH construction performance during transfer func-
tion edits. Our generated space skipping mesh has a lower overall
depth complexity compared to the BVH over boxes used by prior
works (i.e., fewer ray-geometry intersections occur, and computed
intervals span longer ranges), and since the mesh only uses native
RTX data types (triangles), the entire space skipping process can
now be done with hardware acceleration, thus leaving the CUDA
cores free to do the actual volume sampling and shading.

2. Related Work

Volume rendering was first introduced by Drebin et al. [DCH88],
and has since been used in many variations. An overview of re-
cent work in this field can be found, for example, in a survey by
Beyer al. [BHP15]. One of the key technologies to accelerate vol-
ume rendering is to employ some sort of space skipping to avoid
sampling in regions that are known to only produce fully transpar-
ent samples; again we refer to Beyer al. [BHP15], and also Ganter
and Manzke [GM19], for an overview of different approaches.

This paper primarily improves upon previous work by Gan-
ter and Manzke [GM19], which used the recently introduced
hardware ray tracing technology on Turing to perform RTX-
accelerated space skipping. Before Ganter’s work, the state of the
art technique to perform space skipping was Hadwiger’s “Sparse-
Leap” [HAAB∗17], which builds a data structure of proxy bricks
that cover all regions of the volume that could produce non-

transparent samples, and then uses hardware rasterization and pro-
grammable OpenGL shaders to efficiently find and skip regions
of empty space. A key component of their technique is that their
shader code will automatically merge the potentially numerous ad-
jacent active bricks encountered along a pixel, thereby reducing the
depth complexity and divergence that treating those bricks individ-
ually would have incurred.

Instead of using rasterization, Ganter and Manzke proposed to
use the then newly introduced hardware ray tracing technology
(in their case, through OptiX [PBD∗10]) to find a similar set of
proxy bricks, and reported both higher performance and more sta-
ble frame rates than for SparseLeap, while also pointing out that
such hardware ray tracing based volume rendering (which unlike a
raster-based approach always operates on arbitrary, individual rays)
will also allow for easier integration into surface-based renderers.
Instead of merging multiple successive bricks along a ray into a
single segment they instead reduce depth complexity by greedily
pre-merging neighboring bricks in a CPU-sided clustering step.

Our algorithm is based on computing a boundary mesh to de-
termine non-empty sampling intervals. As such, it draws motiva-
tion from unstructured volume rendering where rays are intersected
with the outside facing triangles of boundary tetrahedra to deter-
mine if ray segments are inside or outside the volume [BKS97].

Using hardware ray tracing for space skipping has also been pro-
posed by Morrical et al. [MUWP19]. In their approach the authors
compute similar proxy boxes over unstructured data, and also use
rays to locate the active boxes along a ray. Unlike Ganter, their
framework proposed to tessellate the boxes, which avoids the over-
head of calling a user defined intersection program. Morrical et al.
also proposed to use the leaves of a KD tree rather than proxy bricks
derived from regular grids to account for the unstructured nature of
their data.

Hardware accelerated ray tracing today is available through sev-
eral different APIs and libraries. For our implementation we use
OptiX [PBD∗10] (more specifically, version 7.2), but the same
algorithms also map to other APIs such as DirectX Ray Tracing
(DXR) [Mic18] or Vulkan Ray Tracing (VKR) [Gro20].

3. Motivation

To understand the motivation behind our method, we will first sum-
marize the prior techniques which use ray tracing hardware for
space skipping, and discuss their imposed limitations.

The approach by Ganter and Manzke begins by interpreting the
volume as a collection of smaller-resolution bricks of K×K×K
cells each. Based on the chosen transfer function, each of these
bricks can be classified as being either active or inactive, result-
ing in what Ganter calls an Active Brick Mask for the underlying
volume. Ganter then proposes to build a BVH over only the active
bricks, and then use ray tracing to iterate through all bricks along
a given ray, and sample the volume only within these boxes. The
approach by Morrical et al. is similar, but their approach constructs
a BVH over all bricks, active or inactive. During rendering, they
check if a proxy brick intersected by a ray is marked as active be-
fore integrating.
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As pointed out by Ganter, these approaches can result in many
bricks that must be traversed by each ray (what Ganter calls depth
complexity). To reduce this depth complexity, Ganter performs a
clustering step that greedily merges neighboring active bricks.

