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Abstract 
Virtual prototyping tools have already captivated the industry's interest as a viable design tool. One of the key 
challenges for the research community is to extend the capabilities of Virtual Reality technology beyond its 
current scope of ergonomics and design reviews. The research presented in this paper is part of a larger re­
search programme that aims to perform maintainability assessment on virtual prototypes. This paper discusses 
the design and implementation of a geometric constraint manager that has been designed to support physical 
realism and interactive assembly and disassembly tasks within virtual environments. The key techniques em­
ployed by the constraint manager are direct interaction, automatic constraint recognition, constraint satisfac­
tion and constrained motion. Various optimisation techniques have been implemented to achieve real-time in­
teraction with large industrial models. 

Keywords 

1. INTRODUCTION 
Modem markets not only urge companies to create"better 
products, but also force them to do so in increasingly 
shorter time scales. The concept of Concurrent Engi­
neering (CE) encourages companies to address issues 
such as maintenance very early in the design process. 
However, the Jack of simulation tools hinders the adapta­
tion of CE and therefore further research is required to 
develop such tools. A development stage that is still 
lacking the appropriate software tools is maintenance 
simulation. The simulation of maintenance operations 
allows maintenance to be addressed in early design 
stages. This reduces unforeseen problems creeping into 
the design as it progresses through its life cycle, conse­
quently saving both time and money while improving 
product quality. 

The Virtual Prototyping Group at the Centre for Virtual 
Environments at Salford has been investigating the ap­
plicability of VR to interactive maintenance simulation. 
A system that can simulate realistic maintenance opera­
tions interactively is demanded by the industry. This 
research inverstigates the use of virtual environments to 
assess maintenance operations before any physical proto­
type is available. Besides speeding up the development 
process, the assessment of virtual models can also reduce 
the number of required physical prototypes. Such a tool 
has the potential to reduce the time-to-market and the 
development cost. 

Maintenance operations are usually performed in a re­
stricted space within a lirnited timespan. The operator's 
movements are often constrained by the surrounding 
components and contacts and clashes between compo­
nents are inevitable. Furthermore, the time required for 
maintenance needs to be controlled and minimized. For 
these issues to be considered in a maintenance simula­
tion, the computer simulation needs to be realistic. 

To achieve a real-time realistic simulation we use a geo­
metric constraint approach. Geometric constraints are 
relationships established between different geometric 
primitives. These relationships constrain the movement 
of objects and determine the objects' kinematics. The use 
of geometric constraints has two advantages against the 
altemative physical simulation: it is less computationally 
intensive, and only requires the information already 
available in CAD models. The more accurate physical 
simulation needs extra information like mass, friction 
coefficient, etc. 

This paper describ..es the development and implementa­
tion of a Geometric Constraint Manager (CM). This con­
straint manager is being used in real-time imrnersive 
virtual environments such as the CAVE [Cruz-Neira-93] 
and the Workbench [Cutler97] to assess maintainability 
of virtual prototypes. The CM can recognize new con­
straints, enforce existing constraints and validate applied 
constraints. It is part of a more complex VR system [Fer­
nandoOO] [FemandoOl] [Murray02] that supports assem-

59 



SIACG 2002 - lst Ibero-American Symposium on Computer Graphics 
1-5 July 2002, Guimarães - Portugal 

assembly and disassembly operations in immersive vir­
tual environments. 

The next section intrcxiuces some of the work done in 
virtual maintainability. Section 3 describes some of this 
system's functionality and Section 4 presents its architec­
ture and implementation. The simulation of maintenance 
tasks using a real industrial model required the con­
straint manager to be optimised as described in Section 
5. The CM performance using the industrial case study 
is presented in Section 6. Section 7 discusses the 
achieved results and defines the orientation for future 
work. 

2. RELATED WORK 
There have been severa! research efforts to develop as­
sembly simulator environments and much work has been 
done allowing users to compose scenes within virtual 
environments, such as 3DM [Butterworth-92], and 
JDCAD [Liang-94] which taclded many of the issues 
involved in the interactive creation of 3D objects. Prob­
lems with such systems are the absence of constraints 
when interacting with virtual objects. Users are restricted 
to gross interactions and are unable to perform precise 
object manipulation [Mine97]. Systems that support con­
straint based assembly of components provide the user 
with the support required to position components pre­
cisely in 3D space. There have been severa! research 
efforts to investigate the development of assembly simu­
lation environments. For example, Connachar et ai. 
[Connacher96] [Jayaram99] describes a system called 
V ADE (Virtual Assembly Design Environment) inter­
faced with the Pro/Engineer mcxielling environment. A 
CAD database is connected to the Open Inventor API 
through Pro/Engineer Pro Develop Toolkit. ln this sys­
tem, direct interaction is supported through a Cyber­
Glove. Fernando et ai. [Fernando95], Fa et ai. [Fa93], 
Munlin [Munlin95], and Thomson et ai. [Thompson98], 
have developed an Interactive Constraint Based Assem­
bly Modelling (ICBAM) environment to bring physical 
realism to the assembly simulation arena. Zachmann 
[Zachül] developed an assembly simulator that imple­
ment some constrained motion based on the type of con­
tact between objects. 

