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Iterative discrete element solver for efficient snow simulation
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Figure 1: 1M wet snow particles simulated and interacting with a complex geometry consisting of 323K static boundary particles at a time
step of 1 ms using our GPU-based method, supporting both simulation and visualization at 20 fps.

Abstract
This paper presents a novel Discrete Element Method (DEM) on the GPU for efficient snow simulation. To this end, our
approach employs an iterative scheme on particles that easily allows the snow density to vary vastly for simulation while still
maintaining a relatively large time step. We provide computationally inexpensive ways to capture cohesion and compression in
the snow that enables us to generalize the behavior of various kinds of snow (like dry, wet, etc.) by varying physical parameters
within the same simulator. We achieve a speed-up of nearly eight times with one million snow particles over the existing real-
time method, even while dealing with scenes containing complex object boundaries. Furthermore, our simulator not only retains
stability at these large time steps but also improves upon the physical behavior of the existing method. We have also conducted
a user evaluation of our approach, where a majority of the participants voted in favor of its realism value for computer games.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Physics-based snow simulation is a challenging task. This is be-
cause snow is a complex material involving a multitude of factors
that affect its behavior, such as cohesion, compression, and thermo-
dynamics. At the same time, snow forms an important component
in many video games (Red Dead Redemption 2, Snow Runner etc.)
and other such applications. Recently offline methods have been

†prashant.goswami@bth.se
*all authors have an equivalent contribution

developed in computer graphics (CG) that can achieve impressive
snow simulation. This includes both Eulerian [SSC∗13] and La-
grangian [GHB∗20] approaches. However, most of the existing im-
plementations come with the constraint of a high computational
burden, taking anywhere from a few seconds to even a few minutes
to finish a single frame. This renders them unsuitable for use in any
real-time applications. Therefore, it is common that the behavior of
snow in such applications is usually captured with the help of mesh
deformation or other procedural methods instead.

Efficient simulation methods are capable of capturing vari-
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ous physical phenomena in CG. This includes fluids, gases, de-
formable and rigid bodies (including sand) among other materials
[MMCK14, MMC∗20]. Large time steps for divergence-free fluid
simulation are shown to accelerate computation in [BK17]. GPU
porting has demonstrated the positive aspect of speeding up simu-
lations that are inherently parallel in their nature [GEF15,GSSP10].
However, with the exception of Goswami et al. [GMH19], no other
method has demonstrated the dynamic behavior of snow for CG
purposes in real-time computation. However, a key drawback of
their method is the low time step it is constrained to take. This ne-
cessitates running several folds more of physics iterations, thereby
affecting the overall efficiency adversely.

In this paper, we present a novel particle-based, efficient snow
DEM simulation method on the GPU. To this end, the proposed
method employs an iterative solver, which is inspired by the
predictive-corrective scheme in [SP09] in principle, albeit with sig-
nificant differences. The main contributions of our method are:

• To present an efficient DEM iterative snow simulator on the GPU
that can handle reasonably large time steps while maintaining
stability, and real-time to interactive frame rates.
• To efficiently capture the snow compression and bonding behav-

ior, thereby allowing behavior ranging from the soft snow to that
of the hard snow (dry, wet) and tending to the ice.
• To efficiently incorporate boundary handling with solid objects,

thereby allowing complex snow-object interactions through two-
way coupling.
• To validate the visual realism value of our approach with the help

of a user study.

We achieve a significant speed-up over the existing real-time
method. For one million snow particles together with over a quarter
of a million of boundary particles, our iterative framework is nearly
8 times faster than the base simulator [GMH19] and the simulation
is still interactive. Furthermore, our simulation improves upon the
behavior of this base simulator. With the help of static boundary
particles, our solver can easily handle complex snow-object inter-
actions and two-way coupling, which is a crucial requirement in
most games and other similar applications.

The presented technique could be suitable for games and other
virtual applications, where a certain amount of accuracy can be
traded-off for the sake of efficiency. Furthermore, its efficiency and
simplicity make integration easier with the other dynamic compo-
nents in the game world. In order to sustain a high frame rate, we
have introduced certain approximations in our solver. To this end,
we validated the proposed technique through a perceptual evalua-
tion consisting of 31 participants who found the visual value of our
approach a good fit for the computer games. Furthermore, we pro-
vide detailed exposition and analysis of our results for the proposed
method.

The remainder of this paper is organized as follows. Sec. 2 dis-
cusses the existing related work in the field. In Sec. 3, we first
briefly introduce the foundations of the base method, leading to
a detailed exposure of the proposed approach in Sec. 4. Sec. 5 cov-
ers the remaining implementation details together with a thorough

exposition of the visual results, comparison with the base method,
and other related analyses, including the user evaluation.

2. Related Work

Snow is frequently simplified in real-time applications, and often
captured using procedural methods like heightmaps [DGP16,TF12,
CEG∗18]. Heightmaps or similar techniques can be also be used
to simulate different stages of snow accumulation [HM09, FG11,
RLD15, JP20]. Particle-based methods for snow animation have
also been developed in CG. Research on real-time particle-based
methods [FZ12, TZWZ09, YLJ11] explore enhancements of real-
istic virtual 3D scenes by simulating snowfall. These simulations
explore snow at a particle-level compared to heightmaps, which
only simulate the surface of the snow. However, only the external
forces such as gravity and wind are accounted for, not the criti-
cal internal factors such as cohesion between the particles or the
compressibility of the snow particles. Additional parameters need
to be considered to further increase the immersion of games and
other real-time applications incorporating snow. These simulations
are computationally expensive and therefore, often cannot execute
in real-time.