For these methods, we observe the following costs:

clustering: The region clustering performed by Ganter reduces
both BVH cost and depth complexity, but comes at a price. Ac-
cording to Ganter, at their finest brick size of K = 8, their clus-
tering stage costs up to 112 ms for the FLOWER data set, and over
a second for the SUPERNOVA. For the SUPERNOVA, even values
of K = 16 and K = 32 still cost 107 and 13ms, respectively.

BVH build time: Once the clustering stage has produced a set of
boxes, OptiX has to rebuild the BVH. We could not find actual
measured performance numbers for this rebuild in Ganter’s pa-
per (likely because this cannot easily be independently measured
in the version of OptiX Ganter used); however, it is worth noting
that one major cost factor in building this BVH will be that boxes
have to first be transferred from host to GPU.

remaining depth complexity: Though Ganter reports that clus-
tering reduces the number of boxes by over 2×, even with this
savings, there can still be many boxes along a ray. If neighboring
rays intersect different sets of boxes with different numbers of
samples per box, warp divergence will also quickly become an
issue (this is why Sparseleap merges adjacent cell targets).

traversal cost: During rendering, rays will use hardware acceler-
ated ray traversal units; however, in the case of Ganter’s user-
geometry, hardware acceleration only affects BVH traversal. For
user primitives like boxes, the ray tracing pipeline must interrupt
ray traversal and call a CUDA intersection program for every box
encountered by the ray, leading to costly back-and-forth between
ray tracing cores and shader cores.

Some of these costs (such as traversal cost and depth complexity)
apply to every rendered frame, whereas others apply only when the
transfer function changes.

4. Space Skipping using Active Region Boundary Geometry

The core idea of our approach is to holistically address all of these
sources of overhead together, by replacing the hierarchy of 3D
bricks with a set of triangles that cover only the boundary surface
between active and inactive bricks. This boundary surface mesh has
several beneficial properties over individual bricks:

• the resulting boundary surface will have relatively few triangles,
and can be updated and rebuilt quickly
• as opposed to the previous costly brick clustering step, generat-

ing this boundary surface is trivially parallelizable, and can be
done in a CUDA kernel on the GPU. This avoids any host-side
bottlenecks and host-GPU data transfers
• since we only generate the boundary between active and inac-

tive bricks, the problem of encountering multiple active bricks
disappears, and depth complexity is reduced to how often a ray
transitions between active and inactive regions. This reduces the
number of space-skipping rays being cast, as well as the warp
divergence between neighboring pixels
• since this surface is composed of purely hardware-accelerated

primitives (BVH traversal and triangles), space-skipping rays

no longer require costly CUDA intersection tests, reducing per-
pixel cost and leaving the CUDA cores for volume integration

In the following section, we briefly describe our approach, which
can be classified into two steps: Those that get executed exactly
once at start-up, and those that get executed every time the transfer
function gets modified.

4.1. Initial Set-Up

Our initial set-up consists of two operations: first, we create the
grid of macrocells and corresponding active bricks mask, and after
that we pre-allocate and pre-initialize the memory required for the
triangle boundary mesh that we will generate later on.

4.1.1. Data Macrocell Grid, and Active Cells Mask

We start by building the same input data structure for active brick
classification as Ganter and Manzke: Just like in his implementa-
tion, we support different brick sizes of K×K×K input voxels per
leaf. By default we use K = 16. Throughout the rest of this paper,
we call this our macrocell grid, and call each cell therein a macro-
cell.

Assuming an input model of Vx×Vy×Vz voxels, the size of this

macrocell grid is Mx×My×Mz macro cells, with Mx =
⌈

Vx
K

⌉
, etc.

For each macrocell, we store the minimum and maximum scalar
values of all the input voxels that map to this cell. We currently
compute this macrocell grid on the host, then upload it to the GPU.
To later hold the active brick masks, we also allocate GPU memory
for a same-sized grid of booleans.

4.1.2. Preallocating Triangle Vertex and Index Arrays

Next, we allocate device-side memory for the vertex and index ar-
rays that our GPU-side boundary mesh generation will later write
into. We do not yet know how many triangles the surface will be
made of, as this varies with the chosen transfer function; however,
we can derive an upper bound on this triangle count, as we know
the boundary geometry will always lie on faces of the macrocells.

For the boundary mesh vertices, we generate the list of all
NvtxMax = (Mx +1)× (My +1)× (Mz +1) possible macrocell grid
vertices (using CUDA float3s), and have the later triangle gen-
eration produce indices that reference this vertex array. As a result,
the final vertex array will contain some vertices not used by any
triangles in the mesh, but this only comes at a cost to memory, and
ultimately means we later do not have to track which vertices do vs
do not get used.

