
S!ACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Marching Edges:
A Method for Isosurface Extraction

Francisco Velasco Juan Carlos Torres Pedro Cano
Computer Graphics Research Group

University of Granada, Spain

{fvelasco,jctorres,pcano}@ugr.es

Abstract
Volumetric data can be represented as a rectilinear structured grid and can be displayed by the rendering of an
isosurface that is built from the grid and defining a threshold value. The know marching cubes method builds the
isosurface cell by cell. However, from a set of cells that comply with some conditions, a bigger cell can be built. ln
these cases, the volume is represented by a set of cells of different size. Then, the isosurface built by marching cubes
will have holes on the borders between cells of different size. ln this paper, we show a new method, called marching
edges, to build the isosurface edge by edge, that generates a hole-free isosurface.

Keywords
Volume visualization, Cell Octree, Marching Cubes, lsosurface extraction without cracks, Triangulation

1. INTRODUCTION

Volumetric data are usually represented as a set of property
values Vi ata set of points (xi, Yi, zi) : i = 1, 2, ... , N;
these values are samples from some unknown continuous
function f (x, y, z). ln order to obtain pictures from that set
of samples, a process of three step can be done [Haber90]:

1. Data enrichment: An estimation, F(x, y, z), of the
unknown function f (x, y, z) is made with which new
couples (point,property value) can be estimated.

2. Mapping: Some geometric interpretation of the func­
tion F(x, y, z) is chosen in order to understand its be­
haviour. This geometric interpretation will typically
be a three dimensional object that can be rendered in
lhe next step.

3. Rendering: The geometry obtained in the previous
step is rendered using standard computer graphics
techniques.

An usual way to render volumetric data is the marching
cubes method [Lorensen87]. A rectilinear structured grid
of the samples is made from the original volume data; an
isosurface F(x, y, z) = Vk is built and rendered for some
lhreshold value Vk· Only a subset of the volume is ren­
dered.

ln order to build the surface, every cubic cell in the grid
is processed: each cell is classified like one of 15 distinct
cases by comparing vk with the property values of the 8
Vertices of the cell; every case has a triangulation that rep­
resents the isosurface inside the cell; the union of ali piece

199

of isosurfaces of ali cells forms the isosurface that is ren­
dered.

Since 1987, severa! papers have been published about the
improvement of marching cubes method [Brodlieül].

Concretely, this method needs a long time, most of which
is spent processing cells that do not have isosurface inside.
ln order to reduce this time, several methods have been
proposed to search for cells intersecting the surface. These
methods can be classified according to the search criteria
used:

• Range-based, each cell is labelled with the interval
that it spans in the range of the property field. This
allows to search for intervals that contain a given
threshold value. Cignoni et ai. propose to use an
interval tree structure [Edelsbrunner80, Preparata85]
in order to retrieve these intervals, from which active
cells are found [Cignoni97]. ln particular, they use a
method that combines range-based and surface-based
search.

• Surface-based, only the cells that are adjacent to cells
for which the surface has been previously rendered
are processed [Shekhar96]. This solution does not
display the complete surface when it has more than
one component. lt is necessary to have a seed set
of cells from which ali the components can be ren­
dered. Bajaj et ai. propose a method to generate seed
sets that allow to get ali components for ali possible
threshold values [Bajaj96].

SIACG 2002 - Ist Ibero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

• Space-based, domain spanned by the data set is parti­
tioned in order to search active cells. These partitions
can be hierarchical [Wilhelms92].

A típica! space-based searching is the bono structure. Wil­
helms et ai. proposed to build an octree [Meagher80] that
indexes the grid, and which stores, in every octree node,
the maximum and minimum property value of the subvol­
ume covered by the node [Wilhelms92]. This information
is used when traversing the volume and allows that those
nodes for which the property interval does not contain
the threshold to be skipped. This structure, called BONO
(Branch On Need Octree), makes the rendering faster but
increases the storage requirement as it must store both the
grid and the octree.

