V Ibero-American Symposium in Computers Graphics — SIACG 2011

F. Silva, D. Gutierrez, J. Rodriguez, M. Figueiredo (Editors)

175

Volume-Surface Collision Detection

. Orteganol, H. Navarro! and R. Carmona

1

ICentro de Computacién Gréfica. Universidad Central de Venezuela

ABSTRACT

The presence or not of collisions between objects is usually required to study the interaction between them, increasing the
realism in virtual environments. Collision detection between polygonal objects has been widely studied, and more recently
some studies have been made concerning collisions between volume objects. Collision detection between volume datasets
and polygonal objects is introduced in this work. This kind of mixed scenes appears naturally in many applications such
as surgery simulation and volume edition. To detect the collision, first the volume dataset is represented by a single
3D texture. Then, a mapping from eye space to volume space is established, such as each mesh fragment has a 3D
texture coordinate. The collision is verified by fragment during the rasterization stage. We use OpenGL®occlusi0n
query extension to count the number of mesh fragments colliding with the volume. Our tests show that up to 3800 pairs

of volume-mesh may be evaluated in one second.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional Graphics

and Realism—Virtual reality

1. Introduction

Collision detection is a common problem in computer graph-
ics applications, including computer animation, virtual real-
ity, and computational geometry. The goal of collision de-
tection is to determine the presence or not of intersections
between objects. The response to the collision is commonly
a separated problem, referred as collision response [BouO1],
which is related to physic simulation; for example, the ob-
jects should not pass through each other. Since the scene
may contain hundreds of objects with thousands of poly-
gons, checking collisions between all of them (O(N?)) is
not acceptable for real-time walkthrough, where the interac-
tivity imposes a fundamental constraint on the system. Re-
searchers have focused on reducing the time required for
detecting collisions by representing the scene (defined by
meshes or NURBS) in a hierarchical way [GLM96]. These
representations are based on space subdivision [FKN8O]
(e.g. binary space partition trees) and hierarchical bound-
ing volumes. More recent work has considered the collision
between volume datasets [BF03]. In this case, the scene is
sliced from the near clipping plane to the far clipping plane,
testing the collision on each of the slices, which can be de-
fined as an image space approach.

While these researches are focused on polygonal meshes
or volumes, none of them consider a mixed scene, com-
posed of volumetric datasets and polygonal meshes. The
possibility of representing volumes and surfaces in the same
scene is a consequence of the current popularity of graph-
ics hardware supporting 3D texturing. Virtual surgery, med-

V Ibero-American Symposium in Computers Graphics — STACG 2011

ical planning and volume edition are only a few examples
of applications which require the interaction of volumet-
ric datasets with virtual objects represented commonly by
polygonal meshes. Currently a virtual surgery room is be-
ing developed at Universidad Central de Venezuela, with the
goal of simulating knee surgeries. This kind of application
requires mixed data because the bones and muscles are vol-
umetric data from CT scans, while the surgical instruments
are represented as meshes. This imposes the need for special
collision detection techniques that can handle the interac-
tions between volumes and meshes. For this work we will
only consider collisions between one mesh and one volume,
because in our application (virtual surgery) the user will al-
ways handle one instrument (mesh) which will interact with
the volumetric data.

In this work we introduce a hardware-accelerated tech-
nique for collision detection between volumes and meshes.
To the best of our knowledge, this is the first approach for
surface-volume collision detection in the literature. It con-
sists in defining a mapping between the volume space (also
referred as texture space) and the eye space, such as a texture
coordinate can be assigned to each vertex of the mesh, and
thus, to each fragment during rasterization. A collision exists
if a mesh texel is not transparent. This process can be effi-
ciently achieved by combining alpha testing and occlusion
query [CGO3]. Since our method is hardware-accelerated, it
can test up to 3800 volume-surface collisions per second.
Another benefit of our method is that it does not depend on
the size of the volume, but the size of the mesh. This is an

176

advantage because usually the mesh is used as a tool for in-
teraction with the volume, and does not require high details.