Gissler et al. [GHB∗20] present a feature-rich snow simulation
approach based on an implicit compressible SPH solver to simulate
parameters such as deformation, breaking, compression, and phase
transition. The simulator can handle large time steps and a more ex-
tensive set of scenarios than the hybrid Eulerian/Lagrangian meth-
ods, specifically smaller volumes of snow. These smaller volumes
allow the simulator to capture both snowfall and accumulation in
combination with the scenarios that the hybrid Eulerian/Lagrangian
methods allow. Hybrid structure in [WF15] employs a combination
of particles and springs to model and simulate brittle snow. Stom-
akhin et al. [SSC∗13] propose a hybrid Eulerian/Lagrangian Mate-
rial Point Method (MPM) which is used to simulate snow. This sim-
ulation captures many snow parameters that allow for a large set of
different snow behaviors, ranging from dry and powdery to wet and
compressed snow. MPM is temporally adapted using regional time
stepping in [FHHJ18] and ported on GPU in [WQS∗20]. These pa-
pers further establish that impressive snow interactions can be sim-
ulated using particles, albeit not in real-time.

DEM has also been used to capture physically accurate behav-
iors of granular materials. Mao et al. [MWXC04] utilize DEM with
particles represented as spheres to simulate particle damping using
efficient collision detection. Their simulation results are validated
by physical experiments, which are used for comparison. Granular
materials like sand have also been simulated [AO11, IWT12] with
the help of predictive-corrective incompressible SPH (PCISPH)
method [SP09].

Macklin et al. [MMCK14] have proposed a unified real-time
simulator (FleX) with capabilities of simulating materials such as
gases, liquids, deformable solids, rigid bodies, and cloth. Their
framework implements several materials in real-time that were pre-
viously implemented in offline solutions because of their complex-
ity; however, snow is not one of them. This framework is a part of
Nvidia’s physics engine PhysX, which has been incorporated into
multiple games [NVI14]. Machine learning (ML) has recently been
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used to accelerate the physical simulations [SGGP∗20, TKC21] in
CG. However, most of these ML methods require a base simulator
whose behavior is learnt and approximated by the neural network.
Therefore, these ML methods can benefit from a more efficient or
evolved physics-based solver.

Hagenmüller et al. [HCN15] model hardened snow under de-
formations with a granular description using DEM. The research
models uniaxial confined compression while using multiple de-
formation phases to determine the elastic or plastic behavior of
the snow. This approach was successfully adopted in [GMH19],
wherein snow can be simulated in real-time for low to medium par-
ticle counts with some physical approximations. However, a major
limitation of their technique was the constraint of using a small
time step to maintain stability. Our work aims to provide a simula-
tor incorporating complex snow behavior, which could be useful in
games and other real-time applications.

3. Base method

In this section, we briefly recap the fundamentals of the base
method in [GMH19]. This base method employs a simple DEM
particle-based approach as against SPH kernel interpolation. Each
particle has a mass m and radius r, that lies in the range of ri
≤ r ≤ rs. A particle with radius rs is considered to be com-
posed of pure snow (ρs = 100kg/m3), whereas with ri as pure ice
(ρi = 900kg/m3). Starting with the snow state as the particle loses
its entrapped air, its state is a mix containing η proportion of snow
and (1-η) proportion of ice, while still retaining the initial mass. η

itself is determined with the help of the current particle radius as
η = r−ri

rs−ri
. All the physical properties of a particle (Young’s mod-

ulus Y , normal cohesion σ) are computed by linearly interpolating
them on the properties of soft snow and ice, using determined η.

The basic steps involved in the base method are laid out in Alg. 1.
The neighborhood set is determined similar to [Gre10] using parti-
cle index hashing on a virtual grid. Only particles touching the par-
ticle in question constitute its neighborhood set. This reduces the
number of neighbors for each particle drastically when compared
to SPH. The base method extends the cohesion model provided by
Hagenmüller [HCN15], which focuses only on the hardened snow.
This extension allows the particles to range between soft snow and
ice by interpolating properties based on the densities of particles,
as explained above.

Air drag on each particle is computed using the standard air drag
force equation [WR27] (Eq. 1), where Cd = 0.05 is the drag coeffi-
cient, ρ = 1.4 is the density of air,~vvv is the particle’s velocity and A
its surface area.

~fff air =−
1
2

Cdρ(~vvv ·~vvv)A ~vvv
|~vvv| (1)

The cohesive normal force, based on a linear spring model follow-
ing Hooke’s law, is applied along the contact normal between in-
teracting snow particles p and q, which keeps the snow particles
together and can be seen in Eq. 2.

~fff n =

{
−Yprp+Yqrq

2 δ~nnn −Yprp+Yqrq
2 δ < 4

σnpr2
p+σnqr2

q
2

0 (Cohesion Broken) otherwise
(2)

The formula is dependent on the particle overlap δ, radius r,
Young’s modulus Y , contact normal~nnn and the normal cohesion σn.
The cohesive force can be either attractive or repulsive depending
on the overlap (δ) between particles being negative (touching or
in vicinity) or positive (penetrating), respectively. When the force
exceeds the maximum force threshold, cohesion is broken, and no
force is applied. In addition, the particles are influenced by a fric-
tional shear, which gives cause for a tangential force. The tangential
force is formulated in Eq. 3.