Fernando et ai. [Fernando95] describes the methcxls de­
veloped for allowable motion and constraint recognition 
within the system. Automatic recognition of constraints 
such as 'against', 'coincident', 'tangential', and 'concen­
tric' are supported in their system. By reading constraint 
relationships stored in a Relationship Graph, degrees of 
freedom can be computed so that the system can deter­
mine the allowable motions for a given assembly part. 
The VR environment is implemented using the IRIS 
Inventor graphical toolkit. The system described by Fer­
nando et ai. [Fernando95] reported some shortcomings. 
They include, inability to support constraint propagation 
from child object to parent when the child object is being 
manipulated in the assembly, and the absence of a stan-
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dard data translator for CAD data import into the virtual 
environment. 

3. SYSTEM DEFINITION 
This section presents the functionality of the constraint 
manager that was derived from its requirements. These 
requirements are based on previous experience building 
an assembly simulator [Wimalaratneül]. 

The development of a new constraint manager aimed to 
create an efficient and independent software toolkit that 
could be easily integrated into different virtual reality 
systems. The requirements for this system were: 

• Multi-platform (UNIX and windows) 

• Scene graph independence 

• Multiple constraint recognition 

• Multiple constraint satisfaction 

• Deletion of broken constraints 

• Automatic constraint management 

The communication between the constraint manager and 
the main application uses a defined API with appropriate 
data structures. The internai data representation is based 
on private classes that are independent of any scene 
graph. For this reason the VR system needs to insert into 
the constraint manager each component's geometry, be­
cause the constraint manager has its own internai data 
representation. This allows the main application to 
choose the objects that can be constrained. The virtual 
hand, for example, would not be inserted into the con­
straint manager and therefore not be subject to geometric 
constraints. 

The constraint manager has two types of geometry 
ncxies: objects and surfaces. An object is an entity that 
has surfaces and can be moved. A surface is a face of an 
object. The constraint manager supports parametric sur­
faces and uses specific elements that define its paramet­
ric equation. For example a point on the plane and its 
normal vector defines a planar surface while a point on 
the cylinder axis, its direction and the radius of the cyl­
inder value define a cylindrical surface. Besides surface 
specific elements, each surface has a bounding volume. 
This volume defines surface's borders because the equa­
tions define limitless surfaces. The constraint manager 
has no polygonal representation of surfaces because such 
a representation is not relevant to the constraint man­
agement process. 

The constraint manager can recognize and apply differ­
ent types of geometric constraints. A geometric con­
straint is rule that determines the relative motion be­
tween two surfaces. This rule reduces the degrees of 
freedom of the objects that contain the involved surfaces, 
constraining their motion. The constraint manager sup-
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ports the three different types of constraints illustrated in 
Figure 1. 

(a) Against (b) Collinear (e) Concentric 

Figure 1: Supported constraints 

The constraint recognizer must also be able to validate 
recognized and applied constraints. The validation is the 
process that determines whether a constraint is still valid 
or is broken. A constraint is broken if the involved sur­
faces attempt to move apart beyond a defined threshold. 

The preferred way for the VR system to exchange data 
with the Constraint Manager is through the use of lists. 
The VR system can send to the constraint manager a list 
of surfaces with constraints to be added and the con­
straint manager can return a list of surfaces with the 
recognized constraints. Lists are a convenient comrnuni­
cation medium because they do not restrict the amount of 
data passed to and from the constraint manager and a 
list received from the constraint manager can be freely 
manipulated by the application and then sent back to the 
constraint manager. 

The functionality of the constraint manager can be di­
vided in three main tasks: 

• To validate existing constraints and determine 
the broken constraints; 

• To enforce existing constraints and solve con­
strained motion; 

• To recognize new possible constraints. 