2. Prior Works

Hierarchical decomposition of the scene and objects has
been widely used to reduce the number of pairs for inter-
section testing. Space subdivision and hierarchical bounding
volumes are used to create a hierarchical representation of
the scene. The goal of such hierarchies is to approximate the
mesh topology on different levels of detail, usually by using
simple polyhedra, leading to faster intersection tests.

BSPs and octrees are common examples of techniques
based on space subdivision. BSP trees [FKN80] are mostly
used for partitioning the static part of the scene. Each node
of the BSP tree contains a single plane which divides the
scene in two: one part located below the plane, and the other
one located above it. Each half-space can be divided re-
cursively in two, using the same principle. Different crite-
rion can be used for selecting each plane; a basic approach
chooses the plane which splits the largest axis of the axis
aligned bounding box of the remaining scene. A more accu-
rate approach may consider the difference in number of tri-
angles of both sides and the number of polygons (or objects)
intersected with the plane [CKNO2]. On the other hand, oc-
trees [WVG92] divide the scene in eight equal boxes. Each
of those boxes are then recursively subdivided until all the
data inside of the box is uniform, and no more subdivisions
are required.

As for bounding volumes, several approaches exist. There
have been works on using bounding spheres [Lar08], axis
aligned bounding boxes [vdB98] (ABBs), oriented bound-
ing boxes [GLM96] (OBBs) and discrete oriented polytopes
[KHM™98] (K-DOPs). As the complexity of the bounding
volume increases, it fits better the shape of the mesh, but
requires more time to build. There has been also some re-
search on using hierarchies of bounding volumes, such as
[CWK10], where OBBs and bounding spheres are used to-
gether, using first the bounding sphere for quickly discarding
collisions and then OBBs when the objects are closer. The
selection of the best bounding volume depends on the shape
of the objects that compose the scene, so there is no “magic
bounding volume” which can be used for every application.

In some complex scenes there might be hundreds of ob-
jects interacting in the scene. In such cases, a broad col-
lision detection phase can be applied as suggested by Co-
hen et al. [CLMP95] in 1995 (this phase is known as sweep
and prune). The sweep and prune algorithm discards colli-
sions between objects which are not close enough, using the
AABBs of the objects for quickly discarding pairs of not
colliding objects.

Another approach is to keep track of the distance of the
objects that collide. In 1997, Mirtich [Mir98] proposed a
method that keeps track of the closest pair of features of two
convex polyhedra (a feature can be either a vertex, an edge
or a face of the polyhedra). Each time that one of the objects
changes position or orientation, the closest pair of features
is updated very fast, based on the fact that the objects are
convex. For not convex objects a decomposition needs to be
done in order to transform the object into a set of convex
objects.

J. Ortegano, H. Navarro and R. Carmona | Volume-Surface Collision Detection

In 2003 Govindaraju et al. [GRLMO03] proposed a method
which uses the GPU for collision detection in image space.
The method first discards which objects or parts of objects
are not colliding in image space. If two different objects can
be drawn without any interference (the fragments of one
object do not overlap fragments of the other object) then
a collision can be discarded. When the objects overlap in
image space, then it is not possible to discard a collision
and another approach is necessary. Based on this, a Poten-
tially Colliding Set (PCS) is built which contains the ob-
jects which might be colliding, discarding objects that do
not need to be tested. The same process can be applied on
parts of the object in order to find out which polygons of
the meshes might be colliding with other ones, discarding
the parts of objects which are not colliding. This approach
has been enhanced in order to make the collision detection
faster and allow self-collisions as shown by Govindaraju in
2007 [GKLMO7]. Also in 2007 Jang et al. [JJHO7] proposed
another image space method which computes the PCS on the
triangle level, having the advantage of not requiring any pre-
processing of the data. In 2008, Hanyoung et al. proposed
another method [HJ08] where AABBs are first used in or-
der to prune groups of triangles not colliding, and then PCSs
are computed using the GPU for those pairs of AABBs that

collide.