Other advantage of the tree is the multiresolution capabil­
ity. Volume can be rendered at different leveis of detail by
pruning the tree ata specific levei when it is rendered. Fur­
thermore, an adaptive isosurface can be built if different
branches of the tree are pruned at different leveis. Works
like [Ohlberger97, Westermann99] use these issues, how­
ever, the prune condition is dependent on the threshold and,
in the case of [Westermann99], also on the point of view.

lt is also possible to use hierarchical structures and prun­
ning ofbranches oriented to the visualization process. Liv­
nat et al. use a bono in order to do a hierarchical front­
to-back traversal of the data set with dynamic pruning of
sections that are hidden from the point of view by previ­
ously extracted sections of the isosurface [Livnat98]. Only
the isosurface that is visible from the point of view is built.
When the viewpoint changes, the isosurface must be re­
built.

However, when different branches of the tree are pruned
at different leveis, there will be joined cells of different
size. Then, holes (or cracks) on the isosurface can arise
on the border between those cells of different size. This
is because the isosurface inside the large cell is built from
less information than the isosurface inside the small ones
(see figure 1).

Figure 1. Example of crack

Severa! solutions have been proposed for this problem.
Shu et ai. propose covering the crack with a polygon
[Shu95]; Shekhar et ai. propose removing it by mov-

200

ing the vertices of the triangles in the small cells so that
they coincide with the edges of the triangle in the big one
[Shekhar96]; Westermann et ai. propose to replace a tri­
angle in the large cell with a fan of triangles, in order to
adapt the isosurface inside the large cell to the isosurface
inside the small ones [Westermann99]; this method with
severa! improvementes is used by Engel et ai. to imple­
ment a web-based volume visualization system [Engel99].
ln these cases, the process can be performed after the tri­
angle mesh has been built or when it is being built.

ln a previous work we proposed a modification of bono,
called cell octree, in which the branches that representa set
of cells whose property values verify some uniform gradi­
ent conditions are forever pruned [VelascoOl]. The main
difference between a cell octree and other approaches is
that the prune condition is independent on the threshold.
Note that this does not forbit to use an aditional view de­
pendent prune condition.

ln a cell octree, cells of different size can be adjacents.
ln order to avoid crashes on surfaces that cross over two
adjacent cells of different size, the prune condition is very
restrictive. That is, it allows to prune a branch only when it
can be ensured that no crack will appear for any threshold
value.

ln this paper, we presenta method to build the triangles of
the isosurface, edge by edge instead of cell by cell. Isosur­
faces built with this method can cross the border between
cells of different size without any discontinuity. This is so
because there are no triangle's vertices on the border be­
tween cells, then it is not necessary to make coincide any
geometric data on both sides of that border. The cells will
have up to one triangle's vertex that will be inside the cell.
So, triangles will cross the border. The quality of no dis­
continuity allows us to use a less restrictive prune condition
obtaining a cell octree with less storage requirements.

Next section summarizes the cell octree structure. ln sec­
tion three our proposal, called marching edges, is pre­
sented, where the concept of isopoint is explained. ln sec­
tion four we explain how to compute the isopoints, how to
label the edges to avoid processing an edge more than once,
and the rendering algorithm. Finally, section five shows
data and pictures from real volumes.

2. CELL OCTREE

We use a bono as start point and, by a bottom-up process,
making prunes where some uniform gradient conditions
are observed. On every prune, eight brothers leaf node are
forever pruned and their old father internai node is con­
verted into a new leaf node. On every prune, the egiht cells
represented by the pruned leaf nodes are no longer acces­
sibles and a new bigger cell that is represented by the neW
leaf node is accessible now (see figure 2).

ln the following subsections, some concepts are defined
and the prunning criteria for cell octree, as presented in
[VelascoOI], is explained.

SIACG 2002 - 1 st lbero-American Symposium on Compuler Graphics
1-5 July 2002, Guimarães - Portugal

L,:;::t;;t:JgEJ;~::>f-A_f_t_er..., ___ 1 r prunm.ng

Figure 2. Pruned cells and the new cell

2.1. Definitions

A face is monotonous when for every possible threshold
value, the isosurface crosses it no more than once.

