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Abstract 
Volumetric data can be represented as a rectilinear structured grid and can be displayed by the rendering of an 
isosurface that is built from the grid and defining a threshold value. The know marching cubes method builds the 
isosurface cell by cell. However, from a set of cells that comply with some conditions, a bigger cell can be built. ln 
these cases, the volume is represented by a set of cells of different size. Then, the isosurface built by marching cubes 
will have holes on the borders between cells of different size. ln this paper, we show a new method, called marching 
edges, to build the isosurface edge by edge, that generates a hole-free isosurface. 
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1. INTRODUCTION 

Volumetric data are usually represented as a set of property 
values Vi ata set of points (xi, Yi, zi) : i = 1, 2, ... , N; 
these values are samples from some unknown continuous 
function f ( x, y, z). ln order to obtain pictures from that set 
of samples, a process of three step can be done [Haber90]: 

1. Data enrichment: An estimation, F(x, y, z), of the 
unknown function f (x, y, z) is made with which new 
couples (point,property value) can be estimated. 

2. Mapping: Some geometric interpretation of the func­
tion F(x, y, z) is chosen in order to understand its be­
haviour. This geometric interpretation will typically 
be a three dimensional object that can be rendered in 
lhe next step. 

3. Rendering: The geometry obtained in the previous 
step is rendered using standard computer graphics 
techniques. 

An usual way to render volumetric data is the marching 
cubes method [Lorensen87]. A rectilinear structured grid 
of the samples is made from the original volume data; an 
isosurface F(x, y, z) = Vk is built and rendered for some 
lhreshold value Vk· Only a subset of the volume is ren­
dered. 

ln order to build the surface, every cubic cell in the grid 
is processed: each cell is classified like one of 15 distinct 
cases by comparing vk with the property values of the 8 
Vertices of the cell; every case has a triangulation that rep­
resents the isosurface inside the cell; the union of ali piece 
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of isosurfaces of ali cells forms the isosurface that is ren­
dered. 

Since 1987, severa! papers have been published about the 
improvement of marching cubes method [Brodlieül]. 

Concretely, this method needs a long time, most of which 
is spent processing cells that do not have isosurface inside. 
ln order to reduce this time, several methods have been 
proposed to search for cells intersecting the surface. These 
methods can be classified according to the search criteria 
used: 

• Range-based, each cell is labelled with the interval 
that it spans in the range of the property field. This 
allows to search for intervals that contain a given 
threshold value. Cignoni et ai. propose to use an 
interval tree structure [Edelsbrunner80, Preparata85] 
in order to retrieve these intervals, from which active 
cells are found [Cignoni97]. ln particular, they use a 
method that combines range-based and surface-based 
search. 

• Surface-based, only the cells that are adjacent to cells 
for which the surface has been previously rendered 
are processed [Shekhar96]. This solution does not 
display the complete surface when it has more than 
one component. lt is necessary to have a seed set 
of cells from which ali the components can be ren­
dered. Bajaj et ai. propose a method to generate seed 
sets that allow to get ali components for ali possible 
threshold values [Bajaj96]. 
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• Space-based, domain spanned by the data set is parti­
tioned in order to search active cells. These partitions 
can be hierarchical [Wilhelms92]. 

A típica! space-based searching is the bono structure. Wil­
helms et ai. proposed to build an octree [Meagher80] that 
indexes the grid, and which stores, in every octree node, 
the maximum and minimum property value of the subvol­
ume covered by the node [Wilhelms92]. This information 
is used when traversing the volume and allows that those 
nodes for which the property interval does not contain 
the threshold to be skipped. This structure, called BONO 
(Branch On Need Octree), makes the rendering faster but 
increases the storage requirement as it must store both the 
grid and the octree. 

Other advantage of the tree is the multiresolution capabil­
ity. Volume can be rendered at different leveis of detail by 
pruning the tree ata specific levei when it is rendered. Fur­
thermore, an adaptive isosurface can be built if different 
branches of the tree are pruned at different leveis. Works 
like [Ohlberger97, Westermann99] use these issues, how­
ever, the prune condition is dependent on the threshold and, 
in the case of [Westermann99], also on the point of view. 

lt is also possible to use hierarchical structures and prun­
ning ofbranches oriented to the visualization process. Liv­
nat et al. use a bono in order to do a hierarchical front­
to-back traversal of the data set with dynamic pruning of 
sections that are hidden from the point of view by previ­
ously extracted sections of the isosurface [Livnat98]. Only 
the isosurface that is visible from the point of view is built. 
When the viewpoint changes, the isosurface must be re­
built. 

