
Visual Syntax Analysis for Calligraphic Interfaces

Joaquim A. Jorge, Manuel J. Fonseca
INESC-ID/IST/UTL

R. Alves Redol, 9, 1000-029 Lisboa
jaj@inesc-id.pt,mjf@inesc-id.pt

Filipe M Garcia Pereira
IST/UTL
Lisboa

fmgp@mega.ist.utl.pt

Abstract
This paper presents an approach to analyse sketches of user interfaces by means of Visual Languages. To this end
we use a shape recognizer, CALI [Fonseca00], and build on the ideas presented in JavaSketchIt[Caetano02]
where the parsing is done by recognizing pairs of sketched symbols using a restricted visual syntax. The present
paper presents our ongoing work on Visual Language Analysis to expand the possibilities afforded by JavaSkec-
thIt in a more flexible manner. Our approach provides more flexibility with the ability to describe an increasing
number of visual symbols, and making use of more complex productions which wouldn’t be so simple to handle
with previous pattern recognition techniques employed in JavaSketchIt, such as recursive productions and am-
biguous arrangements involving more than two symbols.

Keywords
Calligraphic Interfaces, Visual Parser, Visual Syntax Parsing, Visual Grammar.

1. INTRODUCTION
A desire common to developers, programmers and espe-
cially interface designers, is to pick up those hand drawn
sketches and drafts and magically create the interface
they’ve been so carefully designing. However, the major-
ity of commercially available tools do not support this.
To overcome these problems we are working on calli-
graphic interfaces. These focus on sketch and gesture
recognition and thus allow users to sketch the outline of
user interfaces on a tablet PC, instead of entering a se-
quence of commands and menu selections.
In this paper we present an approach based on parsing
sketches using visual grammars. Our technique draws on
earlier research work, which it attempts to generalize.
After a brief overview of related research we describe
our approach from a few selected examples.

2. RELATED WORK
Until recently, there have been different approaches to
specify visual syntax and parse visual sentences into ma-
chine symbols. One approach is DENIM [Lin01] (an
evolution from SILK [Landay95]) to simulate interfaces
from sketches in a storyboard environment. Designers are
able to sketch low-fidelity prototypes and dynamically
simulate their behaviour. However, there are no beautifi-
cations or elaborate translation steps in the system.
JavaSketchIt [Caetano02] provides a framework to
bridge the gap between conceptual mock-ups and func-
tional prototypes. Shapes are recognized using a lexicon
provided by CALI [Fonseca00]. User interface widgets

can be recognized by combining primitive shapes using
spatial relations and geometric attributes. These consti-
tute a visual language that cannot be expanded since it is
embedded in the application code.
SketchiXML [Coyette04] is another system based on
JavaSketchIt and aimed at user interface prototyping.
SketchiXML uses a multi-agent platform to perform the
different tasks associated with parsing. Individual tasks
are performed by distinct agents. One agent recognizes
input scribbles, while others support removing redun-
dancy and ambiguity. It is also possible to include other
agents to perform extra tasks such as beautifying and
aligning recognized widgets, as well as suggesting im-
provements to layout and design.

3. OUR APPROACH
To extend JavaSketchIt, we aim at developing a method
for visual syntax analysis which should be both simple
and general enough to allow users to define their own
visual languages. Such visual languages are to be speci-
fied by means of a grammar using a set basic symbols
and composition rules, using a textual language such as
XML which should be easy to modify. While JavaS-
ketchIt was a first attempt at this, the limitations inherent
to the programming language used (Scheme) which re-
sulted in syntax rules becoming embedded in the pro-
gram code and thus difficult to modify and extend.
Moreover, widgets (production rules) in JavaSketchIt
could only rewrite at most groups of two symbols. Our
aim is to provide a mechanism both strong and general
enough to allow users to define productions with any

197

13º Encontro Português de Computação Gráfica

12 - 14 Outubro 2005

number of symbols. Also it should be possible to include
recursive productions by repeating on the right-hand-side
of a production the same symbol specified in the left
hand-side.
To specify widgets using sketches we need to recognize
sets of strokes as geometrical entities and then to associ-
ate these entities using a visual grammar. The terminal
alphabet allowed for the possible visual languages corre-
spond to the scribbles recognized by CALI as shown in
Figure 1.

