
USING MULTUvIEDIA
TO SUPPORT

COOPERATIVE SOFTWARE DEVELOPMENT

Adérito Marcos and Christoph Hornung

F:raunhofer Institute for Computer Graphics
Wilhehninenstr. 7, 64283 Darmstadt, Germany

{marcos, hornung}@igd.fbg.de

Abstract

The aim of this paper is to propose a global solution to support Coopera.tive Soft­
ware Development (CSD) through a multimedia environment. CSD systems have as
main goal to enable several users connected over a network to work together in order
to develop software products. They have to solve problems such as: coherence main­
tenance of the software project through the distributed system by managing possible
confücts between local versions of each group member and, above all, promote the
necessary mechanisms for the inter-group awareness and integrity.

We introduce here the strategies of our own CSD prototype: a computer­
supported cooperative work architecture for software development. It enables a
group of developers (2 to 4), possibly located at remate places and connected over
network, to develop software together. A cooperative multimedia editing envi­
ronment is available for the whole Development Cycle, enclosing mechanisms of
computer-conferencing (text, audio and video communications).

Keywords: CSCW, Cooperative Software Development, Multimedia, Consistency
Conflicts, Computer-Conferencing.

1 Introduction

In the last years, the increased evolution on both network and workstation techno­
logy and also on multimedia user-interface metaphors, had enabled systems designers
to present more and best concrete solutions 011 distributed envirorunents. Following
this, groupware and CSC\V systems are being developed covering several specific
cases of real group activities.

·we deal here with the problems posed by Cooperative Software Devclopment - a
specific case of CSCW, which encompasses the questions of supporting the activities
of a group of people that cooperates in order to produce a piece of software. \Ve mean
as Software Development those tasks directly related with code programming and
software research implementations not expressively using CASE (Computer-Aided
Software Engineering) technology.

The work in development and maintenance of software is typically alternating
between tasks involving many persons and individual assignments [8]. This deve­
lopment work is performed following a Software Development Cycle (SDC) which
indudes activities like conceptualisation, design and specification, editing, integra­
tion of software components, debug, test, review, and others.

As a first step, the group has to conceptualise and decide guidelines and strategies
to be used during the development process, and also divide implementation tasks and

6º Encontro Português de Computação Gráfica Pág. 58

responsibilities among themselves. After this phase each developer will concentrnte
in his own tasks, and starts properly the development process.

It has been verified that almost all the implementation work tends to be done
asynchronously and more or less independently, where each developer only carries
out the task(s) assigned to him. However, points exist during the development when
two or more developers want to collaborate by completing together a specific goal
(sharing or not software object(s)), or simply exchange opinions about details on
the software project [10).

Global meetings occur when the group needs to (re)consider together the soft­
ware project state (e.g. test up results or redefine strategies). Then, all the changes
achieved in the system by each developer appear to fit in an unique version, turning
the system to the sarne global state. However, and due to the distributed characte­
ristics of the development process, changes performed by one developer can conflict
(mergíng confiicts) with the changes made by the other users in the system. This
represents the main diffi.culty of CSD processes, i.e., support of consistency. A so­
lution must be taken from negotiations and organisational protocol strategies [11).
\Ve can easily devise how important (if not crucial) is allow efficient direct inter-user
conrmunications features in arder to facilitate negotiations anel promote the group
work.

Accordingly, we have adopted a strategy following two guidelines: first, prevent
merging confiicts from arising by avoiding absolute forms of parallel work; and. se­
cond, support a strong awareness within the group by allowing mechanisms for a
easy inter-group communications. ln fact, when several developers want to edit in
the sarne software object (but not in the sa.me point), the object is divided among
the candidates in strict reserved areas (not overlapping), for their own exclusive
use. This permits a broad. way of parallel work, in the sense that no different logi­
cal versions are created, but the sarne software component is being simultaneously
changed. \Vhen contentious situations appear, referring to arcas or even a whole
object access, they can be solved by direct human (user-user) negotiations or asking
the intervention of the group 's moderator.

We propose in tlús paper a global distributed and multimedia environment to
support CSD. The use ofmultimediacan improve CSD process in two different ways:
to effectively support the necessary group communication links; and to enhance the
expressiveness of the related information in the development cycle (see [13]).