This functionality can be combined to achieve three 
stage fully automated constraint manager. Once a com­
ponent's transformation is passed to the constraint man­
ager, the model is searched for possible broken con­
straints that are removed. The remaining constraints are 
enforced and a resulting transformation computed. Once 
in a position, the constraints manager searched for new 
constraints between the moved component and the sur­
rounding. 

4. SYSTEM ARCHITECTURE 
This section describes the architecture of the imple­
mented constraint manager. Figure 2 shows a graphical 
representation of this architecture. 

The constraint manager has a hierarchical data graph 
that maintains ali relevant information from objects and 
surfaces. The data graph is available to ali modules of 
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the constraint manager: the constraint solver, the con­
straint recogniser and the filters. The constraint manager 
modules are independent and their interaction is defined 
by the application. 

Fikcrs Constraint ~'limager 

Sob"« 
Data Graph 

Figure 2: The Constraint Manager Architecture 

4.1 The data-graph 
The data graph is a hierarchical data structure that 
maintains the information relevant to the constraint 
manager. lt represents ali the knowledge the constraint 
manager has about the components within the virtual 
environment. This means the constraint engine has its 
own insight of the virtual environment. Virtual objects 
and surfaces that are not to be constrained are simply not 
added to the constraint engine and so are not considered 
during the solving and recognition process. 

The data graph is organized like a flat scene-graph with 
the top-levei nodes representing objects 11nd the leaf­
nodes representing surfaces. Ali objects and surfaces 
added to the constraint manager are in the data graph. A 
data graph's object is a node that has a list of surfaces 
and can be transformed. Valid transformations are trans­
lation and rotation, but not scale. An object can be trans­
formed through direct manipulation or as a result of 
other object's movement. An object can be fixed in the 
3D space to prevent it from being moved. 

4.2 The constraint solver 
The constraint solver is the module that manages applied 
geometric constraints. The solver determines the trans­
formations to be applied to unfixed objects so that ap­
plied constraints are enforced. It is also the solver that 
applies new constraints, removes existing ones and fix 
objects in the 3D environment. Underlying this module 
is D-Cubed 3D DCM[dcubedOl] library that computes 
the motion of constrained objects. 
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The constraint solver maintains a list of the applied con­
straints. Applied constraints are the constraints to be 
enforced and that condition objects' transformations. 
Constraints apply to surfaces of distinct objects only, 
because this library only supports rigid bodies. This 
means that different surfaces of the sarne object are al­
ways fixed relative to each other and no constraint can 
be applied between them. 

Ali transformations pass by the constraint solver. A new 
transformation for an object means that this object is 
being moved from its current position to a new one. The 
solver determines whether this motion is possible or not 
and, if not, it computes an alternative position. An ob­
ject's motion can also affect the position of other con­
strained objects. The solver also computes the new posi­
tion of constrained objects and updates these objects po­
sition. 

4.3 The constraint recognizer 
The constraint recognizer identifies new possible con­
straints and validates existing ones. The application 
specifies a list of objects to be searched for new con­
straints and possibly the surfaces to be tested for new 
constraints. If the application can determine collisions 
between surfaces, it can send those colliding surfaces to 
the constraint recognizer. This speeds up the recognition 
process because it cuts the number of surfaces to be 
tested. 

The constraint recognizer has two lists of recognized 
constraints. Figure 2 shows only one of these lists for 
clarity. One Iist has the new recognized surfaces while 
the other has the existing constraints that failed to be 
recognized. These list of constraints are returned to the 
application, which then decides what to do with them. lt 
is under the application's control to apply ali, some or 
none of the recognized constraints, as it can control 
which constraints to break: ali of those recognized, some 
of them or none of them. 

The methods used for recognition of new constraints are 
also used to validate existing constraints. The validation 
process is based on the principie that a recognizable con­
straint is still a valid one. Validation takes place before 
existing constraints are enforced, otherwise existing con­
straints would always be recognized. Existing constraints 
that fail to be recognized are added to the list of broken 
constraint. 

The constraint manager has a set of variables that define 
the tolerance of the recognition process. These tolerances 
determine the threshold under which constraints are rec­
ognized and can be adjusted dynamically by the applica­
tion. The three recognition tolerances are the linear tol­
erance, the angular tolerance and the breaking factor. 
The linear tolerance is the maximum distance between 
two surfaces (or axis if two cylinders are involved), the 
angular tolerance is the maximum angle between two 
surfaces and the breaking factor is the scaling factor that 
multiplies the linear and angular tolerances when con-
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straints are being validated. A breaking factor greater 
than 1 means it is easier to recognize new constraints 
than to break existing ones. Increasing the breaking fac­
tor makes constraints more difficult to break. 