For the triangles, we can compute the upper limit NtriMax on how
many triangles could possibly be generated. We use this limit to
pre-allocate an array of int3 vertex indices. We also allocate a
single device-side numTriangles counter that the triangle gen-
eration phase can later use as an atomic offset for where to write
newly generated triangles to.

Pre-allocating the upper bound of all possible vertices and trian-
gles sounds excessive; however, we point out that at K = 8, K = 16
and K = 32, these upper bounds are three to five orders of magni-
tude lower than the number of voxels in the volume.
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HEPTANE FLOWER DNS(4X) LLNL
3023 (float) 10243 (uint8) 2560×1920×384 (float) 20482×1920 (uint8)

Rendered Image

with overlayed space-skipping proxy geometry

with heat map (left half: no space skipping, but ERT; right half: with space skipping and ERT

Figure 2: The four data sets we use for our evaluation: heptane, flower, DNS-4 (a 4× sub-sampled version of the full DNS data set),
and the LLNL Richtmyer-Meshkov instability data set. Top row: direct volume rendering with the transfer function used during the evaluation.
Center row: with our space-skipping geometry overlaid over the volume rendering. Bottom: the same (slightly zoomed out for context), with
a heat map showing cudaTimer time per pixel with our space skipping method turned off (left half of each image) and with (right half)
respectively turned on (right half).

4.2. Space Skipping Data Structure (Re)build

The shape of this boundary mesh depends on the actual transfer
function being used, and thus this mesh must be rebuilt every time
the transfer function changes.

4.2.1. Active Cell Classification

The first step in rebuilding the boundary mesh is to recompute the
active bricks mask from the macrocell grid. We do this by calling
a CUDA kernel where each thread maps to exactly one macrocell.
The respective CUDA thread computes which part of the transfer
function this macrocell’s stored value range maps to, and checks if
any of these transfer function values have a non-zero alpha. This
boolean result is written into the active bricks mask. This process
is similar to the one used by Ganter and Manzke, except that our
brick mask is stored and updated entirely on the GPU.

4.2.2. Boundary Triangle Generation

Next, we clear the device-side numTriangles counter, and run
three templated copies of a CUDA kernel which generates all trian-
gles with X, Y, and Z orientation, respectively. In the first instance,

we look at all faces of the macrocell grid that are perpendicular
to the X axis (there are (Mx + 1)×My×Mz of those), and run a
CUDA kernel where each thread maps to one of those faces.

For each such face, the corresponding thread computes the in-
dices of the two macrocells sharing that face, and then uses those
indices to determine if the respective macrocells are active or not.
Indices that would map to outside the macrocell (which can occur
for faces on the outside of the volume) get treated as if the macro-
cell was inactive.

The given face is a boundary face if and only if one of the ad-
jacent cells is active, and the other is not. If this is not the case,
the kernel returns without generating any triangles. Otherwise, the
thread computes the indices of the four vertices that span the cur-
rent face, and uses those four indices to generate two triangles that
span that face. The winding order of these triangles are set to point
away from the active towards the inactive cell. The thread then al-
locates storage in the triangle buffer by atomically increasing the
numTriangles by two, and then writes the generated triangle
indices into the proper location of the indices buffer.

We then call this face generating kernel two more times—once
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for the Y , and once for the Z direction—and finally download (only)
the value of the numTriangles counter to the host. Macrocells,
active brick mask, and triangles never leave the GPU.

CUDA/C++ pseudo code for the template to identify boundary
cells and insert triangles into the boundary mesh for one dimension
is given in Listing 1.

1 template <int DIM>
2 generateBoundaryMeshKernel(int &numTriangles,
3 int3 *triangles,
4 bool activeCells[][][])
5 {
6 // Current and previous macro cell indices
7 int3 curr = getGlobalThreadIndex();
8 int3 prev;
9 if constexpr(DIM==0)

10 prev = curr - { 1, 0, 0 };
11 else if constexpr(DIM==1)
12 prev = curr - { 0, 1, 0 };
13 else if constexpr(DIM==2)
14 prev = curr - { 0, 0, 1 };
15

16 // Only proceed if at boundary
17 if (activeCells[prev]==activeCells[curr])
18 return;
19

20 // Get vertex list indices for the boundary
21 // quad connecting prev and curr macro cells
22 int vi[4] = getBoundaryQuad<DIM>(currIndex);
23

24 // Generate two more triangles and
25 // append to global list
26 int triID = atomicAdd(&numTriangles,2);
27