~fff ttt = (~uuu/|~uuu|)|~fff nnn|tan(ϕ) (3)

The angle of repose ϕ is the steepest angle a pile can form for gran-
ular material and~uuu is the shear displacement. For the sake of sim-
plifying computation, cohesive bonds are created based only on the
normal force. The bonds between particles determine the applica-
tion of cohesion; if a particle has bonds, it attracts other particles.
Otherwise, the particle is not affected by any attraction to the other
snow particles.

Algorithm 1 Base Snow Simulation Method

1: while animating do
2: for all snow particle p do
3: Find Neighbourhoods Np(t)
4: for all snow particle p do
5: Apply GravitationalForce(t)
6: Apply AirDrag(t) . Eq. 1
7: Compute CohesionForces(t) . Eq. 2
8: Compute TangentialForces(t) . Eq. 3
9: Compute Compression(t) . Eq. 4

10: ComputeThermodynamics(t)
11: for all snow particle p do
12: Update velocity~vvv(t +∆t)
13: Update position~xxx(t +∆t)

Snow volumes contain air pockets, and these pockets allow snow
to be compressed. The summation of every uniaxial opposite force
acting on the particle is used to compute compressive force (Eq. 4).
Since snow is an elastoplastic material, the shape will return to its
original form unless a force threshold Fthreshold is reached at which
the particles experience plastic deformation. To reflect this, a dura-
bility coefficient d (see Eq. 5) is implemented similar to Takahasi
et al. [TFN14] which ranges between 0 and 1.

fc =
√

min(~fff+x,
~fff−x)

2 +min(~fff+y,
~fff−y)

2 +min(~fff+z,
~fff−z)

2 (4)

fc is the compression force, ~fff+ and ~fff− is the compressive forces
acting in the positive and negative directions of the base axes, re-
spectively. The particle durability coefficient, d, is interpolated be-
tween snow and ice density based on the pressure pc and durability
change coefficient kq (Eq. 5).

d =

{
(ρ−ρice)/(ρsnow−ρice)− kq pc fc > fthreshold

d (Unchanged) otherwise
(5)

To determine the magnitude of the threshold at which snow parti-
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cles start to experience the plastic deformation, Eq. 6 is used.

fthreshold = fminW +
e

ρ

100−1− c1
c2

fmaxW (6)

where fminW is the minimum magnitude of force a particle can
withstand prior to initial compression, c1 = 0.00035 and c2 =
2980.96. The term d is linearly transformed to reduce the particle
radius with compression.

An approximate bonding behavior between snow particles is
captured by introducing the quantity bond threshold φ = ncurr

nmax
, where

ncurr is the current neighbor count of a particle and nmax is the max-
imum count it had so far. The thermodynamics framework from
Iwasaki et al. [IUDN10] is also incorporated in the base method.
Our work does not modify the thermodynamics applied; hence in
the remainder of this paper, we focus on the physical components
that we have extended. We refer the reader to [GMH19] for a more
detailed insight into the base method.

4. Our method

Our method proposes a DEM-based technique that applies an itera-
tive scheme to correct particle positions in the snow physics solver.
However, our technique varies with respect to the existing efficient
physics-based solvers in CG with respect to a few essential aspects:

• Firstly, almost all solvers recently introduced in CG (divergence-
free SPH [BK17], implicit incompressible SPH [ICS∗14],
position-based fluids [MM13], predictive-corrective incom-
pressible SPH [SP09]), fix the SPH density of particles itera-
tively in each loop, where the density is computed in the stan-
dard SPH manner by taking a smoothed value over its neighbors
within the support radius. The same is also true for other sim-
ilar solvers, for example, involving snow [GHB∗20] and sand
[AO11]. In contrast to these methods, our DEM solver accounts
for the density of each particle individually based on its size (ra-
dius) or compression level (as explained in Sec. 3) and iterates
to minimize the overlap between each particle and its neighbors.
• Secondly, we, therefore, do not need to employ interpolation ker-

nels to compute interaction forces between snow particles, which
is also consistent with the original DEM approach of Hagen-
müller et al. [HCN15].
• Thirdly, we incorporate factors such as bonding between snow

particles and compression as a part of our solver. Due to com-
pression, our simulation consists of particles that can vary in
their radii by a factor of 2. Furthermore, we have designed an
alternative error metric that considers the compressibility of a
particle to compute its overlap error.

We sample the interacting boundaries with virtual static ice parti-
cles for the sake of the snow-boundary interaction. This helps us to
reproduce the behavior of the solid boundaries effectively without
introducing a different material or force. However, in order to ex-
clude the boundary particles from any temperature-based changes
such as melting, they are excluded from the thermodynamics.

Alg. 2 lists all the steps involved in our solver. The solver es-
sentially minimizes the overlap between snow particles as they are
advanced in the simulation when subjected to various forces. The
proposed method begins with the neighborhood computation for

the snow particles (line 3), wherein both the neighboring snow and
the boundary particles are determined. The external forces (~fff

ext
p )

for particle p, comprising gravity and air drag, are determined once
per frame for each particle outside the iterative loop (line 5). In

addition to this, the compression force (~fff
+,−

) and the total accu-
mulated force is also initialized per particle (~fff

acc
p ) (line 6-7).