However, when different branches of the tree are pruned 
at different leveis, there will be joined cells of different 
size. Then, holes (or cracks) on the isosurface can arise 
on the border between those cells of different size. This 
is because the isosurface inside the large cell is built from 
less information than the isosurface inside the small ones 
(see figure 1). 

Figure 1. Example of crack 

Severa! solutions have been proposed for this problem. 
Shu et ai. propose covering the crack with a polygon 
[Shu95]; Shekhar et ai. propose removing it by mov-
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ing the vertices of the triangles in the small cells so that 
they coincide with the edges of the triangle in the big one 
[Shekhar96]; Westermann et ai. propose to replace a tri­
angle in the large cell with a fan of triangles, in order to 
adapt the isosurface inside the large cell to the isosurface 
inside the small ones [Westermann99]; this method with 
severa! improvementes is used by Engel et ai. to imple­
ment a web-based volume visualization system [Engel99]. 
ln these cases, the process can be performed after the tri­
angle mesh has been built or when it is being built. 

ln a previous work we proposed a modification of bono, 
called cell octree, in which the branches that representa set 
of cells whose property values verify some uniform gradi­
ent conditions are forever pruned [VelascoOl]. The main 
difference between a cell octree and other approaches is 
that the prune condition is independent on the threshold. 
Note that this does not forbit to use an aditional view de­
pendent prune condition. 

ln a cell octree, cells of different size can be adjacents. 
ln order to avoid crashes on surfaces that cross over two 
adjacent cells of different size, the prune condition is very 
restrictive. That is, it allows to prune a branch only when it 
can be ensured that no crack will appear for any threshold 
value. 

ln this paper, we presenta method to build the triangles of 
the isosurface, edge by edge instead of cell by cell. Isosur­
faces built with this method can cross the border between 
cells of different size without any discontinuity. This is so 
because there are no triangle's vertices on the border be­
tween cells, then it is not necessary to make coincide any 
geometric data on both sides of that border. The cells will 
have up to one triangle's vertex that will be inside the cell. 
So, triangles will cross the border. The quality of no dis­
continuity allows us to use a less restrictive prune condition 
obtaining a cell octree with less storage requirements. 

Next section summarizes the cell octree structure. ln sec­
tion three our proposal, called marching edges, is pre­
sented, where the concept of isopoint is explained. ln sec­
tion four we explain how to compute the isopoints, how to 
label the edges to avoid processing an edge more than once, 
and the rendering algorithm. Finally, section five shows 
data and pictures from real volumes. 

2. CELL OCTREE 

We use a bono as start point and, by a bottom-up process, 
making prunes where some uniform gradient conditions 
are observed. On every prune, eight brothers leaf node are 
forever pruned and their old father internai node is con­
verted into a new leaf node. On every prune, the egiht cells 
represented by the pruned leaf nodes are no longer acces­
sibles and a new bigger cell that is represented by the neW 
leaf node is accessible now (see figure 2). 

ln the following subsections, some concepts are defined 
and the prunning criteria for cell octree, as presented in 
[VelascoOI], is explained. 
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Figure 2. Pruned cells and the new cell 

2.1. Definitions 

A face is monotonous when for every possible threshold 
value, the isosurface crosses it no more than once. 

A cell is monotonous if every of its faces is monotonous. 

A group of eight brother cells (see figure 3) will be 
monotonous when: 

1. Every cell of the group is monotonous. 

2. Every face of the cell after prunning is monotonous. 

3. For every B vertex (half edge vertex), its property 
value is between the property values of the end edge 
vertices A. 

4. For every C vertex (center face vertex), its property 
value is between the property values of the comer face 
vertices A. 

5. For the D vertex (center cube vertex), its property 
value is between the property values of the comer 
cube vertices A. 

Figure 3. Group of cells to be prunned 

The test of monotony for faces is done by checking the 
property values at its four comers; note that even when 
the faces of the cell after prunning can be monotonous by 
using the previous test, the group can be not monotonous if 
there is a maximun or minimun on vertices of kind B or C, 
as for some threshold value, the isosurface wild cross the 
face more than once. The last condition (on vertex D) is 
set in order to do not loss any important value, as for some 
threshold value an internai isusurface around the central 
Vertex D will appear. 
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2.2. Prunning Criteria 

The prunning criteria is defined so as to ensure that no 
cracks can arise on the isosurface built from a cell octree 
for any threshold value. 

A group of eight brother cells will be prunned if the group 
is monotonous and if any vertex center of face is going to 
need two different property values to avoid the cracks. The 
remaining of this section justifies this pruning cri teria. 