28 if (activeCells[prev]) {
29 // active boundary, facing from prev to curr
30 triangles[triID+0] = { vi[0], vi[1], vi[2] };
31 triangles[triID+1] = { vi[0], vi[2], vi[3] };
32 } else if (acticeCells[curr]) {
33 // active boundary, facing from curr to prev
34 triangles[triID+0] = { vi[1], vi[0], vi[2] };
35 triangles[triID+1] = { vi[2], vi[0], vi[3] };
36 }
37 }

Listing 1: CUDA/C++ pseudo code identifying boundary cells and
generating boundary surfaces. The templated kernel is called once
per X, Y, and Z orientation.

4.2.3. BVH Rebuild

Lastly, we update the triangle count and index array pointer of the
OptiX triangle geometry to reference our generated mesh, and ask
OptiX to rebuild the corresponding BVH. Next, we compact the
BVH to conserve memory, and build with the “optimize for traver-
sal” flag rather than the “optimize for build time” flag. Omitting
compaction and asking for a build-time optimized BVH (as well as
looking into refitting rather than rebuilding) could further improve
our BVH construction performance, but we found these optimiza-
tions to be unnecessary.

4.3. Space Skipping during Volume Rendering

During rendering, volume rays can use this boundary mesh data
structure to find where the ray enters and respectively exists any
active regions. First, each ray is traced against this triangle mesh,
where the corresponding closest hit program records both the hit
distance thit to the boundary mesh as well as the OptiX “hit kind”
flag, which specifies whether the intersected triangle was hit on its
front or back side (both of these values are easily available in the
closest-hit program).

If the ray does not hit any geometry at all, we know that ray will
not traverse any active volume regions, and thus we terminate the
ray. If the ray does hit a back-facing triangle, we know the ray must
be inside the volume, and know the next segment to integrate is
[t0, t1] = [0, thit ]. Otherwise, we know the ray enters the volume at
t0 = thit , and we trace the same ray again with ray.tmin=t0 to
determine the exit distance t1.

Once the [t0, t1] interval has been determined, we perform vol-
ume integration over this interval. In our case, we use both gradient
shading and early ray termination, but we note that how exactly
this sampling and shading is done is completely orthogonal to our
technique.

After integrating the given interval, we check if the ray has ter-
minated early, and if so, return. Otherwise, we iterate by tracing
another ray from t1 to find any other potential segment to integrate,
and so on.

4.4. Implementation Notes

The above algorithm can be implemented in a variety of ways and
APIs. For our implementation, we chose to use CUDA for the ac-
tive mask generation and boundary mesh generation kernels, and
OptiX 7 as our ray tracing API.

We use OptiX through the OWL library [Wal20], and in particu-
lar use OWL’s CUDA inter-op capabilities to interface with CUDA;
e.g., the vertex and index arrays are created as OWL buffers, with
the CUDA kernels writing into these buffers. For the acceleration
structure, we use an OWLTrianglesGeom for the triangle mesh,
and an OWLTrianglesGroup for the corresponding BVH. Since
OWL does not support 3D textures, we create the 3D volume tex-
ture in CUDA, and pass that texture to an OptiX raygen program as
an OWL_USER_TYPE(cudaTextureObject_t).

All actual rendering in our code is performed in a raygen pro-
gram that generates and traces the rays into the volume and bound-
ing mesh geometry. The resulting space skipping ray segments
march through the volume, sampling a 3D texture, computing local
gradients, and transferring samples using transfer function texture
look-ups. To reduce aliasing, we use interleaved sampling [KH01],
and we use a fixed sampling rate of dt = 0.5 (i.e., an average of
two samples per cell). For the ray-surface intersection, we use a
closest hit program that uses per-ray data to pass hit distance and
triangle orientation back to the raygen program. Since we know
that no any-hit program is being used, we trace the ray with the
DISABLE_ANYHIT flag.

For our evaluation, we also include two reference ray marchers.
The first reference ray marcher disables the space-skipping rays,
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where volume rays march over the entire volume bounds, sam-
pling through potentially inactive regions. The second reference ray
marcher follows the technique presented by Ganter and Manzke,
where space skipping rays march over active proxy-boxes using
OWLUserGeom, where BVH traversal is done in hardware and in-
tersection testing is done in a CUDA intersection program. In all
other aspects, all ray marchers are exactly the same, including the
use of early ray termination, and avoiding gradient computations
for fully-transparent pixels.