For each animating frame, we warm start our solver by comput-
ing the adhesion, normal, tangential, and plastic forces (coefficient
of restitution) for each snow particle with its neighboring boundary
particles, if present (line 9). Similarly, the normal and the tangential
forces are gathered from all the snow neighbors (line 10), followed
by computation of the corresponding compression force (line 11).
It is worthwhile noting that in PCISPH, this warm start is not done,
and all values are initialized to 0.

We then step into the iterative-relaxation loop (line 12), wherein
an estimate of velocity and position (lines 14-15) is obtained with
the help of accumulated and external forces. This, in turn, gives us
the current estimate of the snow particle positions, and their mu-
tual overlaps thereof. The next step in iteration entails gathering
neighboring boundary forces (line 17), and the normal forces with
all touching snow neighbors for each snow particle (line 18), bar-
ring the tangential forces. The compression forces corresponding to
each snow particle are updated after updating~fff

acc
(line 19). This is

followed by a global computation of the current maximum overlap
between any two snow particles in the simulation (line 21) using a
parallel max reduction operation.

The global iterations are continued till the overlap error drops
below a certain threshold (5% in our case), given the constraints of
a minimum (1) and a maximum number of iterations (3). The final
velocity is obtained by adding together the computed external and
accumulated forces (~fff

ext,acc
p ) for each particle, which is then used

to update the particle position. The external objects interacting with
the snow particles are moved at the end of each frame.

In the following, we explain all the relevant forces and factors
involved in our solver in more detail.

4.1. Forces

Tangential force: The tangential force resulting from the snow-
snow or snow-boundary interaction is a crucial factor for the simu-
lation stability. However, it is not computed in the iterative loop and
hence not gathered in ~fff

acc
(line 17-18), unlike the normal force.

The reason for this separation is that the tangential force, as de-
rived by Hagenmüller [HCN15], is not stable at large time-steps.
An additional reason is that when the prediction is performed, the
particles collide with a much larger set of particles than their ini-
tial or final neighboring set. If the tangent force is accumulated like
the other forces, the particle behaves unexpectedly and potentially
reacts to particles that it never actually collided with. Our experi-
ments suggest that the tangential force computed in the initializa-
tion phase (lines 9-10) provides us with the best stability. Please
note that the initialized tangential force plays a vital role in sta-
bilizing the particles during the accumulation of the normal force
(lines 17-18).

Normal force: As observed before,~fff n can either be repulsive or
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Algorithm 2 Iterative Snow Solver

1: while simulating do
2: for all snow particle p do
3: find Np(t)
4: for all snow particle p do
5: calculate external forces~fff

ext
p =~fff

g,air
p (t)

6: initialise compression forces~fff
+,−
p =~0

7: initialise accumulated force~fff
acc
p =~0

8: for all snow particle p do
9: compute boundary forces~fff

acc
p += ~fff

ad,n,t,cor
p (t)

10: compute snow forces~fff
acc
p += ~fff

n,t
p (t)

11: update compression forces~fff
+,−
p (t +1)

12: while (overlapError > 5% and iter ≤ minIter) do
13: for all snow particle p do
14: estimate velocity~vvv∗p(t+1) =~vvvp+(~fff

ext,acc
p /mp) ·∆t

15: estimate position~xxx∗p(t +1) =~vvv∗p(t +1) ·∆t

16: for all snow particle p do
17: compute boundary forces~fff

acc
p += ~fff

ad,n,cor
p (t +1)

18: compute snow forces~fff
acc
p += ~fff

n
(t +1)

19: update compression forces~fff
+,−
p (t +1)

20: for all snow particle p do
21: overlapError = max(overlapError,overlapp)

22: iter = iter+1
23: for all snow particle p do
24: update bonds Bp

25: compute compression~fff
+,−
p

26: for all snow particle p do
27: integrate velocity~vvvp(t +1) =~vvvp(t)+(~fff

ext,acc
p /mp) ·∆t

28: integrate position~xxxp(t +1) =~vvvp(t +1) ·∆t
29: ~xxxp(t +1) = OscillationControl (~xxxp(t +1),~xxxp(t))

attractive depending on if the particles are mutually overlapping or
are in close proximity to each other, respectively (see also Eq. 2).
The normal force~fff n is accumulated in~fff acc (lines 9-10, 17-18) till
the overlap error between any two snow particles in the simulation
falls below a certain threshold (line 12). This accumulation occurs
both when the nature of force is attractive or repulsive. However,
~fff n computed in Eq. 2 is multiplied with a normal force factor to
stabilize the system since we are using larger time-steps than the
base method. This factor was introduced to provide the additional
force required to lower the overlaps and enable a faster convergence
during the iterations. To this end, an empirical value of 3 was found
to give a satisfactory behavior for this factor.

4.2. States of snow

Unlike the base method, our solver can achieve varied behavior of
different forms of snow. Stomakhlin et al. [SSC∗13] generate this
effect with the help of several parameters that are directly involved
in their equations. In our case, this is made possible by defining

three important parameters involved in the iterative algorithm, cor-
responding to various kinds of snow (dry snow, wet snow, and ice,
respectively):

• Young’s modulus→ Yds , Yws, Yi
• Normal cohesion factor→ σds, σws, σi
• Bond threshold→ φds, φws, φi

Given a particular state of snow (dry or wet), a particle in Eq.
2 interpolates between corresponding parameters of snow (Yds, σds
or Yws, σws) and those of ice. As stated before, this interpolation is
performed based on the proportion of snow (η) and the proportion
of ice (1-η) in a particle, based on its radius. The normal cohesion
factor applies in conjunction with Young’s modulus to determine
the elastic properties of the particles. Different values for these pa-
rameters enabled the proposed method to alter the behavior of the
snow depending on the snow type.

