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Abstract 
We present a mathematical model for geometric modelling based on the concept of extended simplicial chain 
(ESC) defined in previous works. With this model, a solid is defined by means of an algebraic sum of non­
disjoint extended cells, applying the divide and conquer concept. This allows us to obtain the traditional Boo­
lean operations in geometric modelling through the operations defined for ESC's. The model enables us to 
represent free-form solids whose boundaries are free-form swfaces represented by a set of low degree 
triangular Bézier patches and operate with them. ln fact, this model allows us to solve basic problems in solid 
modelling, like the point-in-solid test. ln this case we make use of the generality of the definition of ESC to 
particularize it to the use of triangular Bézier patches in 3D. 
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1. INTRODUCTION 
The use of mathematical models for geometric mode­
lling provides important advantages as mentioned in 
[Duce91]: homogeneous study of the representation sys­
tem properties and ease of implementation. 

This work presents a mathematical model to represent 
free-form solids (i.e., solids whose boundary is defined 
by elements of free nature called free-form elements: 
curves in 2D, surfaces in 3D, etc.). The main problem to 
achieve this is to deal with the non-planar zones in a 
simple and homogeneous way. 

ln [Ruiz99, Ruizüla] a mathematical model for geome­
tric modelling based on extended simplicial chains 
(ESC's) is presented. ln those works, the authors apply 
the model to solids in 2D (considered as bounded either 
by cubic Bézier curves or conic ares), and to solids in 
3D, considering them as bounded by a free-form surfa­
ce expressed as a set of algebraic patches. The model 
makes use of what it calls free-form cells (ffc's) to 
simplify the representation an to avoid particular cases. 

The present work makes use of the ESC concept too by 
defining a new kind of ffc using triangular Bézier pat­
ches (TBP's), and adapts the definitions and theorems to 
use the ESC' s with the new kind of ffc as a mathemati­
~al_ model to represent free-form solids. With this model 
ll is easy to develop fundamental algorithms in solid 
moctelling, like point-in-solid test (see [Garcíaül]). 

Next we are going to review the previous work: other 
methods proposed to formalize and manage free-form 
solids, the concept of ffc, and the ESC' s. After that, we 
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will particularize the ffc concept to use the TBP's. Fi­
nally, we will show the way to represent free-form so­
lids and Boolean operations with ESC's. 

2. PREVIOUS WORK 
The formalization and management of free-form solids 
representations is not an easy task. ln fact, there are ma­
ny works that present different formal methods to 
achieve this. One of them is the R-function model from 
Shapiro [Shapiro94]; this model can be used for interac­
tive modelling or animation with blobs [Blinn82, 
Wyvil95], but it can be very difficult to define implicit 
real functions for free-form solids defined by means of 
free-form surfaces constructed as piecewise surface 
patches. 

Other interesting works are [Kumar95] and [Keyser97]. 
The construction, evaluation and visualization of CSG 
complex models using prirnitives described by parame­
tric patches (NURBS and trimmed Bézier patches) is 
studied in these papers. The first reference treats the vi­
sualization of the solids, having to solve the point-in­
solid test in order to calculate the solid surface; this is 
made by means of solving ray-patch intersections, with 
precission and robustness problems. The second refe­
rence uses exact arithmetic to reduce the problems from 
the first one, but that implies an important reduction of 
efficiency. 

The representations based on multiresolution subdivi­
sion surfaces have been studied too, and in [Bier­
mannül] a method for computing approximate results of 
Boolean operations for free-form solids bounded by this 
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kind of patches is described. This algorithm works with 
the control point meshes of the boundaries of the solids 
to calculate an approximation of the intersection curve 
for the resulting solid. 

The TBP's have been used previously in other works, 
like the one by Kolb, Pottmann and Seidel [Kolb95], 
who developed an algorithm with two variants based on 
7-degree and 4-degree TBP's to reconstruct the surface 
of a free-form solid starting from a polyhedral approxi­
mation. 

The ESC's model try to solve the free-form solid repre­
sentation by using a divide and conquer approach, con­
sidering the solids as composed by a set of elements ca­
Jled extended cells, and developing uniform and robust 
methods to carry out the basic operations in solid mode­
lling. Next we are going to review the basis of this mo­
del. 

2.1 General Free-Form Cell 
The concept of free-form cell is the free-form equiva­
lent to the planar simplex (triangle in 2D, tetrahedron in 
3D, etc.) used in [Feito98]. The formal definition of ffc 
does not depend on the dimension nor the surface type 
used; see [Ruiz99, Ruizüla]. Here we will use TBP's to 
particularize the ffc. 

We can intuitively define a free-form cell [RuizOI a] as 
the closed set of points (in the dimension we are 
working) limited by one free-form element and severa) 
planar elements (line segments in 2D, polygons/planes 
in 3D, etc.). The number and type of the planar ele­
ments that bound a ffc depend on the particular free­
form element used to define it, and they are common to 
other simplices or ffc's used to define the solid. 