Recently works have focused on the design of hardware
with specific operations that support collision detection. In
2006 Raabe et al. [RHAZ06] proposed and implemented an
architecture to detect collisions using hierarchical data struc-
tures that support DOPs directly in hardware. In his PhD
thesis Raabe shows hardware implementation of low level

triangle-triangle collision detections [Raa08].

Recent development and research on volume rendering
techniques make it necessary to develop special techniques
for manipulating collisions between volumes. The main
problem is that volumes do not represent explicitly the sur-

face of the model, so classic approaches cannot be applied.

Kaufman et al. in 1997 [HK97] proposed a probabilistic
method for handling collisions between volumetric objects.
The interaction between two volumes is described by finding
the intersecting regions between the volumes. A hierarchical
approach is used to be able to detect collisions faster, dis-

carding regions of objects that are not colliding.

In 2003 Boyles and Fang [BF03] proposed a technique
centered on volume rendering using 3D textures [WVW94],
where a proxy mesh is used to display the volume. This
method is novel because it does not follow the classic col-
lision detection scheme based on hierarchical bounding vol-
umes, and explodes the frame buffer of the GPU. It is a very
fast technique which requires very low extra memory. When
rendering volumes using the 3D textures technique, the vol-
ume is sliced with polygons from the near clipping plane to
the far clipping plane. This polygons are texturized loading
the volume as a 3D texture (and possibly modifying the color
with a transfer function). In Boyles approach a rendering of
the scene is done following this slicing scheme, but differ-
ent colors are assigned to each object. Fragments are written
in the frame buffer using a bitwise OR as blending function
that will force a white fragment if two different voxels are on
the same position. Finally, detecting a collision is reduced to

checking if there is a white fragment on the frame buffer.

V Ibero-American Symposium in Computers Graphics — SIACG 2011

J. Ortegano, H. Navarro and R. Carmona | Volume-Surface Collision Detection 177

Our work is inspired in Boyles approach, performing the
collision detection in image space. However, instead of slic-
ing the volume with a proxy geometry, the mesh is texturized
with the volume itself to detect collisions in the GPU. In the
next section our method is detailed.

3. Volume-Surface Collision Detection in Texture Space

Our method for volume-surface collision is an image-space
approach. It consists in texturizing the polygons of the mesh
with the volume, detecting the collision in the fragment
shader. The approach assigns a 3D texture coordinate to each
mesh vertex via mapping between object space and texture
space. The fragment shader receives an interpolated 3D tex-
ture coordinate to evaluate if the fragment is texturized with
an opaque voxel, which means, the polygon collides with the
volume.

To assign a texture coordinate for each mesh vertex, the
vertex is first transformed from object space into volume
space, where each point of this space represents a 3D tex-
ture coordinate (see Fig. 1). Let M be the model-view matrix
which transforms a mesh vertex from object space to eye
space; also, let T be the texture matrix which transforms the
volume from texture space into eye space. The 3D texture
coordinate c(s,z,r,1) of a mesh vertex v(x,y,z,1) can be ob-
tained from ¢ = T~ 'Mv. Notice that the matrix T~ 'M is
constant for a given frame.

The texture coordinates of mesh vertexes are interpolated
during rasterization. Thus, the fragment shader receives the
mesh fragment with its corresponding 3D texture coordi-
nates. The fragment shader first validates the texture co-
ordinate, verifying if it belongs to the texture domain; i.e.
0 <s,t,r < 1.1If (s,2,r) is outside the texture domain, the
fragment is discarded. Otherwise, we assign the fragment
opacity according to the transfer function. The fragment can
be discarded if it is considered transparent, i.e. the opacity
is lower than an alpha threshold. Thus, we implement the
alpha test in the fragment shader. Using this pipeline con-
figuration, the collision occurs if any mesh fragment is not
discarded. Since this configuration is only used for collision
detection (and not for generating an output image), the color-
buffer and z-buffer are disabled during this process.

