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ABSTRACT 

Geophysical data are sparse and by nature difficult to analyze. Usually domain experts use "mental models" to in-
fer missing data according to the surrounding data and their own knowledge. The main goal of this work is to ex-
plore the best way to represent uncertainty in geophysical data. Given the sparse nature of the represented data, it 
is important to provide a 3D volumetric representation of the whole subsoil, based on a geostatistical process. We 
use kriging interpolation to generate a structured grid from the original sparse data. However, the analysis of such 
an interpolated representation must be careful, since the uncertainty varies significantly according to the distance 
to real measurements. We use different representations to emphasize data uncertainty during the analysis stage. 
The different visualization techniques implemented in our prototype, as well as methods used to simultaneously vis-
ualize resistivity and uncertainty information, are presented. 

 

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Visualization, uncertain-
ty visualization, geophysical data, VTK (Visualization Toolkit). 

 

1. Introduction 

Geophysical data represent subsoil structure in a particu-
lar area. Their analysis allows defining a model of the geo-
logical area that helps, among others, drilling wells for 
water, mining, bedrock detection, monitoring of environ-
mental problems, as well as the degree of change in rock 
masses. Data acquisition is always performed in a discon-
tinuous way at different locations in a limited area, since 
continuous acquisition at all locations is not technically 
and economically feasible. Thus, geophysical data are 
typically sparse, resulting in large areas where no data is 
available. 

Most commercial systems for geophysical data visuali-
zation allow a simple representation of the sparse data 
extracted from the subsoil (as ArcGIS or Oasis montaj 
[E11, G11], which do not allow the visualization of uncer-
tainty or interpolation in a volume). However, it is desira-
ble to visualize data between samples, either through man-
ual inclusion or through an interpolation method. Flexible 
tools allowing the interpolation of sparse data, as well as 
the ability to interactively visualize such data through dif-
ferent representations, are important for domain experts. If 
no such interpolation is performed, experts have to cre-
ate/imagine a hypothetical formation of subsoil areas based 
on their knowledge, (i.e., a “mental model”). A visual and 
interactive tool simultaneously providing various interpola-
tion and visualization methods, as well as the possibility to 

adjust some parameters, could significantly help and guide 
experts during data exploration [S07].  

Visualization offers powerful methods to represent data. 
Nevertheless, when the acquired data have some associated 
uncertainty, the final visualization may lead to erroneous 
conclusions, since users may consider interpolated data as 
acquired data [SBB08]. To avoid this, and according to 
[GR02], uncertainty visualization techniques should be 
informative, intuitive, non distracting, and interactive. 

Several visualization methods for sparse geophysical da-
ta (electric resistivity) have been described in a previous 
work [GDAS10]. The methods developed proved to be 
useful in sharing knowledge between experts (representing 
a visual subset of the expert’s “mental model”). In this 
work, we integrated an interpolation model to obtain values 
in areas without data. To prevent an expert being misled by 
those areas, we have evaluated several visualization tech-
niques for uncertainty values associated with the interpo-
lated data.  

Although the main purpose of this study is to validate 
the adequacy of the uncertainty visualization methods for 
geophysical data, we also present some interactive combi-
nation and filtering methods to visualize resistivity and 
uncertainty. Data used in this study came from a site on the 
island of Porto Santo (Portugal) and include preliminary 
studies for the construction of a holiday resort, and the 
software was developed in C++ using VTK (Visualization 
Toolkit) [SMML98]. 
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Section 2 presents the type of data for which visualiza-
tions had to be developed, as well as the acquisition meth-
od. In section 3 the used interpolation method is described. 
Section 4 presents the representations developed to explore 
volumetric data, and section 5 presents the implemented 
techniques to visualize uncertainty resulting from data 
interpolation. Section 6 addresses various issues that came 
up during the implementation, and, finally, some conclu-
sions and ideas for future work are presented. 

2. Geophysical Data — Electrical Resistivity 

Electrical resistivity data consist of a resistivity grid cor-
responding to a perpendicular plane to the topographic 
surface. Soil resistivity values are continuous scalar values 
that vary with the material of the subsoil. Soil and rocks 
are generally bad conductors (although they can have dif-
ferent conductivity values depending on moisture); increas-
ing water content makes the soil a good conductor. Resis-
tivity is measured in Ω·m (ohm · meters), ranging from 
close to zero for good conductors (particularly in the case 
of intruded sea water formations) to very high values for 
materials which are bad conductors [L05]. 