Definition 1. d-Dimensional free-form cell (ffc) is the 
set of points in IRd obtained as the intersection of the 
half-spaces defined by a free-form element of dimen­
sion d and one or more planar elements of dimension 
d-1 that verifies: 

1. It is a closed and connected set in IRd. 
2. Every point lies on the sarne connected component 

(sign-invariant) with regard to the implicit equation 
of the free-form element, except the ones of the 
boundary. 

3. The points common to a number of bound elements 
greater than or equal to the dimension of the ffc be-
long to the free-form element too. + 

The first condition avoids configurations as the one 
shown in figure l.a to be considered as ffc's, because 
they can be divided into simpler ffc's, Iike the ones in 
figure l.b. 

~r=:\C\ 
a) b) ! 

Figure 1. First condition for fTc's 

The set of points may be closed and connected, but so­
metimes its points are not in the sarne connected com­
ponent (see an example in figure 2.a). The second con-
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dition explained for ffc's excludes these situations, that 
can be solved by means of the division (more or less ea­
sily) of the set of points, like shown in figure 2.b. 

free-form free-form 
free-form 

Figure 2. Second condition for ffc's 
The third condition gives usa method to select the ver­
tices of the ffc (see figure 3.a), establishing that the ver­
tices of a ffc must belong to the free-form element. It is 
also applied to discard candidates to ffc that verify the 
first two conditions (see figure 3.a), and eliminates con­
figurations that are too complex and can be simplified 
(see figure 3.b). 

valid vertices ffc 

initial planar 
elements 

vertex 

correct planar 
a) b) elements 

Figure 3. Thinl condition for ffc's 

Any ffc has an associated sign ( + 1 or -1) depending on 
the orientation of the ffc with regard to the solid. If the 
associated sign is + 1, then the ffc is added to the solid; if 
the sign is -1, then the ffc is substracted to the solid. 
The sign is used in the definition of both solids and ope­
rations with them. 

2.2 Extended Simplicial Chains 
The concept of extended simplicial chain (ESC) is an 
extension of the simplicial chain introduced in [Fei­
to98], using ffc's. Next we will remember the formal 
definition of ESC. 

Definition 2. A d-dimensional extended simplicial 
chain 8 is defined as the expression: 

ô=" cx .·E. L.J 1 1 

where the E; are extended cells, each of them multiplied 
by an integer ex; (its coefficient). An extended cell may 
be either a simplex ora ffc. + 
For our purposes, we take coefficients of value -1, O or 
1 (a value of 1 indicates presence of the solid). The sign 
of a simplex is calculated using the signed area (in 2D), 
or the signed volume (in 3D), see [Feito98]. When a 
simplex has a vertex in the origin, it is called an origi­
nal simplex. 

To identify the free-form solid represented by an ESC, 
we make use of a function associated with the chain, 
defined as follows: 

Definition 3. Let 8 be an ESC. The associated function 
of the chain 8, notedf6 is: 



SIACG 2002 - lst lbero-American Symposium on Computer Graphics 
J-5 July 2002, Guimarães - Portugal 

+ 
QeE, 

ln this expression, Q is a point in IRd, and thenf6 is equal 
to the sum of the coefficients associated to the extended 
cells that contains the point Q. Based on this function, 
we can define the solid associated with an ESC as: 

Definition 4. The d-dimensional free-form solid asso­
ciated with the ESC 8, noted FF6 is: 

FF
6
={QEIRdlf

6
(Q):;i<;O} + 

Once we have reviewed the concepts of ESC and its 
associated solid, we define the operations over ESC's in 
the following way: 

Definition 5. Let 8 and ô' be two ESC's as described in 
definition 2, and let ,\ be a scalar value. The sum of 
ESC's and the product of an ESC by a scalar are defined 
as: 

m m 

8= L (){; · E;; 8'=Í:cx';·E ' ;; 
i=l i=l 

m m 

8+8' = L ex;· E;+ L ex' ;·E';; 
i = l i=l 

m 

A·8=Í:(A·cxJE;; 
i = l 

+ 

ln order to regularize the operations so that problems in 
zones common to extended cells with coefficients of 
opposite sign do not arise, the associated regular func­
tion of an ESC is defined: 

Definition 6. Let 8 be an ESC, f 6 its associated function , 
and FF6 its associated free-form solid. The associated 
regular function of lhe chain ô, noted f 6• is: 

K:IRd~z 

Íó ·cQ) =O, if Q ~ cl(int(FFÓ)) 

KCQ) = p, if p >o 
Íó ·(Q) = n, otherwise 

where p = max {f6 (Q') / Q' E E(Q)}, n = min {f6 (Q') / 
Q' E E(Q)}, cl is the closure operation, int represents 
lhe interior points, and E is a neighbourhood small 
enough. + 
The regularized operations with ESC's are defined using 
lhe associated regular function concept in this way: 

Definition 7. Let 8 and ô' be two ESC's, and ,\ a scalar 
value. The associated regular functions for the sum of 8 
and ô', and for the product of 8 by ,\ are respectively: 

Í ó +· Í ó· = f Ó+Ó' 
,\ ·* Íó= ÍA .ó• + 

The set of regular ESC' s with these regular operations 
has a vectorial space structure. See [Feito98, RuizO 1 a] 
for more details. From this point, we are going to use 
always regularized operations, even when we do not 
specify it clearly. 
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Although apparently complicated, the regularization 
does not make more difficult the implementation. Mo­
reover, the implementation of the operations adapts na­
turally to the regularization. 