OpenGL®provides a mechanism to count the number of
fragments which pass the tests of the last pipeline stage (per
fragment operators, e.g. z-test, alpha test and stencil test).
This mechanism is the oclussion query OpenGL®extension
[CGO3], specifically named ARB_oclussion_query.
We do not apply any per fragment operator, since we are
interested in simply counting the fragments produced by the
fragment shader. The number of fragments can be counted
after processing each single polygon (collision per polygon),
of after processing all polygons of a mesh (collision per sur-
face). Fig. 2 shows in grayscale the opacity of the fragments
which collide with a large triangle. Blue pixels represent the
fragments discarded by the fragment shader. They are not
counted by the occlusion query extension.

4. Limitations

Since the method depends of the polygon projection into
the image space, the rasterization module may generate few
fragments (or zero) when the polygon is perpendicular to

V Ibero-American Symposium in Computers Graphics — STACG 2011

the viewport. Fig. 3 shows how the same polygon generates
a different number of fragments depending on its orienta-
tion. In case (c) the number of generated fragments is very
low, and in some cases it can even be zero. In such a case,
the collision detection may fail for this polygon. A possible
workaround for this problem is testing for collisions from
two orthogonal views. If a polygon was originally perpen-
dicular to the view (generating zero fragments) then when
the orthogonal view is computed the same polygon will not
be perpendicular to the view, ensuring that it will generate
fragments.

5. Implementation

The implementation in GPU needs a vertex shader and a
fragment shader which are shown in Listing 1:

void main ()

{

gl_TexCoord[0] = gl_ModelViewMatrix =
gl_Vertex;

gl_Position = gl_ProjectionMatrix =
gl_TexCoord [0];

gl_TexCoord[0] =

gl_TextureMatrixInverse [0] =*
gl_TexCoord [0];

uniform sampler3D volume;

uniform samplerlD transfer_function;

void main ()

{

if (gl_TexCoord[0][0]
gl_TexCoord [0][1]
gl_TexCoord[0][2]
gl_TexCoord [0][O0]
gl_TexCoord [0][1]
gl_TexCoord [0][2]
discard ;

VVVAANA
—_——_—_—0 o o
o OO O OO

if (texturelD (transfer_function ,
texture3D (volume ,
gl_TexCoord[0].xyz).r).a < 0.1)

discard ;

¢gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
1

Listing 1: Vertex and fragment shaders for our method

For volume rendering, we are using GPU based Ray Cast-
ing [KWO03] with early ray termination. Thus, the front-faced
polygons of the bounding box are rasterized, and each frag-
ment represents the entry point of a ray into the volume.
We define the texture matrix 7 as the transformation from
texture space into eye space. With this matrix, the unitary
bounding box of the volume in texture space is transformed

178 oJ. Ortegano, H. Navarro and R. Carmona | Volume-Surface Collision Detection

volume n
texture space

surface and volume
n eye space

Figure 1: Transformation between spaces

Figure 2: Volume-polygon collision. (a) Rendering of volume and polygon colliding in eye space. (b) Polygon fragments

colliding with the volume

into eye space. The back-faced bounding-box polygons are
culled in eye space, and the front faces are rasterized, inter-
polating the texture coordinates of its vertexes. The fragment
program receives the interpolated texture coordinates, which
represent the entry point of one ray into the volume. The eye
position is transformed to texture space, using the inverse
texture matrix 7~ '. With the eye and the entry point in tex-
ture space, a ray can be casted to compute the volume render-
ing integral. We use pre-integrated classification to enhance
the rendering quality as in [EKEO1]. A fast pre-integration
2D table is computed in real time (about 0.04 seconds) to
keep the interactivity when the user is editing the transfer
function [LWIMO04].