Figure 1: Scribbles recognized by CALI[Fonseca00]

Using this vocabulary, we define a set of rules based on
spatial relations applied to constituent symbols. Remem-
ber from Visual Languages that it is spatial and topologi-
cal relations that specify constraints rather than sequence
[Jorge94]. Spatial constraints are defined either as unary
or binary. Unary rules are fuzzy predicates that assert
conditions on individual items such as isHorizon-
tal(Symbol). Binary rules are used to denote spatial
relationships involving two visual elements. One such
example is the binary fuzzy spatial relation predicate
isInside(Symbol1,Symbol2) which allows the
parser to check whether Symbol1 is Inside Symbol2.
Fuzzy predicates [Jorge94] differ from regular Boolean
predicates in that they return a degree of likelihood be-
tween 0 and 1, rather than a crisp value of either true or
false depending on whether the arguments satisfy (or not)
the predicate.
By working out a simple example, these ideas can be
better understood. Let’s begin by providing a sample
grammar definition for a simple widget (TextField),
which is depicted by an horizontal line inside a rectangle.
We use XML to specify grammars, as this provides a
very flexible and easy to understand textual notation.

<widget type="TextField">

 <symbol type="Line" id="1"/>

 <symbol type="Rectangle" id="2"/>

 <rule name="isHorizontal" arg1="1"/>
 <rule name="isInside" arg1="1" arg2="2"/>

</widget>

In the example above, widget specifies a production in
our grammar. Visual tokens correspond to symbol
markers. Each symbol recognized by CALI will have a
type assigned to it. We use positional identifiers to as-
sociate each symbol with arguments to constraints or
rules. In principle any number of symbols or rules in
a production.
Figure 2 shows the architecture of our system. The input
is provided by strokes entered with a tablet/stylus combi-
nation. We use CALI to recognize sets of temporally
contiguous strokes (scribbles) which are classified as one
of the shapes shown in Figure 1.

Figure 2: System architecture

Recognized scribbles are sent to a bottom-up parser.
Since the order of constituents in a production is irrele-
vant, we need to search for items to associate using spa-
tial relations and to use a set of heuristics to handle am-
biguous productions. Our parser works by constructing
partial items. These result from associating productions
in the specified grammar with tokens captured by the
recognizer. Incomplete parse items are stored in a Tem-
porary Widgets List (TWL). When a new symbol is rec-
ognized by CALI, it gets checked against all elements in
the TWL, generating new items as partial matches occur.
New tokens are also checked against candidate produc-
tions in the grammar and may yield complete or incom-
plete items. A complete item is an instance of a produc-
tion in which all symbol slots are filled. In the current
system, complete items correspond to widgets and get
stored in the results list. In contrast, incomplete items still
require one or more symbols. A final set of heuristics
cleans up both the temporary (TWL) and results list

Input Scribbles/Gestures

Check for matches with tem-
porary or productions items

PARSER/ANALYZER

CALI Recognizer

points

symbols

widgets

Temporary
itemsClean redundancies

widgets

Output

SHAPE RECOGNIZER

198

13º Encontro Português de Computação Gráfica

12 - 14 Outubro 2005

eliminating redundant items. The pseudo code below
illustrates the way our parsing approach works:

Parse(scribble)

 newSym ! Recognize(scribble)

 for each item in TWL

 if item.match(newSym) then

 nItem ! item.reduce(newSym)

 if nItem.isComplete() then

 results.add(nItem)

 else

 TWL.add(nItem)

 for each prod in Grammar

 if prod.match(newSym, item) then

 nItem <- prod.reduce(newSym)

 if nItem.isComplete() then

 results.add(nItem)

 else

 TWL.add(nItem)

 CleanRedundantWidgets()

These ideas can be better understood by looking at a sim-
ple example. Consider the production TextField pre-
viously described. Figure 3 shows a possible sketch of a
TextField.

Figure 3: Sketch of a TextField widget
(dashed lines are provided for context)

There are two different ways to draw this widget: either
we can draw first the Line and then the Rectangle or
the opposite sequence. For simplicity, let us begin with
the Rectangle as show in Figure 4. The visual token rec-
ognized by CALI gets matched against all items in TWL.
There is one incomplete TextField widget with a
missing Line slot.