The constraint recognition algorithm compares surfaces 
and verifies if their relative positions and orientations 
are within the specified tolerances. The application de­
fines a list of surfaces that the recognizer uses to search 
possible constraints. Alternatively objects can be inserted 
into this list, in which case the recognizer searches ali 
surfaces of those objects for possible constraints. The 
recognition process starts with a bounding box intersec­
tion test. To include the tolerance in the bounding box 
test, both surface boxes are enlarged by half the tolerance 
values. If bounding boxes are overlapping, the surfaces 
relative position and orientation is assessed to recognise 
possible constraints. 

A constraint is recognized between two planes when the 
angle between their normais is less than the angular tol­
erance and that the distance between the planes is less 
than the linear tolerance. Two cylinders have a potential 
constraint when their axes make an angle within the 
angular tolerance and are less than the tolerance apart. 
The constraint between a plane and a cylinder is recog­
nized if a plane's normal it perpendicular within the tol­
erance to the cylinder's axis and if the distance between 
the cylindrical and the planar surface is less than the 
linear tolerance. 

4.4 Filters 
Filtering is required to reduce the numbcr of recognized 
constraints to a minimum. It takes three constraints to 
completely fix an object to other. Filters are functions 
that selectively remove recognized constraints from their 
list. The need for a filtering mechanism was raised when 
we tested the constraint manager with industrial case 
studies. These models do not have optimised surfaces 
and what could be one surface is sometimes a collection 
of small surfaces of the sarne type. As a result, recogni­
tion of geometric constraints often generates a large 
number of possible but redundant constraints. Filters 
reduce the constraint list according to their criteria and 
are mutually independent. The application chooses what 
filters to apply to the list of recognized constraints and in 
which order. 

Some of the filters currently provided by the constraint 
manager include: 

• Surface displacement: filters the constraint of a 
specified type that have closer surfaces; 

• Cylinder radius: remove concentric constraints 
detected between cylinders of different radii; 

• Cylinder definition: removes duplicated cylin­
drical constraints involving different cylindrical 
surfaces with identical geometry; 

• Constraint type: remove ali constraints of a 
specified type; 
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5. SYSTEM OPTIMISATION 
The use of the constraint manager with real industrial 
case studies revealed that the constraint manager did not 
scale up to support real industrial models. The models 
used by the industry are significantly more complex than 

the models used during the implementation of the con­
straint manager. The test model shown in Figure 3 in­
volved assembling components with approximately 20 
surfaces each while the industrial case study involved 
one 

Figure 3: An interface to the Constraint Manager with the original model 

component with more than 800 surfaces and others with 
more than 50. 

An assessment using the industrial case study revealed 
two bottlenecks in the constraint manager. One was the 
recognition process and the other was the transformation 
of objects. Using the industrial model the constraint 
manager needed nearly 200 milliseconds to recognize 
constraints and 80 milliseconds to move constrained 
objects. Surprisingly the constraint solver also needed 
approximately 70 milliseconds to move unconstrained 
objects. These two bottlenecks resulted in unacceptably 
low frame rate. 

Several techniques were implemented to improve the 
performance of the constraint manager. This paper only 
presents the adopted solutions that are now part of the 
constraint manager. 

5.1 The recognizer optimisation 
The constraint recognizer was integrated in a VR frame­
work that was adding pairs of objects, instead of pairs of 
surfaces, into the list to be recognized. The recognizer 
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ognizer then created a list of surface pairs from ali pos­
sible surfaces combinations. One object with X surfaces 
and another with Y surfaces resulted in X*Y surface 
pairs. Recognizing constraints between two components 
from the original model required 400 surface pairs to be 
tested while with the industrial case study this number 
increased to 40000 surface pairs. 

To reduce the number of surface pairs to be tested, spa­
tial information was added to each surface. This spatial 
information aimed at reducing the number of surfaces to 
be considered at a very low computational cost. For this 
reason we implemented a flat data structure of axis 
aligned cells. The advantage of axis aligned regular 
grids is their low computational load compared to ori­
ented bounding boxes. This advantage is at expense of 
accuracy, but once the intention is to swiftly discard sur­
faces that are clearly beyond the region of interest, it 
offers a good compromise. Different bounding volumes 
could have been used which are described in the colli­
sion detection literature [JiménezOl]. 
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The spatial filtering is a pre-processing step that is done 
when a component is added to the constraint manager. A 
bounding box is created for each component by adding 
the bounding boxes of ali its surfaces. The component's 
bounding box is then divided into eight equal spatial 
cells and each surface is assigned to the spatial cells it 
uses. 