The rendering of the mesh wuses the fixed
OpenGL®pipeline, with Gouraud Shading. For colli-
sion detection, the programmable OpenGL™ functionality
is used as shown before on the shaders. In this context, the
mesh is rendered in its simplest form; thus, the lighthing is
disable and the normals are not send to the graphics card.
Each polygon vertex is mapped into texture space by using
the 7! transform. During rasterization, the vertex 3D
texture coordinates are interpolated per fragment through
the field gl_TexCoord[0]. To classify the volume
sample, we simply fetch a 1D quantized transfer function.
The fragment is discarded if the corresponding texture
coordinates are out the interval [0,1] or if the classified
sample is transparent according to the alpha threshold.

As a possible optimization, the “if” statement of frag-
ment shader can be replaced by a simple texture clamping
if the volume boundary voxels are forced to be transparent.
For medical data, the boundary voxels can be replaced by
air (zero), which is commonly mapped to 100% transparent
voxel via the transfer function. Thus, when a texture coordi-
nate is out the interval [0, 1], it is clamped to [0, 1], and the
corresponding texel (zero) would be always discarded later
in the fragment shader, since it is completely transparent af-
ter classification.

6. Tests and Results

We implemented a system in Visual C++ for Windows XP
to validate our approach between just one volume and one
mesh. For multiple volumes and multiple meshes a sweep
and prune approach [CLMP95] can be used to determine
the potential pair of volume-mesh collisions. We use the
OpenGL®1ibrary for rendering, and GLUT to manage the
user interaction.

Our method was tested on two different hardware envi-
ronments. The first environment is a PC with Intel Core 2
Quad processor of 2.4 GHz each, 3.25 GB of main memory
and Nvidia Quadro FX 3700 graphics board with 640MB
of memory (Windows XP, 32 bits). The second environment
is a PC with Intel Core i3 processor of 3.07 GHz, 4 GB of
main memory and an NVidia GeForce GTX 470 graphics

V Ibero-American Symposium in Computers Graphics — STACG 2011

J. Ortegano, H. Navarro and R. Carmona | Volume-Surface Collision Detection 179

Figure 3: Limitation of the method when a polygon is L to the viewport, in image (C) a few fragments are generated. In some

cases no fragments are generated

board with 1280 MB of memory (Windows 7, 64 bits). In
both cases the application was compiled for 32 bits.

We combine two volumes (v and v;) and 2 meshes (s
and s7) in our tests (see Fig. 4), generating four scenes of
one volume and one mesh: vsy, vis2, V251, v252. The vol-
umes contain 256° 8 bits samples (v1) and 256% x 128 8 bits
samples (), while the meshes contain 3068 triangles and
2894 vertexes (s1), and 49998 triangles and 25001 vertexes
(s2). Notice that v; doubles the size of v,, while v, is quite
sparse. Screenshots of the four scenes are shown on Fig. 5.

Tables 1 and 2 show the average time required to render
each scene on the environment #1 and #2 respectively. The
first column shows the description of the scene. The second
column shows the rendering time for the mesh. The third
column shows the rendering time for the GPU-based volume
ray casting. The fourth column shows the collision detection
time. The fifth column shows the total rendering time (mesh
and volume). The sixth column shows the total time (com-
bining rendering and collision), and the last column shows
the collision detection overhead on the rendering time. The
rendering time is increased in between 8.6% and 14.2% by
enabling collision detection in environment 1, and between
4.3 and 15.9 percent in environment 2. However, the ren-
dering still performs in real-time (>> 30 fps). Also notice
that the collision time takes between 0.481ms and 0.79ms
in environment 1, and between 0.26 ms and 0.338ms in en-
vironment 2. It follows that between 1123 and 2079 surface-
volume pairs can be tested for collision in one second (envi-
ronment 1) and between 2958 and 3846 for environment 2.
The rendering time is dominated by the GPU-based ray cast-
ing, as can be seen in Fig. 6. There are several factors that
influence the difference between collision detection time and
rendering time:

e In collision detections an extra computation is required on
each fragment, because two textures are sampled (the 3D
texture and the transfer function). For rendering meshes,
we are using Gouraud shading for lighthing, without tex-
turing. Therefore, the illumination model (Blinn) is com-
puted per vertex, requiring extra computation and loading
normals into the GPU. In environment #1 the computation
of the illumination model is faster than sampling the two
textures, but in environment #2 the mesh takes more time
to render (due to the computation of the illumination).