A cell is monotonous if every of its faces is monotonous.

A group of eight brother cells (see figure 3) will be
monotonous when:

1. Every cell of the group is monotonous.

2. Every face of the cell after prunning is monotonous.

3. For every B vertex (half edge vertex), its property
value is between the property values of the end edge
vertices A.

4. For every C vertex (center face vertex), its property
value is between the property values of the comer face
vertices A.

5. For the D vertex (center cube vertex), its property
value is between the property values of the comer
cube vertices A.

Figure 3. Group of cells to be prunned

The test of monotony for faces is done by checking the
property values at its four comers; note that even when
the faces of the cell after prunning can be monotonous by
using the previous test, the group can be not monotonous if
there is a maximun or minimun on vertices of kind B or C,
as for some threshold value, the isosurface wild cross the
face more than once. The last condition (on vertex D) is
set in order to do not loss any important value, as for some
threshold value an internai isusurface around the central
Vertex D will appear.

201

2.2. Prunning Criteria

The prunning criteria is defined so as to ensure that no
cracks can arise on the isosurface built from a cell octree
for any threshold value.

A group of eight brother cells will be prunned if the group
is monotonous and if any vertex center of face is going to
need two different property values to avoid the cracks. The
remaining of this section justifies this pruning cri teria.

A group of eight brother cells must be obviously
monotonous to be prunned as if this is not the case there
could be a maximum at the center of a face that could be
lost in the prunned cells. In this case a crash similar to the
one shown in figure 4 will arise.

Figure 4. Case of bole

But, this is not sufficient for avoiding ali the cracks. ln
arder to avoid cracks like the one showed in the figure 1
more conditions are needed. After a prune is dane, the ver­
tices in the center of each new edge can be used by other
cells that have not been prunned, so the property value of
these vertices are modified in order to make the intesec­
tion isosurface-edge coincide in ali the cells that share that
edge.

Usually, the intersection isosurface-edge is computed by
linear interpolation, so the vertices at the midle ofthe edges
of a cell resulting of a prune are modified with the property
value resulting of a linear interpolation between the end
vertices of the edge. These vertices can be used in the non
prunnedjoined cells.

However, the vertices in the center of each new face are
not similar to the vertices at the center of the edges. If the
center of a new face is modified with the property value re­
sulting of a linear interpolation between the four comers of
the face, there will be cracks on that face (figure 5). There
is nota single property value for a vertex center of face: it
depends on the threshold value and, more important, there
are cases where two different property values are needed
(figure 6). So if this case is possible for some face of the
group of brother cells, the prune is not dane.

SIACG 2002 - lst Jbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

threshold=85

Figure 5. Particular example of crack even when the
central vertex has a value resulting of linear interpola­
tion

Figure 6. The value that makes coincide one part of
both local isosurfaces does not make coincide the other
part (see zoomed images). It would have to use both
values to make coincide both parts of both local isosur­
faces

202

3. MARCHING EDGES

Let e be a cell intersected by the isosurface. This cell,
called active cell, has some edges that are crossed by the
isosurface. These edges are called active edges. Let us
consider the active edge (A, B) on the figure 7; the active
edge is shared by four active cells. For every cell one point
inside of it, called isopoint, is calculated and two triangles
are built by the four isopoints.

Figure 7. Triangulation for an active edge

Let us consider now cells of different size. Only two dis­
tinct cases are possible: first, the active edge (A, B) in the
smallest cell is on a face of a larger one (figure 8); second,
the active edge (A, B) in the smallest cell is on an edge
(C, B) of a larger one and it is no~ on a face of another cell
(figure 9).

ktive edge

Figure 8. Triangulation by 1 triangle

Figure 9. Triangulation by 2 triangles

Every cell that shares the active edge contributes one iso­
point to the triangulation, so the triangulation of the firsl

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

case is made using one triangle, whereas the triangulation
of the second case is made using two triangles.

ln both cases, if the small edge is active, then the large cell
is active too, as the Jarge cell is monotonous.