The raygen program also allows for super-sampling with an in-
teractively controllable number of samples per pixel, performs pro-
gressive refinement using an accumulation buffer, and also supports
various useful helper tasks such as overlaying boundary surface
intersections, a performance heat map, etc. For GUI and transfer
function editing, we use the freely available cuteeOWL library that
comes with OWL [WZ20]. After acceptance, our implementation
will also be made publicly available.

5. Results

For our evaluation, we used an NVIDIA RTX 8000 GPU with 4,608
CUDA cores (boost clock of 1.7GHz), hardware ray tracing sup-
port, and 28 GB of GDDR6 memory. For reference, the PC that
this GPU is in has a 2.2 GHz, 4-core Intel CPU, 128 GBs of RAM,
and runs Ubuntu Linux 18.04, CUDA 10.2, NVIDIA driver 440.44,
and OWL version 1.0.5.

To evaluate our framework, we use four widely used volume data
sets as shown in Figure 2. To facilitate an easy comparison to Gan-
ter and Manzke, we include the FLOWER data set. We could not
locate a copy of the larger SUPERNOVA data set, but have replaced
this with two other data sets of similar to larger size (DNS(4X) and
LLNL).

In our comparison we focus on comparing to Ganter and
Manzke [GM19], and refer readers to his paper for a detailed com-
parison to SparseLeap [HAAB∗17].

5.1. Data Structure Build/Update Time

The main bottleneck for Ganter and Manzke’s framework was the
time to update the data structure, dominated by the time to perform
CPU-side clustering, and for uploading and rebuilding the BVH. In
tables 1 and 2 we report the corresponding timings for our bound-
ary mesh method and Ganter’s, for different macrocell sizes (our
default is 16).

Compared to Ganter’s approach, our active brick classification
can be done entirely on the GPU, and its cost (Tt f ) becomes negligi-
ble. Clustering time TC does not apply any more in our framework,
and its equivalent—triangle extraction time Ttris is in the low mil-
liseconds range even for the finest tested macrocell grid. BVH con-
struction is currently the biggest cost in our framework, but this is in
the low milliseconds even for our largest data sets and finest macro
cell resolutions. Corresponding BVH build times from Ganter’s ap-
proach are approximately equal to ours for smaller datasets, but for
larger datasets we see significant performance improvements.

When adding all different update costs together, our total build

model #cells #active #tris Tt f Ttris TBV H Ttotal

macro-cell size K = 8
HEPTANE 54.9K 12.3K 18.1K 42µs? 54µs? 1.6ms 2.1ms
FLOWER 2.1M 180K 318K 134µs? 115µs? 4.8ms 5.4ms
DNS(4X) 3.7M 660K 1.5M 206µs? 225µs? 12.3ms 13.1ms
LLNL 15.7M 2.9M 4.2M 998µs? 904µs? 28.2ms 30.4ms

macro-cell size K = 16(de f ault)
HEPTANE 6.9K 2K 3.4K 47µs? 66µs? 918µs? 1.4ms
FLOWER 275K 33K 78K 59µs? 57µs? 3.0ms 3.6ms
DNS(4X) 461K 122K 366K 67µs? 69µs? 5.3ms 5.8ms
LLNL 1.97M 475K 422K 153µs? 119µs? 5.4ms 6.0ms

macro-cell size K = 32
HEPTANE 1K 358 856 37µs? 44µs? 589µs? 1.0ms
FLOWER 33K 6.8K 19K 37µs? 45µs? 1.8ms 2.2ms
DNS(4X) 58K 26K 98K 40µs? 48µs? 2.8ms 3.2ms
LLNL 246K 69K 54K 52µs? 59µs? 2.3ms 2.8ms

Table 1: Statistical data and timings for the different stages of
building our data structure: Tt f is time for active cell classification
(based on transfer function); Ttris time for boundary triangle mesh
generation; TBV H time to rebuild the OptiX BVH; and Ttotal is to-
tal data structure rebuild time. (?: Any timings < 1ms should be
considered with caution, and might be better interpreted as simply
“less than one millisecond”)

model Tt f Ttris TBV H Ttotal

macro-cell size K = 8
HEPTANE 39µs? 3.3ms 2.1ms 5.9ms
FLOWER 142µs? 53.2ms 5.0ms 58.7ms
DNS(4X) 256µs? 136.7ms 11.6ms 149.1ms
LLNL 991µs? 641.5ms 44.2ms 687.2ms

macro-cell size K = 16(de f ault)
HEPTANE 42µs? 528µs? 1.3ms 2.4ms
FLOWER 55µs? 9.9ms 2.7ms 13.1ms
DNS(4X) 64µs? 25.6ms 4.4ms 30.4ms
LLNL 154µs? 95.1ms 8.9ms 104.5ms

macro-cell size K = 32
HEPTANE 37µs? 101µs? 1.0ms 1.6ms
FLOWER 38µs? 1.8ms 1.4ms 3.6ms
DNS(4X) 46µs? 5.8ms 2.5ms 8.8ms
LLNL 52µs? 14.1ms 3.1ms 17.7ms