VVe describe here the decisions and solutions adopted in our approach - a compu­
ter supported cooperative work architecture for software development. It includes
a complete software development cycle (C, e++ programming dependent) and is
implemented over a multimedia enviromnent. It enables a group of developers (2
to 4), possibly located at remate places and connected over network (LAN or WA.N
(Internet and ISDN)), to conceptualise, decide strategy, edit and integrate software
components, cornment on, debug, compile, test, perform code inspection and review,
and generate reports.

The system provides a strong awareness within the group by allowing the trad.i­
tional paradigms of cooperative editing: personalised multiple cursors, WYSI\VIS
(\Vhat You See Is \Vhat I See), social roles, developers' identifi.cation, tele-pointing,
multi-user interface, multi-user communication. The media available for commmúca­
tion are text, audio and vídeo. The media available for editing in the several phases
of the development cycle are text and graphics. The developers can exchange ideas

6º Encontro Português de Computação Gráfica Pág. 59

DeveloperX

Darmstadt
r---------- -------,

User Interface

Local Server ' J

Datach~ann-el-r-T........., !'@
Video ;hannel : Project

+
Audio channel

, ' -

Developer Y

Lisbon

------- ----------' '
User Interface

Local Server

Data channel
+

Video channel
+

Audio channel

System Server
(in Darmstadt

WL or Lisbon)
ao
i g
t 1

n

-------, "--~-- -------
," 1

Figure 1: An overview of the CSD' main architecture (using ISDN-\VAN).

about pieces of information in the editing phase by commenting on (doing public
comments) in text, graphics and audio.

ln this paper we firstly expose the global architecture and algorithm adopted.
Next, we explain in detail the development cycle and finally we dra,v our future
work directions and conclusions.

2 Global CSD Strategy

We mean as architecture the way the cooperative system is organised in arder
to enable the cooperative work. This organisation concerns about the distribution
of the physical processes and files over the different machines where the users are
located, as well as the way the communication is enabled. ln context of CSD, the
architecture concept also includes the organisation strategies of the software project.

On the other hand, the algorithm to support the CSD process encircles the stra­
tegies to control the information flow through the distributed system, concerning
the issues to maintain global coherency.

2.1 System Architecture

CSD systems require special attention due to software con.sistency support. ln­
deed, CSD architectures should take in consideration where and how the software
project data can be physically organised according to its parts already stated as

6º Encontro Português de Computação Gráfica Pág. 60

consistent and stable (commonly used as source for the current and subsequent
development), and also those components being changed (potentially inconsistent).

Usually, stable software components are saved as bdonging to the curnmt global
project version, and must be independently preserved from inconsistent changes.
Consequently, the centralised architecture seems to be the adequate solution.

On the other hand, most of the times changes being generated by each de,,eloper
are temporal (or volatile), in the sense they are not yet integrated in the global
version. Therefore, for efficiency reasons, developers' workspaces should maintain,
more or less independently, these temporal changes in local copies.

ln conclusion and following the above guidelines, we have adopted a hybrid ar­
chitecture able to support a centralised control of global versions and also local
structures for developers' workspaces (see Figure 1).

An external process (see the Global Ser'ver in Figure 1) synchronises all the de­
velopers' actions and is also responsible for the global software project rnanagement.

All the connections between the Global Server and the developers' processes and
between the developers' processes themselves are made using Ethernet-LAN functi­
ons (TCP /IP) or ISDN-\VAN [14].

Each user starts a process on his own workplace which establishes a c01mmmica­
tion link with the Global Server (which is started automatically if it does not exist).
After this connection is established, the Global Server- sends all the information con­
cerning about the current software project (if it does exist) necessary for the new
developer process to register himself has one more developer iu the editing session.

Each developer process, supports several structures needed to sustain locally a
version of the software project. Also updated copies of the editing state of the other
developers are kept, which permits to pursue a strong awareness within the group.

The Local Server functionalities avoid the overload of the network by handling
the traffic between developer process and Global Server.