3. FREE-FORM CELL DEFINED BY 
TRIANGULAR BÉZIER PATCHES 

It is necessary to use a surface in order to define a ffc in 
3D. As it is explained in [Ruiz99, RuizOla, RuizOlb], 
the concept of ffc does not depend on the choice of the 
type of surface to be used, but for each choice it is ne­
cessary to study the conditions to hold definition 1 and 
to carry out methods to determine the relative position 
of a point with regard to the ffc defined by the surface 
chosen. ln this case, we are going to use cubic triangular 
Bézier patches (TBP' s) [Farin86, Bõhm84, Farin93, 
VlachosOI , Seidel92]. 

3.1 Free-Form Surfaces Defined by Means of 
TBP's 

TBP's were the first extension of the Bézier curves to 
surfaces, as a more natural generalization than tensor 
product patches are. A n-degree TBP is defined by a 
triangular control point net with ~*(n+l)*(n+2) 
points. Each control point is named b;jk, with i~O. j~O. 

k~O and i+j+k=n. 

The parametric domain is triangular, having three para­
meters: u, v and w, whose values go from O.O to 1.0; the 
sum u+v+w equals 1.0 always. Figure 4 shows the con­
trol point net of a 3-degree patch, and its parametric 
domain. 

b 021 u = 1.0 
v=O.O 
w=O.O 

u =o.o 
~-----~ 

v=O.O 
w = 1.0 

Figure 4. Control point net and parametric domain 

To calculate the surface, we use the Bernstein polyno­
mials; for this kind of patch, these polynomials are gi­
ven by the expression: 

. . U, V, W = ·U ·V · W = ·U ·V · W B n ( ) ( n ) ; j k n! ; j k 

IJ,k i,j,k i!. j!. k! 

n being the degree of the polynomial. 

Calling ,\ the 3-tuple (i,j,k) and T the 3-tuple (u,v,w) , 
we obtain the expression for a n-degree TBP as: 

bn(T)= L b ,.·B~(T) 
IAl =11 

where IAl=n stands for ai! the 3-tuples (i,j,k) that verify 
that i+j+k=n. Figure 5 shows a 3-degree TBP with its 
associated control point net. The triangle b00n, bono, bnoo is 
called the base triangle of lhe patch. 
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Figure 5. 3-degree triangular Bézier patch 

Some of the properties of the TBP's that will be useful 
!ater are the following: 

Every TBP is included in the convex hull of its 
control points. 
Every TBP interpolates b.oo, b0no and boon (i.e. the 
vertices of the base triangle). 
The edges of the patch are Bézier curves whose 
control points are the ones in the edges of the con­
trai point mesh. 

We use the method described in [Vlachosül] to cons­
truct the surface that defines the free-form solid boun­
dary starting from an initial triangulation. The algo­
rithm, thought to be implemented in hardware (in fact, it 
is the core of the TRUFORM technology used in severa! 
graphics chips from A TI), is very simple and efficient, 
able to process each triangle independently and obtain a 
patch for each of them. It uses a quadratic interpolation 
to obtain the normal vector at each point of the patch, 
and calculates the control point mesh for 3-degree 
TBP's from the vertexes and vertex normais of the ini­
tial triangulation. The joint between the patches obtai­
ned has Cº continuity (C 1 at the comers of the patches), 
and the resulting surface is visually smooth. The reason 
for using this algorithm is its simplicity and good adap­
tability to the fields of application of ESC's (efficient 
algorithms on free-form solids). Nevertheless, the defi­
nition of the ffc, and the free-form solid representation 
that we will describe are general enough to be applied to 
any representation using TBP's of any degree. 

3.2 Free- Form Cell Defined by TBP's 
Once we have obtained the TBP's that compose the 
free-form surface of the solid, we are going to describe 
the ffc defined by TBP's. First of ali, we will define an 
element necessary for the ffc definition. 