Prior to recognising constraints between surfaces of two 
components the recognizer determines which cells of 
each component are intersecting. This information is 
then used to filter the surfaces pairs to be tested: only 
surfaces that are in intersecting cells are searched for 
possible constraints. 

The association of spatial information to surfaces re­
duced considerably the number of surfaces to be consid­
ered in the recognition of new constraints. Using this 
new implementation the recognizer does in less than 30 
milliseconds what previously took nearly 200 millisec­
onds for the chosen industrial case study. 

5.2 The solver optimisation 
Ali components are transformed using the constraint 
manager. The constraint manager receives a requested 
transformation and passes it to the solver. The solver 
determines the final transformation of objects enforcing 
applied constraints. The performance assessment showed 
that the 3D DCM library was using most of the time, 
even for unconstrained objects. The experiments also 
revealed that the time required to transform components 
depended more on the complexity of the components 
than on the applied constraints. 

From the obtained results it was clear that to improve the 
solver performance we needed to reduce the number of 
surfaces inserted into the 3D DCM. Ali components 
added to the constraint manager are inserted into the 
DCM as bodies without surfaces. The data graph still 
maintains both objects and surfaces data and only infor­
mation inserted into the 3D DCM library is simplified. 
Surfaces are only inserted into the DCM as required, i.e. 
when they are constrained. This way the DCM library is 
abstracted from the complexity of components and only 
deals with very simple bodies. As a result the perform­
ance of the constraint solver now depends on the number 
of applied constraints. 

6. EXPERIMENTAL RESULTS 
This section presents the performance results of the con­
straints manager using a real industrial case study. The 
three main processing stages are assessed. 

The computer used to this experiments was an SGI 
ONYX2 with 128MB of RAM and two MIPS RlOOOO 
CPUs clocked at 180Mhz. However, the constraint man­
ager is single threaded and only one CPU was used at a 
time. 

Figure 4: The Sener electronic box and its brackets 

The model used in this experiment is a real case study 
from Sener, one of our industrial partners. The model 
has one electronic box and four brackets where it 
clamps. Some pipes and tubes are also part of the model 
but were not constrained. The electronic box is a compo­
nent that has 872 surfaces and each bracket has 275 sur­
faces. This experiment consisted of the manipulation of 
the electronic box so it automatically recognizes con­
straints with one of the brackets. Once the electronic box 
clamps into thc bracket it then moves along with the 
electronic box because it is not fixed within the world. 

I1&JB~~~====~~~ 
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18 18 13 13 u 14 15 15 15 

Re.cllgnltM COMiHlll 

Figure 5: Automatic constraints recognition of two 
components with 872 and 275 surfaces. 

The recognition process benefited significantly from 
adding spatial information to surfaces. Figure 5 shows 
that the time required to recognize constraints between 
the electronic box and a bracket was reduced from more 
than 180 milliseconds to 30 milliseconds. 
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Figure 6: Time required transforming a component. 

The time required to move objects was also reduced sig­
nificantly due to the solver optimisation discussed in 
section 5.2. Figure 6 shows how the time to move the 
electronic box relates with the applied constraints. The 
"static surface" shows the time when ali surfaces are 
inserted into 3D DCM while the "dynamic surface" 
when only constrained surfaces are inserted into the 3D 
DCM. Besides showing the performance improvement 
achieved by dynamically adding surfaces Figure 6 also 
shows the time 3D DCM needs when constraints are 
applied. This jump is due to the resetting of 3D DCM 
and happens every time constraints or geometries are 
added into, or removed from the library. 

Figure 7: Time to validate existing constraints. 

The validation time was inferior to the other two proc­
essing stages. Figure 7 shows that less than four milli­
seconds are needed to positively validate 14 existing 
constraints. 

7. CONCLUSIONS ANO FUTURE WORK 
The results presented in the previous section demon­
strate that lhe constraint manager can be used in interac­
tive maintenance simulation of industrial models. The 
initial implementation of the constraint manager re­
quired approximately 250 milliseconds per interaction 
for fully automated constraint management and as a re­
sult could not be used interactively. The optimised ver-

sion of the constraint manager needs approximately 50 
milliseconds to do the sarne job. We find this is an ac­
ceptable simulation time given the complexity of the 
used components. 

Despite the good results there is plenty of work to be 
done to achieve a mature system that can be used as a 
virtual prototyping too!. Further improvements to the 
existing constraint manager are now being considered. 
These improvements consist of developing a more effi­
cient spatial data structure and applying filters before the 
recognition of new constraints. 
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