So, the number of distinct cases by marching edges is
three, when the edge is not active, no one triangle is gener­
ated; when the edge is shared by three cells (figure 8), one
triangle is generated; and when the edge is shared by four
cells (figure 9), two triangles are generated.

This method has a drawback: some cases of active cells
(the cases 1, 3, 4, 6, 7, and 13 of [Lorensen87]) gener­
ate more triangles by marching edges than by marching
cubes. However, other cases (the cases 5, 9, 11 and 14
of [Lorensen87]) generate Jess triagles by marching edges
than by marching cubes.

For example, in the figure 1 O we can see the case num­
ber 1 of [Lorensen87] that generates one triangle using the
marching cubes method. As shown in the figure 11 the
sarne configuration has three active edges. For each ac­
live edge, up to two triangles are generated using marching
edges. These triangles are shared by up to four cells; then,
the active cell generates 1.5 triangles.

Figure 10. Case 1 by marching cubes

Figure 11. Case 1 by marching edges

The case number 8 of [Lorensen87] (figure 12) is one of
lhe most common in data sets, figure 13 shows how it is

203

triangulated by marching edges, it can be seen that it gen­
erates the sarne number of triangles than using marching
cubes. The isopoints have been marked by black circles.

Figure 12. Case 8 by marching cubes

Figure 13. Case 8 by marching edges

The number of triangles built by our method can be be­
tween a 25 % Jess and a 50 % greater than when the march­
ing cubes method is used.

However, the advantages of our proposal are:

• The border between cells of different size will not
have any crack, because triangle's vertices will not be
on the faces, and so, they will not depend on the dif­
ferent number of samples for that border in the large
cell with respect to the small one. Triangles will cross
those borders (see figure 14).

• Thanks to the previous advantage, the prune critera
used in [Velascoül] can be less restrictive; only the
monotony conditions are used, the condition about the
center of the faces are not needed. So more prunes
are done. Moreover, any property value needs to be
changed at any vertex.

• The more prunes are done, the less storage space is
needed.

The edges on the limit of the volume do not generate trian­
gles even if they are actives, because there are no cells on
the other side. If it is needed, volume must be resized or
repositioned.

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Figure 14. The advantage of no cracks

4. IMPLEMENTATION

Every active edge generates one or two triangles. The ver­
tices of these triangles are into the cells sharing the edge.
For every active cell the location of the triangle vertex, that
is unique, is computed using only information local to the
cell. This ensure that ali triangles crossing the cell are joint
at the sarne vertex avoiding crash. We will show now how
the Jocation of the vertex, that we call isopoint, is com­
puted.

4.1. Computation of lsopoints

We present the method we use to calculate the isopoint that
uses information about the cell and the threshold. Other
methods Iike using a fix relative position can be faster but
also they can generate worse isosurfaces.

Let e = (c.x, c.y, c.z, c.s) be an active cell where
(c.x, c.y, c.z) is the cell's vertex nearest to the origin, and
c.s is the size of the cell. And Jet Vk be the threshold value.
The isopoint of the cell e will be a point P E e that repre­
sents the cell in order to build triangles.

ln order to calculate the isopoint P, (see the figure 15) the
central point Pc and its property value is computed by the
function F. For every cell's vertex Pi we can know if the
isosurface crosses the virtual Iine li between Pi and Pc· If
li is crossed, an isopoint Pi can be computed by linear in­
terpolation. The isopoint P = (P.x, P.y, P.z) will be the
average point of ali the Pi computed in the cell.