Bonds: In order to reproduce a more realistic behavior, the
strength of bonding between the snow particles in different states is
pivotal to capture. In addition to Y and σ, another essential param-
eter to capture the effect of wet and dry snow is the bond threshold
φ. This parameter is crucial since the ease with which bonds be-
tween snow particles break has an important effect on reproducing
the visual behavior of different types of snow. Ideally, each particle
should track its neighbor history to bookkeep the existing and bro-
ken bonds. This process is very demanding both computationally
and memory-wise. We instead employ the approximation devised
in the base method, wherein a sudden loss of neighbors is attributed
to breaking of bonds and is tracked with the help of φ = ncurr

nmax
. How-

ever, we determine different bond threshold values corresponding
to different states of snow (φds, φws, φi). In Alg. 2, the broken bonds
are updated using this φ after the iteration process is completed (line
24).

Compression: The effect of compression on snow is visible dur-
ing self-compression and interaction with other objects. In order to
compute the compression of each particle, positive and negative
components of the accumulated force corresponding to each axis
need to be maintained separately (Eq. 4). These components are
plugged in Eq. 4 to calculate the compressive force, and then com-
pared to fthreshold (Eq. 6) to determine the change in durability d.
Our experiments suggest that in our iterative approach, the effect
of compression is best captured once the final forces on all parti-
cles are determined and not iteratively (line 25). It is for this reason
that the particles are compressed after stepping out of the iteration
process. It is important to note that the physical properties of parti-
cles (Y , σ, φ) change with compression, which in turn changes the
visual appearance of the snow undergoing simulation.

Error metric: The overlap computation between any two snow
particles p and q is modified based on the softness of snow particle
in our solver and calculated using Eq. 7.

overlap = (rp + rq−||~xxxppp− ~xxxqqq||)ϒ (7)

Here the radius of each particle is rp and rq respectively, and
||~xxxppp − ~xxxqqq|| is the distance between the center of particles. Since
it is possible for the snow particles to be compressed in contrast
to the ice particles that have been compressed to their limit, an ad-
justment factor ϒ = 0.1− 0.9η has been introduced. This factor
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ensures that a fully compressed ice particle (with radius ri) repre-
sents the complete overlap, while a pure snow particle with (radius
rs) only accounts for 10% of its actual overlap. It also linearly in-
terpolates any intermediate compression state based on these two
extremes. This prevents the iterative loop from triggering because
of the snow particles that are likely to be further compressed.

4.3. Boundary forces

In our implementation, the boundary force obtained from static
boundary particles plays a vital role in maintaining simulation sta-
bility at relatively large time steps.

Adhesion: In the proposed method, with the addition of bound-
ary objects, an adhesion force was introduced, acting in the normal
contact direction. Different from cohesion, adhesion acts between
particles of dissimilar materials. By having an adhesive force on the
boundary objects, the snow particles can stick to surfaces. Similar
to Gissler et al. [GHB∗20], we use the adhesion model proposed
by Akinci et al. [AAT13] which formulate the adhesive equation as
follows in Equation 8.

~fff
adhesion
p←b =−βmpΨbb A(|~xxxp− ~xxxb|)

~xxxp− ~xxxb
|~xxxp− ~xxxb|

(8)

Here subscript b symbolises the boundary particles and p the
snow particle,~xxx is the centre position of particles, β stands for the
adhesion coefficient, m is the mass, Ψb is the volume of the bound-
ary particle, and A is the modified spline function in Eq. 9, where
h = 2rs.

A(r) =
0.07
h3.25

 4

√
−4r2

h
+6r−2h 2r > h∧ r ≤ r

0 otherwise
(9)

Friction: In addition to the adhesion force, snow particles are
also influenced by a tangential force when colliding with the
boundary particles. The frictional shear force in Equation 3 is
adapted for the snow-boundary interactions by replacing the tan-
gent of the repose angle tan(ϕ) with a coefficient of friction µ. The
frictional shear force is only applied if there is an overlap. It is im-
portant to note that while the adhesion force is normal in its nature,
the frictional force is tangential.

Restitution: The introduction of static boundary particles neces-
sitates an additional force to prevent the snow particles from rico-
cheting off the floor. This instability occurrs due to the same nor-
mal force computation for snow-boundary interactions as the snow-
snow interactions, giving the collisions a spring-like behavior. In
order to avoid this elastic behavior against boundaries, a coefficient
of restitution force (~fff

cor
) was taken into account when computing

the normal component of boundary forces (lines 9 and 17 in Alg.
2). The proposed method is based on Caserta et al. [JCNCG16]
which present a mass-spring-damper influenced by the research of
the coefficient of restitution by Stevens and Hrenya [SH05], where
~fff

cor
is determined using Eq. 10.