Definition 8. Let t1 and h be two triangles from an ini­
tial triangulation of a free-form solid that share a 
common edge e. The plane associated to t1 and t2, noted 
rr(t1, t2), is the plane that contains the edge e and is pa­
rallel to the average vector of the normal vectors from 
ti and t1. + 
Our definition of ffc uses these planes as planar ele­
ments, as we can observe: 

Definition 9. Let S be a free-form solid whose surface 
is represented by a set of TBP's, let b(T) be a patch of 
this set, and let to be its base triangle. A free-form cell 
of S is defined as the intersection of lhe half-spaces de­
termined by b(T ), its lhree neighbouring TBP's (ti, ti 
and lJ being their base triangles), and the three planes 
associated rr(to, ti), rr(to, t1) and rr(to, tJ). + 
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Figure 6.b shows an example of ffc. The associated pla­
nes are drawn using four edges polygons; the base trian­
gle belongs to the initial triangulation of a solid. Figure 
6.a does not show the neighbouring TBP's in order to 
give a better view of the picture. 

Figure 6.a. Parti ai view of a ffc 

Figure 6.b. Free-fonn cell 
We did not choose the planes that contain the curved 
edges of the TBP's as the associated planes because of 
the following: when we described the TBP's, we said 
that the edges of every patch are Bézier curves defined 
by the contrai points of the edges of the control point 
net of the patch. As we can observe in figure 7, it is 
possible to find TBP's whose control points from one or 
more edges of the control point net do not lie in the sa­
rne plane; lherefore, the Bézier curves that these points 
define may not lie in a plane, and consequently, the 
choice of the planes that contain lhe the curved edges of 
the TBP's is not appropriate, because these planes do 
not exist always. This is the reason to use the planes ex­
plained in definition 8. ln figure 7, the plane that con­
tains three control points of an edge is drawn with a 
black line, and the remaining point lies outside that pla­
ne, showing that lhe corresponding curved edge does nol 
lie in a plane. 

If the TBP's passes through lhe base lriangles, then we 
consider each connected component as a different ffc, as 
shown in figure 8. 

To calculate the sign associated to a ffc, we make use of 
lhe plane that contains lhe base lriangle (suppose the 
vertices of the triangle given in counterclockwise). lf lhe 
ffc is in the possitive half-space defined by that plane, 
its sign is +I, and -1 otherwise (O if the ffc and the base 
triangle coincide). See figure 9. 
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Figure 7. Top "1sion of a TBP 

Figure 8. 2D "1ew of two ffc's that share the sarne patch 

n 

+ 

Figure 9. Sign oftwo ffc's 

The ffc defined this way verifies the three conditions 
mentioned before: 

1. As we can see, the ffc's are closed and connected 
sets of points in R3• 

2. The second condition does not suppose a problem, 
because we calculate the sign for a point using the 
plane that contains the base triangle instead of the 
implicit equation of the patch. Moreover, the algo­
rithm used to construct the patches achieves that 
there are no self-intersections in the parametric do­
main [O.O, 1.0) of the patch. 

3. The third condition is verified by this kind of ffc 
too, as it can be seen in the figures. The vertices 
holding this condition are the three vertices of the 
base triangle of each ffc. 

4. FREE-FORM SOLID REPRESENTATION 
As it can be infered from definition 4, severa) ESC's 
may correspond to the sarne solid. It is necessary to se­
lect one of them in order to represent the set of equiva­
Ient ESC's for a given free-form solid. For this reason, 
the nomzal ESC's are defined this way: 

Definition 10. Let ô be an ESC. We will say that ô is 
normal if and only if it verifies: 

f
6
(Q)=l, VQEFF6 + 

To construct the normal ESC that uniquely determines 
anct represents a given 3-dimensional free-form solid, 
We need to obtain the extended cells (simplices and 
ffc's) that compose it, and the associated coefficient for 
e_ach one. This process starts from an initial triangula­
hon of the solid, and continues as follows: 
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Each triangle t; from the initial triangulation deter­
mines an unique original simplex (tetrahedron), for­
med by its three vertexes and the origin O. 
Each triangle t; from the initial triangulation deter­
mines a unique TBP, and a ffc related to it and its 
neighbourhood, as described in definition 9. 

Figure 1 O shows an example of the extended cells obtai­
ned for a triangle from a solid triangulation. The triangle 
and the original tetrahedron are drawn in red. The ffc is 
drawn like the one in figure 6b. 

/ 

/ 

/ 

Figure 10. Free-fonn cell and original tetrahedron 

The associated coefficient ()(; for each ffc is obtained as 
follows: 

For each original simplex, the coefficient is the sign 
of its signed volume. See [Feito98]. 
For each ffc, its associated coefficient is its sign, as 
described above. 

The fourth vertex to construct the tetrahedra may be any 
point in IR3

• The reason for the choice of the coordinate 
origin is the efficiency in the coefficient calculation. 
The election of any other point in R3 does not affect the 
fact that the chain obtained is a normal chain. A possible 
subject to study is the influence of the fourth vertex 
election in the complexity of the ESC obtained, and an 
algorithm to elect the best origin for each chain. 