Table 2: Statistical data and timings for the different stages of
building the data structure by Ganter and Manzke: Tt f is time for
active cell classification (based on transfer function); Ttris time for
boundary triangle mesh generation; TBV H time to rebuild the OptiX
BVH; and Ttotal is total data structure rebuild time. (?: Any timings
< 1ms should be considered with caution, and might be better in-
terpreted as simply “less than one millisecond”)

time remains well within an interactive range. Even for our default
macrocell size of K = 16, our total build time never exceeds 3.5
ms.
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Method Base Ganter Ours
mc-size NA K=8 K=16 K=32 K=8 K=16 K=32

1 ray per pixel
HEPTANE 34 79 81 67 100 93 71
FLOWER 14 95 88 54 154 111 64
DNS(4X) 13 24 25 19 40 34 23
LLNL 8 23 27 19 34 40 43

4 rays per pixel
HEPTANE 9 17 18 15 29 22 18
FLOWER 3 26 18 11 36 23 13
DNS(4X) 3 5 4 3 9 7 5
LLNL 2 4 4 5 7 8 9

Table 3: Frames-per-second comparison for the four models
shown in Figure 2, using a resolution of 3840× 2160 and at dif-
ferent macrocell sizes.

Base Ganter Ours
space-skip off on on on on
force rebuild N/A off on off on
HEPTANE 34 81 68 93 84
FLOWER 14 88 41 111 83
DNS(4X) 13 25 14 34 28
LLNL 8 27 7 41 32

Table 4: Impact of space skipping and rebuild time on render per-
formance, for the four models shown in Figure 2, using a resolution
of 3840×2160.

5.2. Render Time

To evaluate our method’s impact on render performance during in-
teractive volume exploration, we also measured our sample volume
renderer’s frame rate using the high-quality settings and the con-
figurations shown in Figure 2. We took measurements once with
space skipping completely disabled (i.e., geometry is neither ex-
tracted, nor are any space skipping rays being traced), once with
Ganter and Manzke’s method, and once with our method enabled.
For reference we also report performance if data structure update is
performed every frame.

As can be seen from these experiments (see Figure 3, Tables 3
and 4) our method always provides significant speedups over the
reference method, even if the cost for data structure updates is fully
factored in. In particular, even for our largest models rebuilding
the data structure, where Ganter’s method results in hundreds of
milliseconds of build time, we only see a small impact on total
frame rate. All models we tested remain fully interactive even if
data structure rebuilding is forced every frame. A visual illustration
of the impact of space skipping can also be seen in the heat-maps
(with and without space skipping) provided in the bottom row of
Figure 2.

6. Summary and Conclusion

We have presented a method that builds on the same basic ideas
as prior works—namely, to use RTX accelerated ray tracing to re-
alize space skipping in volume rendering—but modify these tech-
niques to significantly reduce several sources of overhead that prior
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Figure 3: Frames-per-second comparison, visualization of the re-
sults presented in Table 3.

techniques suffer from. In particular, we build on the same ba-
sic macro-cell/active brick mask as Ganter and Manzke, but re-
place their BVH over active brick regions with a BVH over only
the boundary between active and inactive regions. This results in a
much lower depth complexity and fewer (and cheaper) rays traced
for space skipping.

In addition, we avoid clustering completely, and can easily ex-
tract both active brick mask and boundary geometry natively on
the GPU, at significantly lower cost. During rendering, our method
will integrate over exactly the same regions as prior methods, but
at a lower cost to find these active regions, and with significantly
lower cost of rebuilding the data structure, maintaining highly in-
teractive rates even when the user modifies the transfer function.

Our biggest cost factor during data structure update currently is
the BVH build time. Reducing this—e.g., by employing refitting—
is an obvious avenue for future work. Far more interesting however
is to evaluate if the same method can also be applied to adaptive
sampling, or for non-structured data such as tetrahedral meshes or
adaptive mesh refinement data.
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