~vvvbp =~vvvb−~vvvp (10a)

~fff
cor

= (~vvvbp ·~nnn)~nnnΓ (10b)

Here~vvvbp is the relative velocity between the boundary particle, b,

(a) β = 0.0 µ = 0.0 (b) β = 0.0 µ = 3.0

(c) β = 3.0 µ = 0.0 (d) β = 3.0 µ = 3.0

Figure 2: A dry snowball (58K particles, ∆t = 0.6 ms) thrown at a
boundary wall with different adhesion factors β and friction factors
µ.

and the snow particle p, ~nnn is the normal of the collision, Γ is the
user-defined restitution coefficient, and ~fff

cor
is the resulting force

from the restitution coefficient in the normal direction.

In order to achieve a two-way coupling of snow with the rigid
bodies, an accumulation of equal and opposite forces from the in-
teracting snow particles is gathered for each solid body, which is
then used to update its velocity and position. Tab. 1 summarizes all
the forces and factors applied in our implementation and the nature
of the particle interaction (snow-snow or snow-boundary) when
they are applicable. This choice of force application is crucial to
the working and stability of our solver. It is noteworthy that neither
the cohesive normal force nor the normal force factor is used on the
interaction of a snow particle with a static boundary particle. The
repulsive component of the normal force though is still activated.
Whereas the tangential force acts between interacting snow parti-
cles, the frictional force acts as the counterpart on the interaction of
a snow particle with any boundary particle. Similarly, the bound-
ary cohesion force replaces the usual normal cohesive force when
a snow particle interacts with a boundary particle. Fig. 2 shows the
behavior of the dry snow particles when thrown at a boundary wall
for different adhesion factors β and friction factors µ.
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Type Snow-Snow Snow-Boundary
Repulsive Normal Force 3 3

Cohesive Normal Force 3 7

Tangential Force 3 7

Normal Force Factor 3 7

Bond Threshold 3 7

Boundary Adhesion Force 7 3

Frictional Force 7 3

Coefficient of Restitution 7 3

Table 1: Summary of various forces and factors applied when deal-
ing with snow-snow or snow-boundary particle interactions in our
solver.

4.4. Time step

The smoothing length in SPH simulation is shown to have a signif-
icant influence in deciding the global time step [Mon05]. Iterative
density solvers can step over this limitation and are able to employ
large global time steps even while using the standard smoothing
length. Unlike SPH, our smoothing radius is limited to the touch-
ing neighbors of any particle, which is roughly half of the standard
smoothing length. Nonetheless, our solver is still able to use a time
step as large as 1 ms even with large particle counts, which is a bit
lower than [GHB∗20]. At the same time, we significantly reduce
the computational overhead incurred in every frame by reducing
the number of neighbors and other expensive kernel computations.
This allows us to sustain high frame rates and real-time to interac-
tive behavior for a relatively large number of snow particles. Fur-
thermore, we are able to employ time steps that are several times
larger in magnitude than Hagenmüller et al. [HCN15].

Oscillation control: The particles could exhibit a vibrating, os-
cillatory behavior at larger time steps with the iterative implementa-
tion. This behavior is caused by particles that are maximally com-
pressed but are surrounded by other particles. The already com-
pressed particles can no longer reduce the radius and, therefore, use
the accumulated force to move apart instead. However, the prox-
imity of the particles makes them continuously collide with each
other, moving back and forth. In order to prevent this, we incor-
porated an oscillation control inspired by the particle sleeping by
Macklin et al. [MMCK14] was added (line 29 in Alg. 2). The oscil-
lation control ensures that the positional integration only occurs if
the particle has translated a distance above a certain threshold. The
difference from particle sleeping is that our method uses a radius
percentage as a threshold instead of a user-defined value.

5. Results

The proposed method was written using C++, GLSL, and NVIDIA
CUDA. It was implemented and tested on a Windows machine with
an Intel Core i5 9500F CPU clocked at 2.90GHz and an Nvidia
RTX 2060 with 6GB VRAM. All presented images in the paper
and the video were captured at a screen resolution of 1920x1080
pixels. We have rendered the particle surfaces in our scene using
the Nvidia FLEX framework. Tab. 2 lists all the parameters tuned
empirically corresponding to wet/dry snow and ice that we have
used in our simulation. rs is set to be in the range of 0.01 m - 0.04
m in the tested scenes.

Parameter Name Value Unit
φds Bond Threshold Dry Snow 65 %
φws Bond Threshold Wet Snow 30 %
φi Bond Threshold Ice 55 %

σds Normal Cohesion Dry Snow 17.95 Pa
σws Normal Cohesion Wet Snow 45.95 Pa
σi Normal Cohesion Ice 506 Pa
Yds Young’s modulus Dry Snow 14000 Pa
Yws Young’s modulus Wet Snow 12000 Pa
Yi Young’s modulus Ice 35000 Pa

Table 2: Values of the physical parameters for dry snow (ds), wet
snow (ws) and, ice used in our solver (i).

Figure 3: Breakdown of the GPU usage when simulating for three
seconds with wet snow and different particle counts at 1.0 ms time
step.

Fig. 3 gives a breakdown of the GPU usage of the various CUDA
kernels involved in our implementation with increasing particle
counts and a time step of 1 ms. The routines Sort, Reset, Hash
are borrowed as such from the implementation of Green [Gre10],
which are used to sort the particles based on their indices, reseting
array values and computing hash index for particles, respectively.
Prephysics includes the time spent on warm starting the iterative
loop. It is clear that our method is able to achieve a good perfor-
mance scalability with increasing particle counts.