e Depending on the number of vertexes to process and to
send to the GPU, as well as the number of fragments
to process, the relationship between mesh rendering time
and collision detection times varies.

e Environment #2 has very slow mesh rendering compared

V Ibero-American Symposium in Computers Graphics — STACG 2011

to environment #1, but in environment #2 the volume ren-
dering is faster than the mesh rendering, thus having bet-
ter results when we add up the mesh rendering time, vol-
ume rendering time and the collision detection time. The
slow mesh rendering in environment #2 is probably due to
lighting computation because for collision detection there
is no lighting computation and the rendering times are not
as slow.

A comparison with other methods cannot be done since
this is the first study of a method for detecting collisions
between volume datasets and meshes.

The proposed method indicates if the collision exists, but
does not indicate where the collision occurs. To get a more
precise location of the colliding area, the naive approach
would test the occlusion query polygon by polygon. How-
ever, in our tests, the collision detection takes too long for
meshes with many polygons, up to 0.7 seconds per collision,
for environment #1, since the occlusion query blocks the
CPU (and the loading of polygons) until the GPU flushes its
pipeline and sends back the result, causing a bottleneck. To
efficiently reduce the number of queries, an OBB tree can be
used to represent hierarchically the mesh. Thus, many poly-
gons can be discarded if a high level OBB is outside the vol-
ume. For OBBs intersected with the volume bounding box,
the algorithm performs recursively for each child node, until
a leaf node colliding with the volume bounding box is met.
The occlusion query can be performed on the set of triangles
of each leaf node instead of individual polygons for speed.

7. Conclusions and Future Works

We introduced an image-based approach for volume-surface
collision detection. Establishing a mapping between the sur-
face space and the texture space, the collision detection per-
forms in the fragment processors by checking the fragment
texture coordinate and its opacity. If more than one textur-
ized fragment is opaque, the collision occurs. In our tests,
each collision detection takes between 0.262 and 0.789 mil-
liseconds. Thus, up to four thousand volume-surface pairs
may be tested for collision per second, in our hardware plat-
form.

Our collision detection approach introduces an overhead
between 4.3% and 15.9% in the response time. While the
overhead is related to the rendering time, it mainly depends
on the number of fragments generated by the mesh, as well
as on the number of mesh vertexes.

The proposed method indicates if the collision occurs, but

180 J. Ortegano, H. Navarro and R. Carmona | Volume-Surface Collision Detection

(a)

(b) (

AN AN

c) (d)

Figure 4: Test datasets. (a) MRHead with 256° 8 bits samples. (b) MRBonsai with 2562 x 128 8 bits samples. (c) Mesh with
3068 triangles and 2894 vertexes (d) Mesh with 49998 triangles and 25001 vertexes

(a) (b) (c) (d)

Figure 5: The four scenes used for testing our method. (a) is visy (b) is visy (c) is vas1 and (d) is va sy

does not indicate where it occurs. The method can be en-
hanced with hierarchical trees to determine the specific area
where the collision occurs.

Another possible enhancement is the use of NURBS in-
stead of meshes in the volume-surface collision detection
because they provide a better representation of surgical in-
struments.

Using multi-texturing it is possible to detect collisions be-
tween a surface and multiple volumes simultaneously in a
single pass. However, it will not be possible to know which
volumes collided, only that there was a collision.