Figure 4: A Rectangle scribble

After the scribble is recognized by CALI as a Rectan-
gle, we look in TWL for matching items. However the
TWL is initially empty. We then check the Grammar for
new entries. We find a matching TextField widget
and generate the corresponding temporary item. Since the
item is not complete (we need an horizontal line) we
add it to TWL.
Finally, we draw a Line inside the Rectangle as
shown in Figure 5. After it gets recognized by CALI we
check the resulting shape against all items in the TWL. It
matches the TextField item described above.

Figure 5: Sequence of two strokes

Since the temporary item thus found verifies both rules
as checked by item.match(), i.e. Line is horizontal
and is inside the Rectangle symbol in item, we re-
duce a new item. This item is complete. Thus, it gets
added to results list, meaning that we have recog-
nized a TextField widget. CleanRedundant-
Widgets() gets called afterwards to check whether
there are temporary elements in TWL that are no longer
needed. It finds the incomplete TextField item and
checks this against the contents of results. Since the in-
complete item matches a completed parse item in results,
it gets deleted from TWL.

Figure 6: The TextList widget

199

13º Encontro Português de Computação Gráfica

12 - 14 Outubro 2005

Let’s examine a more complex example, using a longer
production reule involving also lines and rectangles. The
visual representation for the widget TextList is shown
in Figure 6. The grammar fragment below shows two
productions one describing a simple Text widget (an
horizontal line) and the other a TextList widget (three
horizontal lines inside a rectangle):

<widget type="Text">

 <symbol type="Line" id="1"/>

 <rule name="isHorizontal" arg1="1"/>

</widget>

<widget type="TextList">

 <symbol type="Line" id="1"/>

 <symbol type="Line" id="2"/>

 <symbol type="Line" id="3"/>

 <symbol type="Rectangle" id="4"/>

 <rule name="isHorizontal" arg1="1"/>

 <rule name="isHorizontal" arg1="2"/>

 <rule name="isHorizontal" arg1="3"/>

 <rule name="isInside" arg1="1" arg2="4"/>

 <rule name="isInside" arg1="2" arg2="4"/>

 <rule name="isInside" arg1="3" arg2="4"/>

</widget>

We describe how the parser handles the input leading to
the desired widget. Focusing on one of the possible per-
mutations, we draw the following elements for this ex-
ample in the sequence Line(1), Line(2), Line(3)
and Rectangle as scribbles recognized by CALI.

Figure 7: A Text widget parsed from the input of the
horizontal “Line”

Figures 7 to 10 illustrate this sequence. Let us start by
looking at Line(1). At this step the parser checks to
see if Line(1) is a valid entry for any of the temporary
generated symbols and then the production rules in the
grammar. Given that it matches all the input constraints
for a Text widget, it is recognized as such, even though
it may originate more temporary items to be recognized
as more input is provided.
At this stage the predicate that has been asserted so far
isHorizontal(Line(1)) which causes the recog-
nition of the target widget. With this entry, there isn’t
any visible progress: the temporary data grow, as well as
the previous temporary elements gain more and more
information leading them closer to form a complete wid-
get. Figure 8, shows the

Figure 8: Two Text widgets parsed from input of
both horizontal Line symbols

Figure 8 shows the state after two lines are drawn. Again
what is seen and is possible to evaluate given the last
input is still isHorizontal(Line(1)) on the target
widget, even though now we gathered two symbols al-
ready.

Figure 9: Three Text widgets parsed from input of
all horizontal Line symbols

With this entry, again, there isn’t really any visible pro-
gress, though the temporary data grow as temporary ob-
jects gather enough information to allow the next entry to
generate the desired widget:

Figure 10: Three Text widgets parsed from input of
all horizontal Line symbols and a rectangle

Figure 10 shows the complete input. The result is
achieved when the Rectangle is provided to the tem-
porary object list for evaluation. The parser checks that
this is a valid entry and most important, it validates the
missing rules that have been on hold which are isIn-
side(Line,Rectangle) for each Line previously

200

13º Encontro Português de Computação Gráfica

12 - 14 Outubro 2005

provided. We now have a complete item and can assert
that a TextList was recognized.