 

Figure 1: Acquisition of electrical resistivity data. 

 

Figure 2: Representation of electric resistivity. 

Figure 1 shows the acquisition process of electrical resis-
tivity data, and Figure 2 is a typical representation of 16 
2D grid sections. As it can be seen, the data are relatively 
sparse. 

The adopted rainbow color scale [SSM11] is close to the 
one generally used in Geographic Information Systems 
(GIS), since it is familiar to experts and provides an intui-
tive interpretation: blue tones correspond to areas where 
there is a greater possibility of having water, yel-
low/brown/red tones to rocky areas, and greens correspond 
to intermediate zones. 

3. Interpolation using Kriging 

In the case of sparse scalar volumetric data based on 
regular or irregular grids, where some data are missing, it 
is useful to use interpolation to generate a final visualiza-
tion without gaps. This implies the use of 3D interpolation 
methods. 

Linear interpolation methods (e.g., trilinear interpola-
tion) have a simpler implementation. However, they usual-
ly produce unsatisfactory results for geospatial data, since 
the subsoil structure does not follow a linear distribution. 
Also, linear interpolation works well only when the data 
are not sparse. More sophisticated methods based on statis-
tical distributions produce better results, as they analyze 
correlations, variances, trends and other factors. Kriging, 
IDW (Inverse Distance Weighting), and trend estimation, 
among others, are examples of statistical interpolation 
methods [ZPRA99]. 

Kriging has been used to interpolate data in a regular 
grid [C02]. It is a regression technique mainly used in geo-
statistics, but also in other application areas such as medi-
cal imaging [GKD*10]. There are several types of kriging 
interpolation: simple kriging, ordinary kriging, cokriging, 
etc.  

Ordinary kriging produces good results for geophysical 
data in particular, as well as geostatistical analysis in gen-
eral, and comparatively to other techniques is one of the 
best for this purpose [PSAR93]. It calculates the variation 
between spatial points through statistical methods, since 
closer points have a high correlation and points far apart 
have no correlation. This is a method of the so called 
BLUE (Best Linear Unbiased Estimator) type: linear, as 
the estimates are weighted linear combinations, and unbi-
ased since the average error tends to zero [GKD*10].  

Ordinary kriging was chosen, as it is the most often used 
technique to deal with this type of data [ZPRA99], and 
several tests with synthetic data confirmed its adequacy to 
our data.   

For each spatial point uncertainty was also computed us-
ing the formula: 

Uncertainty = 255 · (dist/maxDist), 

where dist is the Euclidean distance corresponding to the 
shortest distance between each point and a point included 
in acquired sections (see Figure 2) corresponding to 100% 
certainty. maxDist is the maximum distance observed in 
the data (which corresponds to the furthest point of all 
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sections shown in figure 2). The values are normalized to 
255 to use the full range available in the volume rendering 
algorithm that only accepts 8 bit images. This formula 
implies a linear variation of the uncertainty that produces 
values close to zero in points near the samples and values 
close to 255 in points further away. Although simple, this 
method is good enough as a first approximation to display 
the uncertainty associated with the data. 

4. Visualization 

Interpolation of the original sparse data results in a vol-
umetric regular grid. Typically mesh visualization (as 
shown in Figure 2) is not adequate for this type of data, 
thus other visualization methods, more adequate to volu-
metric data, were explored. In this section we present the 
several visualization techniques we implemented. 

4.1 Volume rendering 

Volume rendering (VR) or direct volume rendering (DVR) 
visualization techniques consist in representing the data as 
a “translucent” material with different color and opacity 
properties [BW01] which can be configured through color 
and opacity “Transfer Functions” (TFs) [HB04].  

There are a number of well-known techniques for im-
plementing DVR: ray casting, splatting, texture mapping 
and shear warping, among others [lXLyX06, MKCY09]. In 
this work ray casting was used, since it provides a good 
trade off between image quality and processing speed. 
Additionally, this method is already implemented in VTK. 

 

 
 

Figure 3: Data visualization using volume rendering. 

Figure 3 shows a volume where the scalar data is 
mapped through color using a constant opacity of 35%. 