Once we have described the method to obtain the nor­
mal ESC for a given free-form solid, it is necessary to 
establish the equivalence between the chain and the so­
lid. Thus, the following theorem is enunciated: 

Theorem 1. Let FF be a free-form solid with an initial 
triangulation formed by n triangles ti, t2, .. ., tn (triangle 
vertices ordered counterclockwise), and b,(T) be the 
TBP constructed for t;. Let S; be the original simplex 
(tetrahedron) determined by the origin O and the trian­
gle t;, whose associated coefficient is s;=sign of S;, and 
letffc; be the ffc defined by the patch b;(T), the triangle 
t;, its neighbouring elements and the associated planes, 
whose associated coefficient is a;=sign of ffc;. Then: 

li 

FF=FF6 where 8= L (s ;·S;+a;·ff<) (1. 
i=l 

Proof. We need to prove that any point Q from FF be­
longs to FF6, and vice versa. As the solids are closed 
and bounded, we only need to prove the theorem for the 
interior points of them. To do this, let us consider the 
half line from the origin O that passes through Q and 
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goes outside the solid. Applying Jordan's theorem, the 
half line will have an odd number of intersections with 
the surface of the solid starting from Q if the point is in 
the solid, and an even number of intersections (including 
O) otherwise. First, let us prove that FFr;;FF6 . Suppose 
that Q is in the solid. 

If there were no ffc's, then lhe half line would have p 
intersections with triangles that define original simplices 
with negative coefficient (transitions from outside to in­
side the solid), and p+ 1 intersections with triangles that 
define original simplices with possitive coefficient 
(transitions from inside to outside the solid). Therefore, 
Q belongs to p original simplices S; with coefficients 
s;=-1, and to p+l original simplices S; with coefficients 
s;=+l. Applying the associated function for the solid 
FF6 , results: f 6(Q)=(p+l)-p=l; so Q belongs to the 
normal simplicial chain (not extended) 6. As we use re­
gularized operations, the points that are shared by two 
simplices are not a problem, because in every 
neighbourhood of them there will exist an accumulation 
point of FF6• 

If we consider the ffc's, there are two possible situa­
tions: Q may belong to one ffc or may not: 

If the point is not in any ffc, the half line from Q 
will intersect zero or an even number of times the 
border elements of the ffc, and there will be no 
contribution from ffc's to the sum in (1). As the re­
sult of this sum was already 1, Q belongs to the so­
lid. 
If the point is in one ffc, the half line from Q will 
intersect an odd number of times the border ele­
ments of the ffc, and there will be a term from the 
ffc in the sum. If the point is outside the solid defi­
ned by the simplices, and the coefficient of the ffc's 
is equal to +l, then the point will be in the solid. 

Again, the inclusion of points shared by severa) exten­
ded cells is solved by the use of regularized operations, 
as we have seen above. 

Once we have proved that FFr;;FF6 , let us prove the 
opposite case; i.e. FF6 r;;FF. To do this, we are going to 
demonstrate that every point Q from outside FF is not 
in FF6 . Let us consider the half line from the origin that 
passes through Q. This half line will intersect the surfa­
ce of the solid an even number of times. As we can con­
sider the curved zones of the solid as planar faces (as 
small as we want), then Q will belong to zero or an even 
number of original simplices, half of them with associa­
ted coefficient equal to +1 (one for each transition from 
the exterior to the interior of the solid) and the other half 
with coefficient -1 (one for each transition from the in­
terior to the exterior of the solid). Therefore, the value 
of the associated function will be fdQ)=O, and Q will 
not belong to the solid FF6. + 
5. BOOLEAN OPERATIONS 
The use of ESC's allows us to simplify the Boolean 
operations with solids, because we can apply the divide 
and conquer approach by decomposing the operation 
with whole solids in simpler operations with thc exten-
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ded cells that form them, and combining the results in a 
sum. This makes the operations be done homogeneous-
1 y, avoiding particular cases. ln contrast to other models, 
it is not necessary to change the representation of the 
solids to operate with them. ln [Feito98], this is applied 
with simplicial chains, and in [RuizOla] the operations 
with ESC's are explained. Here we review them, adap­
ting the theorems when necessary. 

ln order to represent Boolean operations, we make use 
of the intersection of extended cells. The result of the 
intersection of two extended cells E and E' may be other 
extended cell, but usually it is a set of points that can be 
not connected. However, this set can be decomposed 
(more or less easily) in extended cells, and therefore we 
can associate a normal ESC to the intersection. Let us 
call this chain ExCell (EnE'). So, the representation of 
Boolean operations between free-form solids expressed 
as ESC's is given by the following theorems: 

5.1 lntersection 
First of ali, let us study the intersection of solids: 

Theorem 2. Let FF1 and FF2 be two free-form solids, 
and let 61 and 62 be their associated normal ESC's, ex­
pressed as: 

li m 

81= I ai.ei,. (\= I b/Fj'· 
i=l j=l 

then, the associated normal ESC for the solid obtained 
as the intersection FF6 = FF1 n FF2 is: 

" m 

8= L L (a;·b)-ExCell( E;nFJ; (2. 
i=l J=I 

Proof. We have to prove that any point Q from FF6 be­
longs to the intersection of FF1 and FF2 and vice versa. 
As we have mentioned before, it is only necessary to 
demonstrate it for the interior points of the solids, be­
cause the solids are closed and bounded, and we are 
working with regularized operations. 