A group of eight brother cells must be obviously 
monotonous to be prunned as if this is not the case there 
could be a maximum at the center of a face that could be 
lost in the prunned cells. In this case a crash similar to the 
one shown in figure 4 will arise. 

Figure 4. Case of bole 

But, this is not sufficient for avoiding ali the cracks. ln 
arder to avoid cracks like the one showed in the figure 1 
more conditions are needed. After a prune is dane, the ver­
tices in the center of each new edge can be used by other 
cells that have not been prunned, so the property value of 
these vertices are modified in order to make the intesec­
tion isosurface-edge coincide in ali the cells that share that 
edge. 

Usually, the intersection isosurface-edge is computed by 
linear interpolation, so the vertices at the midle ofthe edges 
of a cell resulting of a prune are modified with the property 
value resulting of a linear interpolation between the end 
vertices of the edge. These vertices can be used in the non 
prunnedjoined cells. 

However, the vertices in the center of each new face are 
not similar to the vertices at the center of the edges. If the 
center of a new face is modified with the property value re­
sulting of a linear interpolation between the four comers of 
the face, there will be cracks on that face (figure 5). There 
is nota single property value for a vertex center of face: it 
depends on the threshold value and, more important, there 
are cases where two different property values are needed 
(figure 6). So if this case is possible for some face of the 
group of brother cells, the prune is not dane. 
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threshold=85 

Figure 5. Particular example of crack even when the 
central vertex has a value resulting of linear interpola­
tion 

Figure 6. The value that makes coincide one part of 
both local isosurfaces does not make coincide the other 
part (see zoomed images). It would have to use both 
values to make coincide both parts of both local isosur­
faces 
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3. MARCHING EDGES 

Let e be a cell intersected by the isosurface. This cell, 
called active cell, has some edges that are crossed by the 
isosurface. These edges are called active edges. Let us 
consider the active edge (A, B) on the figure 7; the active 
edge is shared by four active cells. For every cell one point 
inside of it, called isopoint, is calculated and two triangles 
are built by the four isopoints. 

Figure 7. Triangulation for an active edge 

Let us consider now cells of different size. Only two dis­
tinct cases are possible: first, the active edge (A, B) in the 
smallest cell is on a face of a larger one (figure 8); second, 
the active edge (A, B) in the smallest cell is on an edge 
( C, B) of a larger one and it is no~ on a face of another cell 
(figure 9). 

ktive edge 

Figure 8. Triangulation by 1 triangle 

Figure 9. Triangulation by 2 triangles 

Every cell that shares the active edge contributes one iso­
point to the triangulation, so the triangulation of the firsl 
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case is made using one triangle, whereas the triangulation 
of the second case is made using two triangles. 

ln both cases, if the small edge is active, then the large cell 
is active too, as the Jarge cell is monotonous. 

So, the number of distinct cases by marching edges is 
three, when the edge is not active, no one triangle is gener­
ated; when the edge is shared by three cells (figure 8), one 
triangle is generated; and when the edge is shared by four 
cells (figure 9), two triangles are generated. 

This method has a drawback: some cases of active cells 
(the cases 1, 3, 4, 6, 7, and 13 of [Lorensen87]) gener­
ate more triangles by marching edges than by marching 
cubes. However, other cases (the cases 5, 9, 11 and 14 
of [Lorensen87]) generate Jess triagles by marching edges 
than by marching cubes. 

For example, in the figure 1 O we can see the case num­
ber 1 of [Lorensen87] that generates one triangle using the 
marching cubes method. As shown in the figure 11 the 
sarne configuration has three active edges. For each ac­
live edge, up to two triangles are generated using marching 
edges. These triangles are shared by up to four cells; then, 
the active cell generates 1.5 triangles. 

Figure 10. Case 1 by marching cubes 

Figure 11. Case 1 by marching edges 

The case number 8 of [Lorensen87] (figure 12) is one of 
lhe most common in data sets, figure 13 shows how it is 
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triangulated by marching edges, it can be seen that it gen­
erates the sarne number of triangles than using marching 
cubes. The isopoints have been marked by black circles. 

Figure 12. Case 8 by marching cubes 

Figure 13. Case 8 by marching edges 

The number of triangles built by our method can be be­
tween a 25 % Jess and a 50 % greater than when the march­
ing cubes method is used. 

However, the advantages of our proposal are: 

• The border between cells of different size will not 
have any crack, because triangle's vertices will not be 
on the faces, and so, they will not depend on the dif­
ferent number of samples for that border in the large 
cell with respect to the small one. Triangles will cross 
those borders (see figure 14). 