Figure 15. Computation of isopoints

204

The gradient vector G = (G.x{J .y,G .z) at P is com­
puted as:

G.x(P) = (G.xº ~1- D.. y)+ G .x1
· D..y){l- D.. z}+­

(G.x2 E!- D.. y)+ G .x3
• D..y)· D.. z

being

A P.x-c.x
.u.X =

c.s
A P.y-c.y
.u.y =

c.s
A P.z -c.z
.u.Z =

c.s

and

G.x0 = F(c.x + c.s,c.y,c.z)- F(c.x,c.y,c.z)

G.x1 = F(c.x+c.s,c.y+c.s,c.z)-F(c.x,c.y+c.s,c.z)

G.x2 = F(c.x+c.s, c.y, c.z+c.s)-F(c.x, c.y, c.z+c.s)

G.x3 = F(c.x + c.s, c.y + c.s, c.z + c.s) -
F(c.x,c.y + c.s,c.z + c.s)

G.y and G.z are computed in a similar way.

The gradient vector is used to allow a shadowed ren­
dering, Iike the one displayed by the phong method
[Bui-Tuong75].

Every isopoint is computed just once, they are stored in a
set of isopoints to use them when it is necessary.

4.2. Edge Labeling

Every edge can be shared by up to four cells. If the vol­
ume is processed cell by cell, and for each cell, ali its
edges are processed, every edge can be processed up to
four times. So every cell has a label to indicate what edges
must be processed. Every edge in the volume is processed
just once.

A cell octree can have cells of different size, the edges that
are shared by cells of different size (figures 8 and 9) are la­
beled and processed in the smallest cell. This is so in order
to make easy the searching of neighbourg cells to find the
needed isopoints to build triangles. When a Jabeled active
edge is being processed, it is necessary to find the isopoints
(to build triangles) inside the neighbour cells. Note that our
method can process only edges that are shared by up to 4
cells. When an edge is shared by cells of different size, we
process the edge on the smallest cell.

ln every cell, only the Jabeled edges are processed, then
the minimun and maximun property values stored at each
cell are only computed ín function of the Jabeled edge's
vertices, so the intervals [min, max] stored in the tree's
nodes can be smaller and some tree's branches will not be
processed with a higher probability and the visualization
time will be shorter.

Note that the prune criteria and the edges Jabeling is inde­
pendent on the threshold value.

SIACG 2002 - 1 st lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

4.3. Visualization

The pseudocode of the procedure to render the volume is
shown in the figure 16, where Vl and V2 are the vertices
of the edge E and F (vertex) is the estimated volume
function.

render_volume (node N,threshold T)

if (N has sons)

for each son s of N

if (T is between rnin and rnax of S)
reqder_volume (S,T)

else /* it is a leaf node */
foreach labeled edge E=(Vl,V2) of N

if (T is between F (Vl) and F (V2))

}

classify E

compute the isopoints

show the triangles

Figure 16. Pseudocode of render _volume

5. RESULTS

The proposed method has been implemented and com­
pared with bono using marching cubes, and cell octree
using marching cubes. Tests have been perfonned with
lhe volumes showed in figure 19. The volumes have been
modelled from TAC and the data have been nonnalised be­
tween O and 255 (the threshold for the tests is 60).

Table l shows the storage requirements for the octree. Ta­
ble 2 shows the time used to build the tree. Table 3 shows
lhe number of triangles of the isosurface. The time used to
build the isosurface is shown in table 4. Figures 17 and 18
shows a plot of these data against the size of the volume.

ln lhe diagrams about the isosurface the lines of bono and
cell octree (m. cubes) are in the sarne position as the results
ofboth methods are very similar (see tables 3 and 4).

We can see that there is a reduction in the storage requer­
iment and in the time to build the isosurface whereas the
quality of the images is good, figure 20 shows on the left
side a zoomed picture by marching cubes and on the right
side the sarne subvolume rendered by marching edges. The
time to build the tree is much longer, but this process is
done just once. The number of triangles of the isosurface
is greater than using marching cubes.

The reduction in the storage requeriment shows how the
Prunning criteria is less restrictive.