Let Q be an interior point of FF1 n FF2. Therefore, it 
belongs to both FF1 and FF2. If Q belongs to FF1, there 
will be q negative cells from FF1 that will contain the 
point, and q+l possitive cells from FF1 to which the 
point will belong. The sarne will occur with f F2 : m ne­
gative cells will contain the point, and so will m+l pos­
sitive cells. 

When computing the associated value for the chain in 
(2), the possible combinations are: 

Ei and Fi are possitive. This will happen 
( q+ l)·(m+ 1) times, and the resulting coefficient 
will be possitive. 
Ei possitive and Fi negative. This will happen 
( q+ 1 )-m times, and the resulting coefficient will be 
negative. 
Ei negative and Fi possitive. This will happen 
q·( m+ 1) times, and the resulting coefficient will be 
negative. 
Ei and Fi negative. This will happen q·m times, and 
the resulting coefficient will be possitive. 

Therefore, the result of the sum will be: 
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(q+ 1 )· (m+ 1)-(q+1 )·m-q· (m+ 1)+ q·m=l; 

andas a consequence, Q belongs to FF6• 

Let us consider now the situation of a point Q that is in 
FFi. but it does not belong to FF2 • Similarly to the pre­
vious explanation, there will be q negative cells and 
q+l possitive cells from FF1 that will contain the point, 
and so will m negative cells and m possitive cells from 
FF2 • When computing the associated value for the chain 
in (2), the possible combinations are: 

E; and Fi are possitive. This will happen ( q+ 1 )-m ti­
mes, and the resulting coefficient will be possitive. 
E; possitive and Fi negative. This will happen 
( q+ 1)-m times, and the resulting coefficient wi li be 
negative. 
E; negative and Fi possitive. This will happen q·m 
times, and the resulting coefficient will be negative. 
E; and Fi negative. This will happen q·m times, and 
the resulting coefficient will be possitive. 

Therefore, the result of the sum will be: 

(q+ l)·m-(q+ l)·m-q·m+q·m=O; 

andas a consequence, Q does not belong to FF6 • 

The sarne reasoning can be applied to the points that 
belong to FF2 and are not in FFl, and to points that do 
not belong to any of the solids. ln both situations, the 
result of the sum will be O. + 
The application of this theorem allows us to solve tlre 
intersection of solids starting from the intersection of 
extended cells. 

5.2 Union 
Next, let us focus our attention on the union of solids. 

Theorem 3. Let FF1 and FF2 be two free-form solids, 
let Ó1 and ó2 be their associated normal ESC's, ex­
pressed as: 

n m 

81= L a;-E;; 81= L b/Fj'· 
i= l j=I 

and let ó FFi n m be the associated normal ESC for the in­

tersection of FF1 and FF2. Then, the associated normal 
ESC for the solid obtained as the union FF6 = FF1 u 
FF2 is: 

(3. 

Proof. As we have explained before, we are going to 
prove the theorem only for interior points. For every 
Püint Q there will be four possibilities: 

Q does not belong to either FF1 or FF2. Therefore, 
it will not belong to the intersection, and the asso­
ciated value for the chain in (3) will be O. 
Q belongs only to FF1• Therefore, the associated 
value for the chain in (3) will be: 

Jli(Q)= 1 +0-0=1; 

andas a consequence, Q belongs to FF6. 

Q belongs only to FF2 . Therefore, the associated 
value for the chain in (3) will be: 
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f
6
(Q)=O+ 1-0=1; 

andas a consequence, Q belongs to FF6• 

Q belongs to the intersection FF1 O FF2 • Therefore, 
the associated value for the chain in (3) will be: 

Jli(Q)=l+l-1=1; 

and as a consequence, Q belongs to FF6• + 
5.3 Complementary 
Now let us enunciate the theorem applied to the com­
plementation of solids. 

Theorem 4. Let FF be a free-form solid, and let ó be 
its associated normal ESC's, expressed as: 

n 

8= L ª;'E;; 
i=l 

then, the associated normal ESC for the solid obtained 
as the complementary FP is: 

8c=8 -8 · (4. 
R ' 

where ÓR stands for the chain whose associated function 
equals 1 for every point in IRd, d being the dimension of 
the solid. 

Proof. Because of the sarne reason explained before, we 
are going to prove the theorem for interior points. 