References

[BF0O3] BOYLES M., FANG S.: 3Dive: an immersive environment
for interactive volume data exploration. J. Comput. Sci. Technol.
18 (January 2003), 41-47. 1,2

[BouO1] BOURG D.: Physics for Game Developers, 1 ed. O’
Reilly Media, November 2001. 1

[CG03] CRAIGHEAD M., GINSBURG D.: ARB_ocllusion_query
extension specification. http://oss.sgi.com/projects/
ogl-sample/registry/ARB/occlusion_query.txt. 1,3

[CKNO2] CARMONA R., KIENHOLZ P., NAVARRO H.: Con-
struccion de drboles BSP via Algoritmos Genéticos. XXVIII
Conferencia Latinoamericana de Informatica. 2

[CLMP95] COHENJ. D., LIN M. C., MANOCHA D., PONAMGI
M.: I-COLLIDE: An interactive and exact collision detection
system for large-scale environments. In In Proc. of ACM Inter-
active 3D Graphics Conference (1995), pp. 189-196. 2, 4

[CWKI10] CHANG J.-W., WANG W., KIM M.-S.: Efficient col-
lision detection using a dual obb-sphere bounding volume hierar-
chy. Comput. Aided Des. 42 (January 2010), 50-57. 2

[EKEO1] ENGEL K., KRAUS M., ERTL T.: High-quality pre-
integrated volume rendering using hardware-accelerated pixel
shading. In Proceedings of the ACM SIGGRAPH/EUROGRAPH-
ICS workshop on Graphics hardware (New York, NY, USA,
2001), HWWS *01, ACM, pp. 9-16. 4

[FKN80] FucHs H., KEDEM Z. M., NAYLOR B. F.: On vis-
ible surface generation by a priori tree structures. SIGGRAPH
Comput. Graph. 14 (July 1980), 124-133. 1,2

[GKLMO07] GOVINDARAJU N. K., KABuL I., LIN M. C,,
MANOCHA D.: Fast continuous collision detection among de-
formable models using graphics processors. Comput. Graph. 31
(January 2007), 5-14. 2

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.: OBB-Tree:
A hierarchical structure for rapid interference detection. In Com-
puter Graphics (1996), SIGGRAPH 96, pp. 171-180. 1, 2

[GRLMO3] GoOVINDARAJU N. K., REDON S., LIN M. C,,
MANOCHA D.: Cullide: interactive collision detection between
complex models in large environments using graphics hard-
ware. In Proceedings of the ACM SIGGRAPH/EUROGRAPH-
ICS conference on Graphics hardware (Aire-la-Ville, Switzer-
land, Switzerland, 2003), HWWS ’03, Eurographics Association,
pp. 25-32. 2

[HJO8] HANYOUNG JANG J. H.: Fast collision detection using
the a-buffer. The Visual Computer 24,7 (2008), 659-667. 2

[HK97] HE T., KAUFEMAN A.: Collision detection for volumetric
objects. In Proceedings of the 8th conference on Visualization
'97 (Los Alamitos, CA, USA, 1997), VIS *97, IEEE Computer
Society Press, pp. 27-f. 2

[JJHO7] JANG H.-Y., JEONG T., HAN J.: Image-space collision
detection through alternate surface peeling. In Proceedings of the
3rd international conference on Advances in visual computing
- Volume Part I (Berlin, Heidelberg, 2007), ISVC’07, Springer-
Verlag, pp. 66-75. 2

[KHM*98] KLOSOWsSKI J. T., HELD M., MITCHELL J. S. B.,
SOWIZRAL H., ZIKAN K.: Efficient collision detection using
bounding volume hierarchies of k-dops. IEEE Transactions on
Visualization and Computer Graphics 4 (January 1998), 21-36.
2

[KWO03] KRUGER J., WESTERMANN R.: Acceleration tech-
niques for gpu-based volume rendering. In Proceedings of the
14th IEEE Visualization 2003 (VIS’03) (Washington, DC, USA,
2003), VIS ’03, IEEE Computer Society, pp. 38—. 3

[Lar08] LARSSON T.: Fast and tight fitting bounding spheres.
In Proceedings of the Annual SIGRAD Conference (November
2008). 2