The architecture also allows each process on the developer workplace to com1ect
to another workplace via a text, audio and vídeo channels. This allows inter-user
communication without the Global Server control and consequently promotes the
integrity an<l effectiveness of the group task.

The video communication uses the JPEG codec standard [6] for the video frames,
and VideoPix hardware or Indigo Video on Sun or SGI ,vorkstations respectively.
For audio, we provide crossplatform usability, by using a conrmon , intermediate ex­
change format and realising a number of on-line bi-directional converters supporting
different code formats (see [16]). Finally, text corrununications follows an improved
version sirrúlar to Unix/Talk feature.

Project Organisation

We mean as project organisation the way its involved entities are conceptually
located and the kind of relation they have.

\Ve define software project as a central head and a set of components. The head
includes the makefile and the data referring to the project design and conceptnali­
sation. The components are pieces of text or graphics, with or without logical or
hierarchical relations, consisting parts of a whole, i.e., the project structure. These
components can be:

6º Encontro Português de Computação Gráfica Pág. 61

• U nits: the traditional C program elements (modules, headers and libraries).
They are in practice the software cornponents of the project environment.

• Reports: text or graphic files manually or automatically generated, including
considerations about the development task.

• Documents: refers to any documentation file about the software project.

• History: text file automatically generated, which holds a logical narrative of
the developers' actions along the development process.

The software project environment comprehends also entities such as compilers,
debuggers or any tool assisting the development process.

ln fact, our considerations about consistency are strictly related with units and
their managernent. They represent the "physical" software project being produced.

Each unit has one creator and one or more developers. Dnring the develop­
ment process, successive versions for each unit are stated stable (or consistent) and
integrated in the global software project version located in Global Server.

ln arder to avoid interference between individual developments, the system sup­
ports for each developer workspace, local versions of the units being changed. Each
changed unit becomes "visible" to the whole system, only when is integrated (if no
conflicts exist) in the global version. The management of ali these different versions
is performed by the Global Server process. It keeps a set of tables controlling the
state of each maclúne/developer.

The Physical Workspace

The system physical workspace, concerning about manipulation of files, is based
on a fixed tree of disc directories. It integrates severa! software versions, specific
tables for consistency policy, compiling or debugging and files for general purposes.
At start tirne, this tree is automatically generated (if does not exist) on the related
rnachine or simply updated with the last project version (if the last Global Server
machine was different). Ali disc accesses are performed using a path related to the
"weli-known" fixed tree, and no dependent references to the machine Network File
System (NFS) are considered. This strategy allows the independence of the CSD
process through different NFS.

The tree structure contemplates the principle of global and local versions, by
maintaining subtrees respectively for global data (server directory), and one for
each active machine in the system (local directories) (see Figure 2).

Each one of the local directories keeps the development state concerning the
related machine. It includes for each Developer, a subdirectorie holding his software
version.

This scheme allows the Global Server to store independently the global version
and also each Developer process to have locally the software state of the other users.
If a Developer decides to compile his or another version, then uses the contends of
the respective developer entry under his own correspondent machine directory.

When the Global Server starts on a different NFS, considering the last session,
then it is automatically updated by receiving the contends of server directory located
on the other NFS/machine. ln the case ofthe sarne NFS, the updating is not needed,

6º Encontro Português de Computação Gráfica Pág. 62

~<.---------1S_D_N __ -_W_A_N_' __

Figure 2: The physical system workspace when two Developers are active in two
different machi:nes and working in different NFS. The fi.lled directories represent
structures not used. There are two server workspaces, but only one is active, located
on the machine/NFS where the fust Developer started the systern. Notice, that each
one of the workspaces represents the structure used when two users are working in
the sarne NFS (but in different machines).

i.e., the tree of directories is a single one visible from ali machlnes. Only one system
workspace exists per NFS.

During the De11eloper login time, the Global Server sends him the current global
project version, even if starting on a different NFS, in arder to update hls local
correspondent workspace. This guarantees late users to enter the work at the current
development state.

2. 2 The Cooperative Algorithm

It is easy to devise that different architectures adapt better to different algorithms.
For example, centralised archltectmes adapt better to Client-Server algorithms and
replicated arch.itectures to Order algorithms.