Let Q be a point of FP. Q does not belong to FF, but to 
FF

6
R. Therefore, it belongs to FF

6
c, because the asso-

ciated value for the chain in (4) is: 

Jli(Q)=l-0=1; 

If Q does not belong to FP, then it is in FF and in 
FF

6
R.' Therefore, it does not belong to FF

6
c, because the 

associated value for the chain in (4) is: 

Jli(Q)=l-1=0; + 

ln practice, ÓR can be implemented as a d-dimensional 
cube that contains the whole scene. 

5.4 Difference 
Finally, we will explain the theorem for the difference 
of solids. 

Theorem 5. Let FF1 and FF2 two free-form solids, and 
let 81 and 82 be their associated normal ESC's, ex­
pressed as: 

n m 

81= L ª; 'E;; 82= L b/FJ; 
j=I i=l 

then, the associated normal ESC for the solid obtained 
as the difference FF6 = FF1 - FF2 is: 

8=8, -81; (5. 

Proof. Considering only interior points, let Q be a point 
that belongs to the difference solid. So, it is in FF1, but 
not in FF2• Therefore, the associated value for the chain 
in (5) will be: 
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andas a consequence, Q belongs to FF6 • 

Similarly, if Q does not belong to the difference solid, 
there are three possibilities: 

Q does not belong to both FF1 and FF2. The asso­
ciated value for the chain in (5) is: 

J6(Q)=0-0=0; 

therefore, Q does not belong to FF6 • 

Q belongs to both FF1 and FF2. The associated value 
for the chain in (5) is: 

J6(Q)=l-1=0; 

therefore, Q does not belong to FF6 • 

Q belongs only to FF2 • The associated value for the 
chain in (5) is: 

J6(Q)=0-1=-l; 

therefore, Q does not belong to FF6 • + 
To make the associated value for the chain be 1 for the 
points in the difference solid and O in the rest, we can 
redefine the ESC associated to the difference as: 

Ô=Ôl -ÔFF nFF ," 
1 ' 

The value for the chain in the last case of the previous 
demonstration will be now: 

f 6(Q)=0-0=0; 

and Q does not belong to the difference again. 

We have used algebraic operations to define the boolean 
ones. As these operations are accumulative, it is not ne­
cessary to use only disjoint cells, but also we can handl. 
non-disjoint cells. Unlike CSG systems, the calculations 
are made on very simple solids (the cells), so the special 
cases are rninimum and well-known. 

As a sample, we present figures 11 to 17 in which we 
show two free-form solids (a stomach and an abstract 
solid), and the result of the boolean operations between 
them, using a regular point mesh to visualize the resul­
ting solid in each situation. For each operation, we show 
a visualization of the points included int the complete 
ESC, and an intermediate image, showing the points in a 
subset of the resulting chain; in these intermediate ima­
ges, we use red color to mark points that are in the sub­
set, but do not belong to the final resulting chain. 

Figure 11. Two free-fonn solids 
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Figure 12. Intennediate result of the union of solids 

from figure 11 

Figure 13. Result of the union of solids from figure 11 

Figure 14. Intennediate result of the intersection 

of solids from figure 11 
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Figure 15. Result of the intersection of solids from 

figure 11 

Figure 16. Intermediate result of the difference of 

solids from figure 11 

Figure 17. Result of the difference of solids from 

figure 11 

6. CONCLUSIONS 
ln this paper we have presented a mathematical method 
to represent and manage free-form solids based on the 
concepts of free-form cell (ffc) and extended simplicial 
chain (ESC) previously presented in [Ruiz99, RuizOla] . 
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The model introduces a new kind of ffc based on trian­
gular Bézier patches that verifies the properties for ge­
neral ffc ' s, and adapts the definitions and theorems to 
the specific case of solids whose surface is composed by 
this kind of patches. 

The model allows us to represent in an uniform way 
both free-form solids and Boolean operations with 
them, without particular cases nor foreign elements to 
the model because it is based on algebraic operations 
that are accumulative, and allows us to handle both dis­
joint and non-disjoint cells. 

As mentioned before, the use of ESC' s is independent of 
both the dimensions and type of free-form elements 
used to define the ffc's, and although the solid decom­
position may involve a high number of operations with 
the cells, these operations are simpler, and in many ca­
ses the implementation can be optimized, fastening the 
management of the solids. 

The data structures necessary to implement this model 
are not much different from the characteristic ones used 
for B-rep modelling, so this model present an easy and 
robust method to work with free-form solids in 3D. In 
fact, a point-in-solid test based on this model [Gar­
cíaOl] has been already successfully implemented (see 
figures 12-19 for examples of the results obtained). As 
we can see in figure 20, most of the times the test does 
not need to calculate as many intersections ray-boun­
dary of the solid as the classic algorithms based on Jor­
dan ' s theorem (in figure 20 we can see the results for 
three different solids; the graph shows the evolution of 
the number of intersections to calculate vs. the number 
of points used in the test). So, the model has proved to 
be useful in at least one of the classical problems in 
geometric modelling. 
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Figure 20. Graphic comparison between the number of 

intersections ray-surface calculated with 

Jordan's theorem and ESC's. See [GarcíaOl] for 

more details 

The f(Q) function of an ESC (from a solid or a boolean 
combination of severa! solids) can be easily implemen­
ted because it is based in the inclusion test for each ex­
tended cell solved by methods like the ones in [Gar­
cíaOI]. Therefore, it is possible to develop an algorithm 
for the direct visualization of the solid associated with 
an ESC using ray-casting methods on the points Q such 
that f( Q) = J. In fact, this is the subject of our current 
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work. 