4. HEURISTICS USED
Given the parsing techniques described above, the re-
maining issues are redundancy and ambiguity.
The redundancy is most notably seen when generating
temporary objects from grammar productions due to pos-
sible permutations for more complex widgets. An exam-
ple occurs in the TextList where we have three lines
which obey to the same exact rules and in the same posi-
tion when parameters for binary rules. Associating items
in pairs would lead to many redundant temporaries. The
resulting idea was to identify such occurrences from the
start and when checking for valid entries, identify only
one of these pairs as relevant and not consider others.
Ambiguity arises when recognizing and defining which
widgets are complete. This causes immediately the ap-
pearance of multiple widgets with a different number of
pieces gathered among the input symbols. From the ex-
ample in Figure 10, we could have identified three occur-
rences of Text and at least one occurrence of Tex-
tList. We solve this by picking the widget with the
largest count of input pieces and keeping the others as
alternative results.

5. FUTURE WORK
There are some obvious limitations to the current status
of the project. One example is container widgets. For
these the recognition process might cause collisions with
the widgets inside them and generate undesired results,
such as an exponential growth in the number of tempo-
rary items. This will be dealt with in the near future.
Another limitation comes from the apparent simplicity of
the input language/grammar file, which is only a first
stage, given that it still wouldn’t allow defining the wid-
get of Figure 10 in the way shown below:

<widget type="Text">

 <symbol type="Line" id="1"/>

 <rule name="isHorizontal" arg1="1"/>

</widget>

<widget type="TextList">

 <widget type="Text" id="1"/>

 <widget type="Text" id="2"/>

 <widget type="Text" id="3"/>

 <symbol type="Rectangle" id="4"/>

 <rule name="isInside" arg1="1" arg2="4"/>

 <rule name="isInside" arg1="2" arg2="4"/>

 <rule name="isInside" arg1="3" arg2="4"/>

</widget>

The main differences between this and the previous ex-
amples lie in that the latter production references non-
terminal items (widgets) instead of symbols. Indeed
currently we can only parse a conceptual two level hier-
archy of syntax rules.
As a final remark, this approach still lacks the mecha-
nisms to suggest when to align groups of widgets, or to
allow the users to create their own symbols or even learn
design patterns from the users. These problems require a
top-down approach while what we have implemented so
far is a bottom-up technique. We plan to address these
issues in the near future.

6. REFERENCES
[Caetano02] Caetano, A., Goulart, N., Fonseca, M. and Jorge,

J.: JavaSketchIt: Issues in Sketching the Look of User Inter-
faces. In Proceedings of the 2002 AAAI Spring Symposium
- Sketch Understanding, pages 9-14, Palo Alto, USA,
2002.
http://immi.inesc.pt/publication.php?publicat
ion_id=40

[Coyette04] Adrien Coyette, Stéphane Faulkner, Manuel Kolp,
Quentin Limbourg, Jean Vanderdonckt, “SketchiXML: To-
wards a Multi-Agent Design Tool for Sketching User Inter-
faces Based on USIXML”. In: Proc. of 3rd Int. Workshop on
Task Models and Diagrams for user interface design
TAMODIA’2004 (Prague, November 15-16, 2004), Ph. Pal-
anque, P. Slavik, M. Winckler (eds.), ACM Press, New
York, 2004, pp. 75-82.
http://www.isys.ucl.ac.be/bchi/publications/2004/Coyette-
TAMODIA2004.pdf

[Fonseca00] M.Fonseca and J.Jorge. CALI: A Software Li-
brary for Calligraphic Interfaces. INESC-ID, available at
http://immi.inesc-id.pt/projects/cali/, 2000.
http://immi.inesc.pt/projects/cali/papers/9epcg2k.pdf

[Jorge94] Joaquim A Jorge, Parsing Adjancency Gram-
mars for Calligraphic Interfaces, Phd Thesis, Rensse-
laer Polytechnic Institute, Troy, NY, 1994.

[Lin01] James Lin, Mark W. Newman, Jason I. Hong, James A.
Landay, "DENIM: An Informal Tool for Early Stage Web
Site Design." Video poster in Extended Abstracts of Human
Factors in Computing Systems: CHI 2001, Seattle, WA,
March 31-April 5, 2001, pp. 205-206.
<http://dub.washington.edu/projects/denim/pub
s/denim-chi-2001-video.pdf>

[Landay95] James A. Landay and Brad A. Myers, "Interactive
Sketching for the Early Stages of User Interface Design." In
Proceedings of Human Factors in Computing Systems: CHI
95, Denver, CO, May 1995, pp. 43-50.
<http://www.cs.berkeley.edu/~landay/research/publications/
storyboard-tr/storyboard.html>

201

13º Encontro Português de Computação Gráfica

12 - 14 Outubro 2005