We have adopted a hybrid solution, incorporating concepts from Client-Server
(see [1]) and also Order algoritluns (see [7]) and adapted to the system archltecture.
On one hand, there is a Global Server process to perform the management and on the
other hand, by means of the Local Server, the user process gets more "intelligent"
helping in the synchronisation problems.

As the development actions are performed by each of the developers, they are
transmitted to the Global Serverwhlch re-transmits them to ali the developers (inclu­
ding the one who originated it). There is no direct communication for development
actions between the users in the system. The Global Server receives and dispatches
the users' requests using a FIFO rule. Therefore, thls guarantees mutual exclnsion
and serialisation of the users actions. There exists no parallelism in the answer time
[9, 14].

The Global Server has locally a set of consistency tables containing the cur­
rent development state of the whole software project. Access confücts, updating

6º Encontro Português de Computação Gráfica Pág. 63

other
users

Figure 3: A global overview of the cooperative algorithm.

requirements, or general coherency violations, are checked using the consistency
tables.

By receiving the actions from the Global Server each user process executes them
either by changing the development state or by outputting a result (see Figure 3).
The user actions are only definitively executed after receiving the Global Ser11er
answer (agreement). During the development process, the local versions are being
successively updated by receiving, tlrrough the Global Server, the changes (stated
consistent) from the other developers. Actions such as local debug or test, even
passing through the Global Server, are always executed using the contents of the
local workspace. Global test or debug demands, for purposes of coherence, the
integration of ali the local changes to the sarne global version.

The Global Server process is the only one with real access to the global version
of the software project being developed and each one of the user processes has only
a copy of it (local version). Precisely, the consistency maintenance of these copies
and also of the global version, is the main goal of the algorithm.

3 Cooperative Software Development Cycle

The development of software is necessarily a set of cyclical tasks, following a
comrnon goal, i.e., the production of a "satisfactory" package of software. These
set of tasks, conunonly named as the Development Cycle, represent in practice
the system interface to the users. The Multimedia mechanisms/metaphors play
here a decisive role by enhancing the expressiveness and a best manipulation of
the involved information, and consequently improve the editing environment of the
Development Cycle. The media used in our system during the Development Cycle

6º Encontro Português de Computação Gráfica Pág.64

are text, grnphics (raster and 2D) and audio. For the inter-group comrmmications
there are three media channels: text, audio and video.

The software development when performed by individual or small groups of de­
velopers usually follows more or less the traditional "four-steps" cyd<~ strategy (con­
ceptualisation, code editing (prograrnming), debugging and testing). Moreover, we
have verified this strategy adapts quite well to cooperative cnvironments, where cer­
tainly, we need to take into account the specific requirements of the transition from
individual to group work.

verification

requirements

Conceptualisation
&

Strategy

can be fixed match the

,__ ___ __, requirements

without bugs
Debug

USER 1
C&S

------·---··

Coo ratfon

Coo ration

Coo ratlon

Coo ratlon

Software
Unil

IJSER2 _.,., ' . .
C&S

........................

Figure 4: The traditional software development cycle performed by an individual
developer(left), and the Cooperation role in the cycle (right).

Accordingly, we have defined a Cooperative Software Development Cycle
(CSDC) as having four inter-connected phases:

• Conceptualisation and Strategy - the cycle's first step, where the group
decides together the strategies for the project development.

• Editing - in this phase (we call it programming step) each developer per­
forms his task as decided in the Conceptualisation step, and can be done aJone
or together. It encloses the environment of creating and changing project
components with the necessary editing policy mechanisms.

Tasks as review or inspections, are not properly independent development
steps, and consequently are included in the editing environment.

• Debugging - it is the common compiling and syntax errar fixing task, and
can be dane with other developers' help.

• Testing - after producing executable results the developer should test them,
with or without the group collaboration.

On the other hand, as the cooperative development is a task performed by a group
of people, it must consequently include some kind of inter-coordination in arder to
promote the work performance. One response to the problem is the definition of
social roles. The social roles we have adopted are Moderator - chairs the session,
Developer - one of the participants in the team that actively contributes on the

6º Encontro Português de Computação Gráfica Pág.65

development process. The social roles of each of the participants in the meeting is
defined at the login time or during the Conceptualisation and Strategy phase.