[LWIM04] LuM E. B., WILSON B., LIU MA K.: High-quality
lighting and efficient pre-integration for volume rendering. In
In Proceedings Joint Eurographics-IEEE TVCG Symposium on
Visualization 2004 (VisSym $04 (2004), pp. 25-34. 4

[Mir98] MIRTICH B.: V-Clip: fast and robust polyhedral collision
detection. ACM Trans. Graph. 17 (July 1998), 177-208. 2

V Ibero-American Symposium in Computers Graphics — STACG 2011

J. Ortegano, H. Navarro and R. Carmona | Volume-Surface Collision Detection 181
Mesh Volume Collision Total COHlSl.On
. . . . Total detection
Scene Rendering Rendering detection Rendering .
. . . . time(ms) overhead
time(ms) time(ms) time(ms) time(ms) (%)
(4
V18] 0.043ms 5.793ms 0.502ms 5.835ms 6.337ms 8.6%
V182 0.356 ms 5.793 ms 0.789ms 6.148 ms 6.937 ms 12.8%
Va1 0.027 ms 4.983ms 0.481ms 5.01ms 5.491ms 9.6%
V8o 0.343ms 4.983ms 0.758 ms 5.325ms 5.325ms 14.2%
Table 1: Rendering time and collision time for our test scenes, in environment #1
Mesh Volume Collision Total COHISI.OH
. . . . Total detection
Scene Rendering Rendering detection Rendering .
. . . . time(ms) overhead
time(ms) time(ms) time(ms) time(ms) (%)
V1S] 0.381ms 1.811ms 0.334ms 2.192ms 2.526 ms 15.2%
Vi$2 4.324ms 1.811ms 0.272ms 6.134ms 6.407 ms 4.4%
Vo s| 0.447 ms 1.688 ms 0.338ms 2.135ms 2.473ms 15.9%
V28 4.452ms 1.688 ms 0.262ms 6.1394 ms 6.401 ms 4.3%

[Raa08] RAABE A.: Describing and Simulating Dynamic Recon-

Table 2: Rendering time and collision time for our test scenes, in environment #2

figuration in SystemC Exemplified by a Dedicated 3D Collision
Detecion Hardware. PhD thesis, Rheinische Friedrich-Wilhelms
Universitat Bonn, August 2008. 2

[RHAZ0O6] RAABE A., HOCHGURTEL S., ANLAUF J., ZACH-
MANN G.: Space-efficient fpga-accelerated collision detection
for virtual prototyping. In Proceedings of the conference on De-
sign, automation and test in Europe: Designers’ forum (3001
Leuven, Belgium, Belgium, 2006), DATE ’06, European Design
and Automation Association, pp. 206-211. 2

[vdB98] VAN DEN BERGEN G.: Efficient collision detection of
complex deformable models using aabb trees. J. Graph. Tools 2
(January 1998), 1-13. 2

[WVG92] WILHELMS J., VAN GELDER A.: Octrees for faster
isosurface generation. ACM Trans. Graph. 11 (July 1992), 201-
227.2

[WVW94] WILSON O., VANGELDER A., WILHELMS J.: Direct
volume rendering via 3D textures. Tech. rep., Santa Cruz, CA,
USA, 1994. 2

V Ibero-American Symposium in Computers Graphics — STACG 2011

182 J. Ortegano, H. Navarro and R. Carmona | Volume-Surface Collision Detection

Rendering and collision time

8 20 Mesh rendering 1(ms) N
8 Mesh rendering 2(ms)
Volume rendering 1(ms) [
7 15 Volume rendering 2(ms) N
g — Collision time per frame 1(ms)
=i Collision time per frame 2(ms)
'g 5 g Collision detection overhead 1(%)
- 10 & Collision detection overhead 2(%) ——
E ¢ g
3 a
2 5
1
0 0
V4S84 V4Sp VpSq VoS

Figure 6: Rendering and collision times from Tables 1 amd 2

V Ibero-American Symposium in Computers Graphics — STACG 2011