The number of triangles can be reduced by decimation.
Schroeder et ai. propose deleting points of the triangle
mesh and making a retriangulation [Schroeder92]. Mon­
tani et ai. propose to build the isosurface so that triangles
can easily be in the sarne plane, and then retriangulate them
[Montani94]. ln our proposal, if the isopoints that are cho-

205

sen to represents the cells are in the center of the cells,
many triangles will be in the sarne plane too.

6. CONCLUSIONS ANO FUTURE WORK

A new method for volume visualization by surface extrac­
tion has been proposed. We have presented a method to
build the triangles edge by edge instead of cell by cell.
This method reduces the number of distinct cases from 15
(marching cubes [Lorensen87]) to 3. Also, it avoids that
cracks are arisen when the surface crosses the border be­
tween cells of different sizes, neither pre-process nor post­
process are needful. Thanks to it, lhe prunning cri teria used
in [VelascoOl] can be less restrictive. So, more prunes can
be done and ata higher levei of the tree. As a consequence
of this, the storage space requirement of the tree has been
reduced.

We are currently working on an improvement to store the
properties in the tree avoiding the use of the grid, to ob­
tain further reduction in space used. Also, we are studying
particular cases of cells in arder to reduce the number of
triangles built.

7. ACKNOWLEDGMENTS

This paper has been supported by the Ministerio de Ciencia
y Tecnología and by FEDER through grant TlC2001-2099-
C03-02.

8. REFERENCES

[Bajaj96] Bajaj, C., Pascucci, V., and Schikore, D. (1996).
Fast isocontouring for improved interactivity. ln ACM
Symposium on Volume Visualization, pages 39-46,99,
San Francisco, USA.

[BrodlieOl] Brodlie, K. and Wood, J. (2001). Recent ad­
vances in volume visualization. Computers Graphics
forum, 20(2): 125-148.

[Bui-Tuong75] Bui-Tuong, P. (1975). Ilumination for
computer generated pictures. CADM, 18(6):311-317.

[Cignoni97] Cignoni, P., Marino, P., Montani, C., Puppo,
E., and Scopigno, R. (1997). Speeding up isosurface
extraction using interval trees. IEEE Transactions on
Visualization and Computer Graphics, 3(2): 158-170.

[Edelsbrunner80] Edelsbrunner, H. (1980). Dynamic data
structures for orthogonal intersection queries. Techni­
cal Report F59, Inst. Informations-verarb., Tech. Univ.
Graz, Graz, Austria.

[Engel99] Engel, K., Westermann, R., and Ertl, T. (1999).
Isosurface extraction techniques for web-based volume
visualization. ln IEEE Visualization, pages 139-146.

[Haber90] Haber, R. and McNabb, D. (1990). Visualiza­
tion idioms: a conceptual modelfor scientific visualiza­
tion systems, chapter of Visualization in Scientific Com­
puting, pages 74-93. B. Shriver, G.M. Nielson and L.J.
Rosenblum (eds).

SlACG 2002 - lst lbero-American Symposium on Computcr Graphics
1-5 July 2002, Guimarães - Portugal

Volume Finger
Size 17 X 32 X 32

Bono 24.144
Cell Octree (m. cubes) 23.248
Cell Octree (m. edges) 18.775

Eye
64 X 64 X 64

299.600
190.032
144.535

Table 1. Storage required by tree (bytes)

Volume Finger Eye
Size 17 X 32 X 32 64x64x64

Bono 1 8
Cell Octree (m. cubes) 4 29
Cell Octree (m. edges) 8 64

Table 2. Time to build the tree (ms)

Volume Finger Eye
Size 17 X 32 X 32 64x64x64

Bono 3.586 34.232
Cell Octree (m. cubes) 3.586 34.226
Cell Octree (m. edges) 4.828 40.328

Head
128 X 128 X 128

2.396.752
1.587.088
1.330.857

Head
128 X 128 X 128

58
231
590

Head
128 X 128 X 128

376.998
376.804
463.682

Table 3. Number of triangles of the isosurface

Volume Finger Eye Head
Size 17 X 32 X 32 64x64x64 128 X 128 X 128

Bono 5 45 513
Cell Octree (m. cubes) 4 45 512
Cell Octree (m. edges) 2 18 236

Table 4. Time to build the isosurface (ms)