Developers can also assume another rolem the system, i.e., as Expert. The Expert
is any active develop,~r in the system, who has some understanding on specific areas
of the project. The developers can ask him opinions about conceptual things or send
him an error report while looking for help. An Expert affects a spedal importance
in the Debugging phase, where difficult syntax errors can be more easily solved with
colleagues' help.

3.1 Conceptualisation and Strategy

We define Conceptualisation and Strategy as the füst project step where the
group' members decide together things as: Conceptual guidelines, global resolution
strategies and tasks distribution. From here, the development respomdbilities are
divided among team members and each one should promote the work in his specific
part. This phase represents the convergence of the whole group and consequently
comes to be extremely important be supported through efficient tools for inter-group
communications and group awareness.

Arthur

Q
,j_

ly

David

J'J A
~--+-•f..-,<'---f-

Figure ó: An example of a common drawing area (raster graphics) used for brain­
storming (left) and of a window used to establish the communication channels among
users in the group (right).

We provide Conceptualisation and Strategy in our system by a set of brainstor­
ming tools that includes:

• a common drawing area (raster graphics) where ali the users can sketch simul-
taneously. Each one sees instantaneously the other' inputs;

a commUPJcation channels (video, audio and text media);

o a 2D-graphic editor for drawing up more specific schemas;

ln the dra,ving brainstorming area ali the actions from other users occur with
their personalised cursor, which allows the individual recognition.

6º Encontro Português de Computação Gráfica Pág. 66

3.2 Editing

As we referred before, the editing phase encloses the environment to manipulate
project components. A component is a piece of text or graphics that can be edited
by one or more developers.

Two specific cooperative editors (text and graphics) support the components edi­
ting. They include strongly the WYSIWIS and multiple cursors paradigms. The
system also presents a global environment where the user ca.n edit at sarne time
severa! components and organise them (see Figure 7 (top-left window)).

The manipulation of units as software objects, represents the central goal of the
editing phase, and must be considered under the global consistency strategy adopted.
Indeed, only two editing modes are permitted:

turn taking - only one user can edit at a given time, i.e., the unit is
locked.

split & combine - allows simultaneous user editing. Even so, each user
has a reserved area for his own strict use and cannot interfere in the
other users' parts. Anyway heis completely aware of the other actions
(see Figure 6).

UnitA

userl SPLIT

userl and user2 SPLIT

Unit user2_A

editing area

UnitA

userl SPLIT

Figure 6: Creation of two alternatives units and their merge. Notice, no absolute
parallel work is perfonned. The editing areas are always in not overlapping positions.

The turn taking mode concerns about the exclusive use of 1mits. ln fact, this
mode encircles the possibility of the other users waiting indefinitely for the lock to
be released. ln such case, direct user-user com.munications can be used to find out
an agreement, or as a last resource, ask for the Moderator intervention who has
authority to break the lock anel free the unit.

The Split 8 combine mode demands a merge mechanism in arder to integrate
the various changes. However, as no absolute parallel development exists and also
no physical "collisions" are generated, consequently the merge function is reduced
to a simple copy of the changed areas to the original unit (see Figure 6). Human

6º Encontro Português de Computação Gráfica Pág. 67

intervention can always be used to repair diffi.cult merge cases, usually coming from
logical dependencies between changed parts from different users.

When the Developer leaves a whole unit or simply a reserved area, the related
changes are sent to the Global Server, integrated in the global software version and
finally distributed to all the other developers local versions in the system.

Code Review

Code Review is the inspection and analysis of source code units by developers
who are knowledgeable in the application domain and programnúng enviromnent.
Code reviewers analyse individually the unit to be inspected, looking for coding
errors, portability problems, violations of coding standards, etc. Thus, review is
mainly based in commenting 011 software source code. These review comments are
fragments of information referring to specific parts of the text code, and holding
reviewer considerations.