• Thanks to the previous advantage, the prune critera 
used in [Velascoül] can be less restrictive; only the 
monotony conditions are used, the condition about the 
center of the faces are not needed. So more prunes 
are done. Moreover, any property value needs to be 
changed at any vertex. 

• The more prunes are done, the less storage space is 
needed. 

The edges on the limit of the volume do not generate trian­
gles even if they are actives, because there are no cells on 
the other side. If it is needed, volume must be resized or 
repositioned. 



SIACG 2002 - lst lbero-American Symposium on Computer Graphics 
1-5 July 2002, Guimarães - Portugal 

Figure 14. The advantage of no cracks 

4. IMPLEMENTATION 

Every active edge generates one or two triangles. The ver­
tices of these triangles are into the cells sharing the edge. 
For every active cell the location of the triangle vertex, that 
is unique, is computed using only information local to the 
cell. This ensure that ali triangles crossing the cell are joint 
at the sarne vertex avoiding crash. We will show now how 
the Jocation of the vertex, that we call isopoint, is com­
puted. 

4.1. Computation of lsopoints 

We present the method we use to calculate the isopoint that 
uses information about the cell and the threshold. Other 
methods Iike using a fix relative position can be faster but 
also they can generate worse isosurfaces. 

Let e = (c.x, c.y, c.z, c.s) be an active cell where 
(c.x, c.y, c.z) is the cell's vertex nearest to the origin, and 
c.s is the size of the cell. And Jet Vk be the threshold value. 
The isopoint of the cell e will be a point P E e that repre­
sents the cell in order to build triangles. 

ln order to calculate the isopoint P, (see the figure 15) the 
central point Pc and its property value is computed by the 
function F. For every cell's vertex Pi we can know if the 
isosurface crosses the virtual Iine li between Pi and Pc· If 
li is crossed, an isopoint Pi can be computed by linear in­
terpolation. The isopoint P = (P.x, P.y, P.z) will be the 
average point of ali the Pi computed in the cell. 

Figure 15. Computation of isopoints 

204 

The gradient vector G = (G.x{J .y,G .z) at P is com­
puted as: 

G.x(P) = (G.xº ~1- D.. y)+ G .x1 
· D..y){l- D.. z}+­

(G.x2 E!- D.. y)+ G .x3 
• D..y)· D.. z 

being 

A P.x-c.x 
.u.X = 

c.s 
A P.y-c.y 
.u.y = 

c.s 
A P.z -c.z 
.u.Z = 

c.s 

and 

G.x0 = F(c.x + c.s,c.y,c.z)- F(c.x,c.y,c.z) 

G.x1 = F(c.x+c.s,c.y+c.s,c.z)-F( c.x,c.y+c.s,c.z) 

G.x2 = F(c.x+c.s, c.y, c.z+c.s)-F( c.x, c.y, c.z+c.s) 

G.x3 = F(c.x + c.s, c.y + c.s, c.z + c.s) -
F(c.x,c.y + c.s,c.z + c.s) 

G.y and G.z are computed in a similar way. 

The gradient vector is used to allow a shadowed ren­
dering, Iike the one displayed by the phong method 
[Bui-Tuong75]. 

Every isopoint is computed just once, they are stored in a 
set of isopoints to use them when it is necessary. 

4.2. Edge Labeling 

Every edge can be shared by up to four cells. If the vol­
ume is processed cell by cell, and for each cell, ali its 
edges are processed, every edge can be processed up to 
four times. So every cell has a label to indicate what edges 
must be processed. Every edge in the volume is processed 
just once. 

A cell octree can have cells of different size, the edges that 
are shared by cells of different size (figures 8 and 9) are la­
beled and processed in the smallest cell. This is so in order 
to make easy the searching of neighbourg cells to find the 
needed isopoints to build triangles. When a Jabeled active 
edge is being processed, it is necessary to find the isopoints 
(to build triangles) inside the neighbour cells. Note that our 
method can process only edges that are shared by up to 4 
cells. When an edge is shared by cells of different size, we 
process the edge on the smallest cell. 

ln every cell, only the Jabeled edges are processed, then 
the minimun and maximun property values stored at each 
cell are only computed ín function of the Jabeled edge's 
vertices, so the intervals [min, max] stored in the tree's 
nodes can be smaller and some tree's branches will not be 
processed with a higher probability and the visualization 
time will be shorter. 