 

4.2 Slicing 

Slicing is useful for probing volume data sets to discover 
where interesting regions exist, maintaining the context.  
Figure 4 shows an example of slicing applied to our data. 

 

 

 

 

 
 

 

Figure 4: Orthogonal slicing of the volume data. 

4.3  Isosurfaces 

In this case the user defines a resistivity value to com-
pute an isosurface, or two upper and lower resistivity val-
ues as well as the number of intermediate surfaces to be 
represented. Resistivity values are normalized so that resis-
tivity can be considered a percentage. For example, Figure 
5 provides a set of five isosurfaces corresponding to resis-
tivity values of 80%, 85%, 90%, 95% and 100%. 

 

Figure 5: Five isosurfaces corresponding to resistivity 
values 80%, 85%, 90%, 95% and 100%. 

The representation of isosurfaces may be useful to help 
create a model of soil stratification.  

4.4 Simultaneously filtering with resistivity and uncer-
tainty  

Isosurface filtering is useful to segment subsoil strata, 
when using an interactive technique, filtering is useful and 
visually informative. To avoid having to represent a new 
data volume for each operation, two scalar values are asso-
ciated to each voxel, representing resistivity and uncertain-
ty. Resistivity is mapped through color and uncertainty by 
opacity.  

Next, in each filtering iteration, it is only necessary to 
modify the opacity transfer function according to the de-
sired filtering. For example, Figure 6 represents the data set 
that has an uncertainty value less than 30%. In this case, 
the opacity transfer function is defined so that all uncer-
tainty values higher than 30% correspond to zero opacity, 
and the remaining assume a constant opacity value, for 

Slice 

Slicing plane 
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example 60%. This is only possible since opacity and color 
are mapped independently, and it is faster since it prevents 
the generation of a new volume. 

 

 

Figure 6: Filtering visible voxels by uncertainty less 
than 30%. 

 

 

Figure 7: Result of a similar filtering, although in this 
case two filters are applied simultaneously: resistivity 
(higher than 70%) and uncertainty (less than 30%). 

5. Uncertainty Visualization 

Uncertainty representation in volumetric data is a four 
dimensional representation problem, with great interest in 
various application areas, and for which several solutions 
have been proposed. 

A general classification of uncertainty encoding methods 
into two groups is proposed in [P01]: mapping uncertainty 
by an additional piece of data or integrating it in volumet-
ric data (through color, transparency, etc.). 

One of the first proposals for uncertainty representation 
involves the application of high levels of transparency in 
places where the data have higher uncertainty, and greater 
opacity where data have greater certainty [ZC06]. To im-
plement this method in VTK each voxel is assigned two 
scalar values, representing data under analysis (resistivity 
in this case) and uncertainty, as already mentioned. This 
technique is intuitive for the user, since more emphasis is 
given to data of greater certainty. Nevertheless, it has two 
major disadvantages [ZC06, DKLP01]: if the user cannot 
interactively activate and deactivate the visualization, it 
can lead to the non-visualization of data with little certain-
ty that may be relevant, as well as lead to ambiguities when 
data are represented by color, since when applying opacity 
to a color it will be represented in a lighter shade (on a 
light background) [ZC06, DKLP01]. 

To overcome those problems, Djurcilov, et al. [DKLP01] 
proposed alternative methods to represent uncertainty: 

 inserting speckles/holes — It consists in placing 
small speckles (glyphs) on the data representation, 
adding more speckles or larger speckles in loca-
tions where there is higher uncertainty [DKLP01, 
DKLP02];  

 adding noise — It consists in introducing noise in  
the data according to the uncertainty associated 
with each voxel, by adding or subtracting a random 
value proportional to the uncertainty [DKLP01, 
DKLP02]; 

 

Three uncertainty visualization methods using opacity, 
noise and speckles were implemented to represent the un-
certainty of the data interpolated by kriging. Additional 
details are presented in the following sections. 

5.1 Varying opacity 

Uncertainty visualization through opacity consists in 
mapping each voxel’s opacity according to the uncertainty 
associated with that particular voxel. To implement this 
method in VTK, each voxel is given two scalar values as 
mentioned above. 

This representation is very intuitive and there are situa-
tions where it is very useful, although it must be used with 
care, since it can lead to misinterpretation, given that a 
higher transparency can imply the perception of a lighter 
color. It is especially useful in an initial exploratory stage, 
giving a quick notion of the subsoil structure.  