Our system supports public comments and private annotations. They can contain
textual, graphical and voice information. Their function is based on the traditional
hypermedia paradigm - they can be accessed by following a link when clicking on
the area. The comments are immediately distributed after their creation to ali
users. They are then common knowledge to the group and can be further edited
by anyone [13]. Annotations are appropriate to privately generate ideas, which may
subseque.ntly be exposed to the group.

3.3 Debugging

We define debug as compiling and syntax bugs fixing. fu most of the cases, it
is a closed individual task. The cooperation can appear in all the situations where
a developer needs to ask for someone else's opinion about details such as errors
or software characteristics. Our environment takes that into account by permitting
developers to send errors or a whole debngging environment such as windows or units
to an Expert. The Expert can be any of the other users. Therefore, a sub-group or
all the group can follow out and help in the debugging process of a member.

The cooperation occurs also in the manipulation of a specific debugger tool (the
current prototype version supports only the debugger dbx). Severa! developers can
perform inputs a:nd receive outputs in a shared interface, following the paradigm of
\VYSIWIS. This aims to maintain a "on line" discussion over the related local or
global version being debugged.

3.4 Testing

Testing is essentially the assessment of the current results achievcd on the software
project. This process can be made locally or globally. fu the fi.rst case, consists of
a private test where the developer uses his local project version in way to evaluate
his own changes. The global test happens when the group decides to integrate ali
the local versions and observe the whole aspect of the project. Then, one of the
machines is adopted to hold the running process, which is usually the one of the
developer who requested the global test.

Testing globally involves a shared interface and the control of the several in­
put/ outputs coming from the group. Consequently, the principle of WYSIWIS is

6º Encontro Português de Computação Gráfica Pág.68

J!Unt:t[r,9 11:n<I ;)~bw.t9Í~9 Wlll4"-8W

:\-!)HTTflili-s1r1~::.:;~:~~~~-◊iw:7~·,-;':--~~-:..~~ (~-.~_~.,,-, ·): ;. i
::'.hJ;;~~: ! ~~~~.i;:f::.:: !;):;;1:,~;1

Figure 7: An overview of th'3 CSD system. The Units organisation enviromnent (top
left), with two open Unit editors (bottom right and left), "Expert" window (bottom
left), the debug window (top right), and also video channel window (top right).

strictly foliowed, permitting as much as possible awareness within the group. The
input flow cau be coutrolied by two modes:

o token-ring: only one developer (who has the token) can perform input.

• free-for-all: all the group ' members can enter inputs.

The token-ríng mode, refers to the classical token strategy, i.e., only one developer
has the turn to perform input. The turn can be given or lost to another user.

When testing with free-Jor-all mode, ali the developers can perform inputs, anel
the Global Server takes the responsibility to solve possible conflicts. ln fact, a
strategy of global stamps is used, i.e., each developer process has locally a total
sequence order, referring to the inputs accepted by the Global Server. This sequence
is the sarne in the whole system, and reflects the inputs serialisation performed
by the Global Server. When the Global Server process accepts an input, it fustly
informs ali the developers (including the owner) which was the accepted input and
who is the owner, and only after dispatches the input request.

This scheme permits to sustain coherently the sequence of input/outputs through
the system.

6º Encontro Português de Computação Gráfica Pág. 69

4 Future Work

Even though the prototype offers a complete Software Devclopment Cycle, we
still have a number of research directions underway.

One of these directions that we want to pursue is the so-called version manage­
ment, which permits simultaneous editing of different (time/ space) versions of units
and consequently a best evaluation of the whole softwru:e project. This represents
one of the most important points to be completed as a future work.

On the other hand, we are already doing the first steps in what we call our
priority goal - a generic multimedia cooperative environment able to integrate
non-cooperative applications. It comprehends a complete multimedia computer­
conferencing top level structure which allows people to share their own tools and
environments and enforces a best continuity of the cooperative framework.

Another important point concerns about the support of remate software packages
demonstrations and consulting. It has to combine: forros of logical representation
of editing actions, multimedia, hyper-organisation of objects and transfer mecha­
nisms over network, to enhance an interactive generation of presentation sessions.
Also we have under consideration the use of ATM and "mobile" technology for
conurmnication proposes.

Finally, we want to improve the cooperation mechanisms and integrity of the
system, doing it gradually able to be used as a general platform to support Software
Engineering in its several tasks.