5.1. States of snow

Our method can successfully simulate the visual behavior of dry
and wet snow (Fig. 1,5,6), as well as a more hardened mixture
tending to ice. This is made possible at efficient frame rates by
our model with the help of cohesive forces and bonding. Snow in
all the states exhibits a higher cohesion with the high frictional sur-
faces. At the same time, high frictional surfaces and hardened snow
are more demanding computationally, as seen in the accompanying
video. Our approach can, however, achieve interactive frame rates
even with relatively large particle counts.

5.2. Comparison with the base method

Tab. 3 compares our iterative method with the base method in terms
of timing efficiency for two different scenes. For each scene, par-
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Figure 4: Visual comparison of the proposed method running at
∆t = 0.6 ms (left), and the base method [GMH19] at ∆t = 0.1 ms
(right), both consisting of 120K particles.

(a) Dry snow, Low friction (b) Dry snow, High friction

(c) Wet snow, Low friction (d) Wet snow, High friction

(e) Ice, Low friction (f) Ice, High friction

Figure 5: Comparison of the behavior of dry, wet snow, and ice
particles in our solver when dropped on a surface with low and
high frictional properties (∆t = 0.6 ms, 120K particles).

ticle counts are varied from 50K to 1M. Whereas the proposed
method is timed with two different time steps ∆t = 0.6 ms and 1.0
ms, the base method is running at the maximum possible ∆t = 0.1
ms so that its stability is not compromised. Our approach achieves
interactive frame rates even with around 500K snow particles. Fur-
thermore, with one million snow particles, it runs nearly 8 times
faster than the base method [GMH19]. The acceleration is visible

even for lower particle counts. In Fig. 7, we visually compare the
progression of our solver with the base method using two different
time steps. Whereas both the methods provide a somewhat simi-
lar visual result towards the beginning of the compression, our ap-
proach can hold the snow mass for much longer, which is closer to
the expected behavior.

Method Particles ∆t (ms) Time/Iter. (ms) Exec. Time (s) Speedup
Scene in Fig. 7

Base 50k 0.1 2.09 62.73 -
Proposed 50k 0.6 7.14 35.66 1.76x
Proposed 50k 1.0 5.46 16.42 3.82x

Base 100k 0.1 3.55 106.20 -
Proposed 100k 0.6 11.49 57.26 1.86x
Proposed 100k 1.0 8.33 24.97 4.25x

Base 250k 0.1 8.70 260.40 -
Proposed 250k 0.6 20.83 102.74 2.53x
Proposed 250k 1.0 16.39 49.10 5.30x

Base 500k 0.1 19.23 573.70 -
Proposed 500k 0.6 35.71 175.87 3.26x
Proposed 500k 1.0 28.57 84.73 6.77x

Base 1000k 0.1 41.66 1245.35 -
Proposed 1000k 0.6 71.43 334.12 3.73x
Proposed 1000k 1.0 52.63 159.14 7.83x

Scene in Fig. 4
Base 50k 0.1 2.35 63.09 -

Proposed 50k 0.6 7.94 28.05 2.25x
Proposed 50k 1.0 7.91 16.77 3.76x

Base 100k 0.1 4.34 108.02 -
Proposed 100k 0.6 11.91 39.95 2.7x
Proposed 100k 1.0 11.91 23.98 4.5x

Base 250k 0.1 11.49 269.53 -
Proposed 250k 0.6 25.32 80.57 3.35x
Proposed 250k 1.0 25.58 48.84 5.52x

Base 500k 0.1 28.35 601.41 -
Proposed 500k 0.6 50.86 147.68 4.07x
Proposed 500k 1.0 50.69 88.31 6.81x

Base 1000k 0.1 76.78 1469.89 -
Proposed 1000k 0.6 105.89 283.96 5.18x
Proposed 1000k 1.0 104.83 169.79 8.66x

Table 3: Benchmark data are comparing the base [GMH19] and
the proposed method running for three seconds of the simulation
time with varying particle amounts, time-steps, and the respective
speedup of the proposed method on each setting.

5.3. Overlap analysis

Overlaps between the particles represent the error in our solver. The
behavior of the system is directly influenced by the overlap evolu-
tion between neighboring particles over time. To this end, the over-
laps were recorded and analyzed during three seconds of simulation
time while a boundary object plowed through a thin sheet of parti-
cles, see Fig. 8. The dry and wet snow particles have significantly
lower average overlaps (Fig. 8a), compared to fully compressed ice
particles (Fig. 8b). The overlap linearly increases for dry and wet
snow until the plowing is stopped. The ice particles can be seen as
having more significant overlaps with less stable averages. After the
boundary object has stopped, there is a period of finding the equi-
librium state where the particles converge towards a stable average
overlap different in all three tests. It is important to observe that
our solver works more efficiently in the parameter range of dry and
wet snow (Fig. 8a). Furthermore, our tests confirm that our particle
overlaps are on an average less than in the base method [GMH19]
while still operating at a ten times larger time step. However, the
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Figure 6: Sheets of different snow types (consisting of 83K particles) and friction factors being plowed by a boundary object.

Figure 7: Side-by-side comparison of the base method [GMH19]
(upper row) and proposed method using wet snow configuration
and ∆t = 0.6 ms (middle row), ∆t = 1.0 ms (bottom row) with 250k
particles experiencing self compression. The rightmost images are
taken after three seconds of simulation time.

compressed snow is challenging as it begins to act as a rigid body
mass and would, therefore, need additional computations to handle
this more effectively. Fig. 9 shows the behavior of wet snow as it
gets compressed when pushed between the pillars of a building.