 

Figure 8: Uncertainty visualization through opacity. 

5.2 Inserting speckles/holes  

Speckles/holes are inserted when uncertainty is larger 
than a given value (e.g., 30%) and speckle size is propor-
tional to the uncertainty associated with the data. Speckles 
are represented by a 2D polygonal mesh that overlaps the 
volume surface.  

A 2D representation for uncertainty was used, since the 
original data are defined by planes perpendicular to the 
surface. Thus a 3D representation along z would not bring 
any additional information, since uncertainty is computed 
based on the distance to those original perpendicular 
planes. In addition, a 2D representation introduces less 
visual structures in the uncertainty representation and facil-
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itates the data visualization, as shown in Figure 9. Squares 
were used; however, other shapes could have been used. 

 

 

Figure 9: Uncertainty visualization: inserting speckles 
on a data volume. 

5.3 Adding noise 

This method consists in adding noise to the original data 
resulting in a different mapping for uncertain areas (small 
color changes, blurred areas) which leads to less precision 
in these locations. Noise is gradually applied according to 
uncertainty, ranging from no noise (uncertainty below 
30%), 10% noise level (uncertainty between 30%-44%) 
and so on using five levels as shown in Table 1. Only five 
levels were used as prior tests revealed that beyond this 
value it is much more difficult to perceive discontinuities. 
Figure 10 shows the result of applying this method to our 
data. 

 

 

Figure 10: Uncertainty visualization: adding noise to 
the original data. 

 

Uncertainty value Noise level 

[30% to 44%[ [ 10%] 

[44% to 58%[ [ 20%] 

[58% to 72%[ [ 30%] 

[72% to 86%[ [ 40%] 

[86% to 100%] [ 50%] 

Table 1: Noise levels used to represent uncertainty val-
ues. 

6. Discussion 

The proposed visualizations have been evaluated and 
validated by a small group of experts and integrated in a 
prototype. Compared to existing tools, our prototype ena-
bles visualization without discontinuities in data, having 
the advantage of integrating multiple visualizations of the 
same data interactively. As a result should be able to ex-
plore the data more efficiently and quickly.  

A preliminary study comparing the three uncertainty 
representations was performed with the help of two domain 
experts. According to experts, uncertainty representation 
through speckles was superior, enabling more accurate 
visualizations, as it is a mapping independent of the data 
volume. Moreover, compared with uncertainty representa-
tion through noise, speckles are especially advantageous 
when observing regions of higher uncertainty, since uncer-
tainty information is shown without data distortion. Com-
pared with the opacity method, speckles have the ad-
vantage of avoiding misleading color perception effects 
created by opacity variations. 

Still according to the domain experts, visualization of 
uncertainty through opacity and noise seem more appropri-
ate for an initial and global data exploration. Uncertainty 
visualization through speckles proved to be the most suita-
ble method for more intensive explorations of the data, 
since it preserves all data attributes. However, to avoid 
unwanted data occlusion, it is necessary to allow interac-
tive activation/deactivation of this feature.  

7. Conclusions and Future Work 

Often, in data visualization, uncertainty is discarded to 
avoid complex representations. However, such information 
can be relevant to guide final decisions, specifically in 
sparse datasets. Thus, the representation of uncertainty is 
important. In this paper several methods were used to visu-
alize with uncertainty a type of sparse geophysical data 
(electric resistivity). According to a preliminary study us-
ing noise and opacity has proved particularly useful for a 
global data exploration. Representation through speckles is 
also useful in a global exploration; however, it seems par-
ticularly interesting for a more detailed and intensive anal-
ysis of the data. 

It is fundamental to conduct further user studies to eval-
uate the developed methods with larger group of users. 
Also, other types of speckles/glyphs should be considered. 

There are also other possible improvements: i) extracting 
uncertainty values from the actual kriging variograms 
[C02]; ii) allowing manual changes in interpolated regions 
making the tool more flexible; iii) implementing an auto-
matic learning system based on such corrections. 

A further step in our work will be the implementation of 
“focus + context techniques” to explore the interior of the 
volumetric data, for example, through “magic lenses” or 
deformation [RH06, MTB03]. Another interesting tech-
nique might be volume pseudo-haptics, which involves the 
application of force feedback in volume rendering that 
allows the exploration of our sense of touch [LCK*00]. 
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