5 Conclusion

In the last years, more and powerful cooperative systems have been developed fol­
lowing the evolution on technology and performance ofboth network and multimedia
workstations platforms.

One of the group' activities being supported cooperatively is Software Deve­
lopment. In this paper we introduce a global distributed multimedia environment
to support Cooperative Software Development. An architecture and algorithm to
support the CSD task, were explained, and also the Development Cycle. These
have enclosed issues such as: the way the software project is organised through
the distributed system, or which kind of strategy was used to perform the softwaJ.'e
development process in its several steps.

Acknowledgements

We tha:nk Prof. Dr. J. Encarnação for the opportunities given, especially A.
Santos for the useful suggestions and discussions, and finally the student J. Rossa
for the help in the implementation. This work is partially funded by a CIENCIA
scho)arship (BD /2663/93-IA).

References

[1] Greenberg S., Roseman M., \Vebster D. "Human and Technical Factors of Dis­
tributed Group Drawing Tools" Proc. of the Vforkshop on Real Time Group
Drawing and vVriting Tools, CSCW'92.

6º Encontro Português de Computação Gráfica Pág. 70

[2] Hru:rison W., Ossher H., and Sweeney P., "Coordinating concurrent develop­
ment", ln Proc. of CSCW'90 (1990), ACM.

[3] Hornung Ch., Jaeger M., Santos A., Tritsch B., "Cooperative Hypermedia: an
Enabling Paradigm for Cooperative Work", The Visual Computer: an Interna­
tional Journal of Computer Graphics, (in press).

[4] Ishii H., Kobayashi M. "Integration of Inter-personal Space and Shared "\Vork­
space: ClearBoard Design and Experiments", Proc. CSCW'92.

[5] Johnson P., Tjahjono D., "Improving Software Quality through Computer Sup­
ported Collaborative Review", Dept. of Information and Computer Sciences,
Un.iversity of Hawaii, January 1993 Honolulu.

[6] "JPEG Technical Specification", Joined Photographic Expert Group ISO /IEC,
JTC1/SC2/WG8, CCITT SGVIII, August 1989.

[7] Lamport L. "Time, Clocks, and the Ordering of Events in a Distributed Sy­
stem", Communications of the ACM, July. (78).

[8] Magnusson B., Asklund U., Minõr S.,"Fine-Grained Version Control for Co­
operative Software Development", Tech. Report No.LU-CS-Tr:93-112, Dept. of
Computer Science, Lund University, 1993 Sweden.

[9] Marcos A. "Cooperative Editing of Static Images and 2D-Graphics in CoME­
diA", in technical report FIGD - 92i014.

[10) Marcos A., Hornung Ch., "A Global Solution to support Cooperative Soft­
ware Development", as submitted to European Sympositun on Programming,
Edimburgh, Scotland.

[11] Narnyanaswamy K., Goldman N., ""Lazy"Consistency: A Basis for Cooperative
Software Development", in proceedings of CSCW 92.

[12] Neuwirth C., Kanfer D., Chandhok R., Morris J. "Issues in the Design of Com­
puter Support for Co-authoring and Commenting", Proc. CSCW'90.

(13] Santos A., Tritsch B., "Using Multimedia to support Cooperative Editing", in
proceedings of EUROGRAPHICS'93, Barcelona, September 1993.

(14] Santos A., Marcos A.," An Algorithm and Arclútecture to support Cooperative
Multimedia Editing", in proceedings of 4th ·workshop on Future Trends of
Distributed Computing Systems, Lisbon, September 1993.

[15] Santos A., Marcos A., "CoMEdiA: UMA FERRAMENTA PARA A EDIÇÃO
COOPERATIVA DE INFORMAÇAO MULTIMÉDIA", proceedings of V Por­
tuguese Conference on Computer Graphics, Aveiro, Feb. 1993.

[16] Tritsch B., Hornung Ch., "Cooperative Multimedia on Heterogeneous Plat­
forms", Proc. Dagstuhl Workshop on Multimedia System Architectures and
Applications, 1992.

6º Encontro Português de Computação Gráfica Pág. 71