Note that the prune criteria and the edges Jabeling is inde­
pendent on the threshold value. 
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4.3. Visualization 

The pseudocode of the procedure to render the volume is 
shown in the figure 16, where Vl and V2 are the vertices 
of the edge E and F (vertex) is the estimated volume 
function. 

render_volume (node N,threshold T) 

if (N has sons) 

for each son s of N 

if (T is between rnin and rnax of S) 
reqder_volume (S,T) 

else /* it is a leaf node */ 
foreach labeled edge E=(Vl,V2) of N 

if (T is between F (Vl) and F (V2)) 

} 

classify E 

compute the isopoints 

show the triangles 

Figure 16. Pseudocode of render _volume 

5. RESULTS 

The proposed method has been implemented and com­
pared with bono using marching cubes, and cell octree 
using marching cubes. Tests have been perfonned with 
lhe volumes showed in figure 19. The volumes have been 
modelled from TAC and the data have been nonnalised be­
tween O and 255 (the threshold for the tests is 60). 

Table l shows the storage requirements for the octree. Ta­
ble 2 shows the time used to build the tree. Table 3 shows 
lhe number of triangles of the isosurface. The time used to 
build the isosurface is shown in table 4. Figures 17 and 18 
shows a plot of these data against the size of the volume. 

ln lhe diagrams about the isosurface the lines of bono and 
cell octree (m. cubes) are in the sarne position as the results 
ofboth methods are very similar (see tables 3 and 4). 

We can see that there is a reduction in the storage requer­
iment and in the time to build the isosurface whereas the 
quality of the images is good, figure 20 shows on the left 
side a zoomed picture by marching cubes and on the right 
side the sarne subvolume rendered by marching edges. The 
time to build the tree is much longer, but this process is 
done just once. The number of triangles of the isosurface 
is greater than using marching cubes. 

The reduction in the storage requeriment shows how the 
Prunning criteria is less restrictive. 

The number of triangles can be reduced by decimation. 
Schroeder et ai. propose deleting points of the triangle 
mesh and making a retriangulation [Schroeder92]. Mon­
tani et ai. propose to build the isosurface so that triangles 
can easily be in the sarne plane, and then retriangulate them 
[Montani94]. ln our proposal, if the isopoints that are cho-
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sen to represents the cells are in the center of the cells, 
many triangles will be in the sarne plane too. 

6. CONCLUSIONS ANO FUTURE WORK 

A new method for volume visualization by surface extrac­
tion has been proposed. We have presented a method to 
build the triangles edge by edge instead of cell by cell. 
This method reduces the number of distinct cases from 15 
(marching cubes [Lorensen87]) to 3. Also, it avoids that 
cracks are arisen when the surface crosses the border be­
tween cells of different sizes, neither pre-process nor post­
process are needful. Thanks to it, lhe prunning cri teria used 
in [VelascoOl] can be less restrictive. So, more prunes can 
be done and ata higher levei of the tree. As a consequence 
of this, the storage space requirement of the tree has been 
reduced. 

We are currently working on an improvement to store the 
properties in the tree avoiding the use of the grid, to ob­
tain further reduction in space used. Also, we are studying 
particular cases of cells in arder to reduce the number of 
triangles built. 
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Volume Finger 
Size 17 X 32 X 32 

Bono 24.144 
Cell Octree (m. cubes) 23.248 
Cell Octree (m. edges) 18.775 

Eye 
64 X 64 X 64 

299.600 
190.032 
144.535 

Table 1. Storage required by tree (bytes) 

Volume Finger Eye 
Size 17 X 32 X 32 64x64x64 

Bono 1 8 
Cell Octree (m. cubes) 4 29 
Cell Octree (m. edges) 8 64 

Table 2. Time to build the tree (ms) 

Volume Finger Eye 
Size 17 X 32 X 32 64x64x64 

Bono 3.586 34.232 
Cell Octree (m. cubes) 3.586 34.226 
Cell Octree (m. edges) 4.828 40.328 

Head 
128 X 128 X 128 

2.396.752 
1.587.088 
1.330.857 

Head 
128 X 128 X 128 

58 
231 
590 

Head 
128 X 128 X 128 

376.998 
376.804 
463.682 

Table 3. Number of triangles of the isosurface 

Volume Finger Eye Head 
Size 17 X 32 X 32 64x64x64 128 X 128 X 128 

Bono 5 45 513 
Cell Octree (m. cubes) 4 45 512 
Cell Octree (m. edges) 2 18 236 

Table 4. Time to build the isosurface (ms) 
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Figure 17. Diagrams about the tree. 
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Num ber oi lriangles oi lhe isosurface 
500000 
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Figure 18. Diagrams about the isosurface. 

Figure 19. Images from volumes used 

Figure 20. Marching cubes vs. marching edges 
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