2500000

2250000

zoooooo
1noooo
1500000

1z::JOOOO

1000000

750000

500000

250000

Storage needed by the tree

:'/

_.../

/

. Bono
'- CelOctru

(m.cubu)
/ 'CdOctru

..•. •• -···· ·· (m.•-)

M•IWxM 1Zlx128xlll

Time to build lhe tree

• ... Bono

' C•IOdrc1
(m.Q.lbb)

'-CelO<:ne
(m.edgu)

17x32xSZ Mx64xM lllxlZlxlZI

Figure 17. Diagrams about the tree.

206

SIACG 2002 - lst lbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

Num ber oi lriangles oi lhe isosurface
500000

Time to build lhe isosurface

4'50000

"400000

350000

300000

250000

200000

150000 ' Cel Odree
(m.C:Ube•)

100000 'Cel Octrce
50000 (m.edgu)

J..,,,,,,::::::;::::::::::=-_~..:::::

···. Sono
'\. Cel Octree

(m.c:ube•)
'\.CelOctree

(m.edge1)

17x32z32 64 x64 x64 128 X 128 X 128 17x3Zx3Z 64x64x64 128x1Z8x128

Figure 18. Diagrams about the isosurface.

Figure 19. Images from volumes used

Figure 20. Marching cubes vs. marching edges

207

SIACG 2002 - 1 st fbero-American Symposium on Computer Graphics
1-5 July 2002, Guimarães - Portugal

[Livnat98] Livnat, Y. and Hansen, C. (1998). View depen­
dent isosurface extraction. ln IEEE Visualization, pages
175-181.

[Lorensen87] Lorensen, W. and Cline, H. (1987). March­
ing cubes: A high resolution 3d surface construction al­
gorithm. ACM Computer Graphics, 21(4): 163-169.

[Meagher80] Meagher, D. (1980). Octree encoding: a
new tecnique for the representation, manipulation and
display of arbitrary three dimensional objects by com­
puter. Technical Report IPL-TR-80-111, Polytechnic
lnst., Revisselaer.

[Montani94] Montani, C., Scateni, R., and Scopigno, R.
(1994). Discretized marching cubes. ln Proceedings of
Visualization, pages 281-287, Los Alamitos, CA, USA.

[Ohlberger97] Ohlberger, M. and Rumpf, M. (1997). Hi­
erarchical and adaptive visualization on nested grids.
Computing, 59(4):365-385.

[Preparata85] Preparata, F. and Shamos, M. (1985). Com-
putational Geometry: An lntroduction. Springer-
Verlag.

208

[Schroeder92] Schroeder, W., Zarge, J., and Lorensen, W.
(1992). Decimation of triangle meshes. ACM Computer
Graphics, 25(2):65-70.

[Shekhar96] Shekhar, R., Fayyad, E., Yagel, R., and Corn­
hill, F. (1996). Octree-based decimation of march­
ing cubes surfaces. ln Visualization '96, pages 335-
342,499, San Francisco, USA. IEEE.

[Shu95] Shu, R., Zhou, C., and Kankanhalli, M. (1995).
Adaptive marching cubes. The Visual Computer,
11:202-217.

[VelascoOl] Velasco, F. and Torres, J. (2001). Cell octree:
A new data structure for volume modeling and visual­
ization. ln VI Fali Workshop on Vision, Modeling and
Visualization, pages 151-158, Stuttgart, Germany.

[Westermann99] Westermann, R., Kobbelt, L., and Ertl,
T. (1999). Real-time exploration of regular volume data
by adaptive reconstruction of isosurfaces. The Visual
Computer, 15: 100-111.

[Wilhelms92] Wilhelms, J. and Gelder, A V. (1992). Oc­
trees for faster isosurface generation. ACM Transac­
tions on Graphics, 11(3):201-227.