7. ACKNOWLEDGEMENTS 
This work has been partially granted by the Ministry of 
Science and Technology of Spain and the European 
Union by means of the ERDF funds, under the research 
project TIC2001-2099-C03-03 

Figure 19. Points in the solid of figure 18 from a 

regular set of 25x25x25 points. 

8.REFERENCES 
[BiermannOl] H. Biermann, D. Kristjansson, D. Zorin. 

Approximate Boolean Operations on Free-Form 
Solids. Proceedings of ACM SIGGRAPH 2001, Los 
Angeles (USA). 185-194. 

[Blinn82] J. Blinn. A Generalization of Algebraic Sur­
face Drawing. ACM Transactions on Graphics 1, 
1982. 235-256. 

[Bõhm84] W. Bõhm, G. Farin, J. Kahmann. A Survey of 
Curve and Surface Methods in CAGD. Computer 
Aided Geometric Design 1 (1984). 1-60. 

[Duce91] D.A. Duce. Report on the EUROGRAPHICS 

108 

Workshop on formal Methods in Computer Gra­
phics. Computer Graphics Forum, V.10, N.4, 311-
327. 1991. 

[Farin86] G. Farin. Triangular Bernstein-Bézier Pat­
ches. Computer Aided Geometric Design 3 (1986). 
83-127. 

[Farin93] G. Farin. Curves and Surfaces for Computer 
Aided Geometric Design. A Practical Guide. Aca­
demic Press, San Diego, 1993. 

[Feito98] F.R. Feito, M. Rivero. Geometric Modelling 
Based on Simplicial Chains. Computers & Gra­
phics, I998, vai. 22, nº 5, 6I 1-619. 

[GarcíaOI] Á. L. García, J. Ruiz de Miras, F.R. Feito. 
Point in Solid Test for Free-Form Solids Defined 
with Triangular Bézier Patches. Technical Report 
TR-6-2001. Departamento de Informática, Univer­
sidad de Jaén (Spain). 2001. 

[Keyser97] J. Keyser, S. Krishnan, D. Manocha. Effi­
cient and Accurate B-Rep Generation of Low De­
gree Sculptured Solids Using Exact Arithmetic. 
ACM Solid Modelling '97, Atlanta, I997. 

[Kolb95] A. Kolb, H. Pottmann, H.-P. Seidel. Fast and 
Fair Surface Reconstruction. Technical Report, 
Universitat Erlangen. 1995. 

[Kumar95] S. Kumar, S. Krishnan, D. Manocha, A. 
Narkhede. Representation and Fast Display of 
Complex CSG Models. Technical Report TR95-
0l 9, Departament of Computer Science, University 
of North Carolina, 1995. 

[Ruiz99] J. Ruiz de Miras, F. R. Feito. Mathematical 
Free-Form Solid Modelling Based on Extended 
Simplicial Chains. WSCG 99: VII Conference on 
Computer Graphics, Visualization and lnteractive 
Digital Media. Plzen-Bory, Czech Republic, 1999. 
241-248. 

[Ruizüla] J. Ruiz de Miras. Free-Form Solid Mode­
lling. PhD Thesis. University of Granada (Spain). 
2001. 

[Ruizülb] J. Ruiz de Miras, F. R. Feito. ESC-MOD: 
Experimental System for Free-Form Solid Mode­
lling (in Spanish). XI Spanish Conference on Com­
puter Graphics (CEIG 2001 ), Girona (Spain), 2001. 

[Seidel92] H.-P. Seidel. Polar Forms and Triangular B­
Spline Surfaces. Computing in Euclidean Geometry, 
235-286. Eds. D.-Z. Du and F.K. Hwang. World 
Scientific Publishing Co., I992. 

[Shapiro94] V. Shapiro. Real Functions for Representa­
tion of Rigid Solids. Computer Aided Geometric 
Design II (2), 1994. 153-I75. 

[VlachosOl] A Vlachos, J. Peters, C. Boyd, J. L.Mit­
chell. Curved PN Triangles. 2001 ACM Symposium 
on lnteractive 3D Graphics. 

[Wyvil95] B. Wyvil, K. van Overveld. Constructive Soft 
Geometry: a Unification of CSG and Implicit Sur­
faces. Departament of Computer Science, Univer­
sity of Calgary, 1995. 