(a) Snow (b) Ice

Figure 8: Average particle overlaps comparison of dry and wet
snow (left), and ice (right) being ploughed by boundary particles
at ∆t = 1.0 ms shown in Fig. 6.

5.4. User study

In order to gauge the visual quality of snow obtained using our
simulator for games, a user study was conducted wherein a qual-
itative questionnaire was distributed to 31 participants. Out of the
31 participants, 26 were male, four were female, and one preferred
not to state the gender. The age span was between 20 and 28 years
old, and 27 of these participants had experience in either playing
or developing games. The participants were shown videos from our
simulation (included in the accompanying movie submission) and
were asked to pick up one of the ratings as shown in Opinion col-
umn of Tab. 4. The mapped numbers were not shown to the partic-
ipants during the questionnaire. For the sake of a fair comparison,
the questions showed a video consisting of different types of snow
under the same set-up.

For an overview of the responses for the different types of snow,
see Tab. 5. For all of the questions, the average and the median
were calculated. The dry snow responses had the lowest average,
with 3.37, with the most common response options being two and
four. The wet snow had a higher average of 3.89 and the most com-
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Figure 9: Compression behavior of the wet snow (250K particles,
∆t = 1.0 ms) in our solver when pushed between the boundary pil-
lars, where darker particles represent a higher compression.

mon response option of five. For both the ice and two-way coupling
interaction, the most common answer was five, with an average of
4.15 and 3.88, respectively. The median of the responses was 4 for
dry snow, wet snow, and the two-way coupling interaction. The ice
configuration video had the highest possible median of 5. Overall,
the questionnaire’s values show that the participants found visual
results from the proposed method more natural than unnatural.

In order to further determine whether this result applies to the
general population, a statistical analysis was conducted. Since the
questionnaire results do not match a normal distribution curve sig-
nificance test was conducted using the Mann-Whitney U-test (also
called Wilcoxon rank-sum test) [GC11]. To this end, the data was
first divided into two different sets or partitions, as shown in the
column Set of Tab. 4. The partitioning creates two comparable sets
of data where a higher value indicates a stronger preference to that
particular set. Following the table, the responses that found the pro-
posed method natural were put in the "Natural" set, while responses
that found the method to be unnatural were put in the "Unnatural"
set. Responses that could not judge if the shown video was natural
or unnatural were excluded from the analysis.

Response Option (RO) Opinion Value Set
5 Natural 2 Natural
4 Slightly natural 1 Natural
3 Neutral - -
2 Slightly unnatural 1 Unnatural
1 Unnatural 2 Unnatural

Table 4: Partitioning of the data from the questionnaire in either
set "Natural" or set "Unnatural" depending on the option chosen
by the participants. The Value after the partitioning represents by
which amount the option was favored, where a higher value indi-
cates either natural or unnatural behavior.

To test for the statistical significance of the users’ perception for

favoring our method or not, a null hypothesis and research hypoth-
esis was formulated as follows:

• H0 (null hypothesis): The appearance of the proposed method is
perceived as unnatural at the 1% significance level.
• H1 (research hypothesis): The appearance of the proposed

method is perceived as natural at the 1% significance level.

The statistical significance was determined using Python and the
library SciPy [V∗20]. The function ranksums was used with the
two sets mentioned above. The resultant p-value of the function
was 0.0047 at a 1% significance level. This result indicates that
there is significant evidence to reject the null hypothesis. This fur-
ther validates our assumption that the approximations introduced
in our approach do not affect the visual value of our method for
applications such as video games.

Scenario RO 1 RO 2 RO 3 RO 4 RO 5
Dry snow 0 11 0 11 5
Wet snow 2 4 0 10 11

Ice/snow mixture 0 5 0 8 14
Density interaction 3 2 3 6 13

Table 5: Number of votes per response option (RO) in the ques-
tionnaire as indicated in Tab. 4. Density interaction refers to the
interaction of the solid objects of varying densities dropped on the
mass of snow.

6. Conclusions

We have presented an iterative DEM solution for efficient snow
simulation, that can operate at real-time to interactive frame rates.
Our particle-based method can handle large enough time steps for
real-time performance and runs at high frame rates. Furthermore,
the snow states can be varied by capturing the variation of den-
sity and bonding without penalizing significantly on the efficiency
front. Our method easily enables the interaction of snow with com-
plex boundary surfaces without losing efficiency. We have demon-
strated that our approach can achieve a speed-up of nearly 8 times
compared to the only existing real-time snow simulator for large
particle counts. The visual realism value of our method is also val-
idated with the help of a user study, wherein a majority of the par-
ticipants voted in favor of the possible use of our solver in com-
puter games and other such applications. The proposed solver also
demonstrates that DEM-based solutions could be attractive to the
computer graphics and gaming community, where computational
efficiency is crucial.

In the future, the physical behavior of the compressed snow/ice
particles could be improved by a more advanced formulation to
handle them as a solid object. The neighborhood search operation
could be optimized by maintaining multiple grids corresponding
to different particle sizes. Currently, the high particle velocities re-
sulting from the free fall under gravity limits the total movement of
particles in a single frame, which a more sophisticated mechanism
could resolve.
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