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Figure 1: Two SPH fluid simulations using a standard Euclidean particle neighborhood (a,c), and our new topological neighborhood (b,d).
On the left, two fluid components are crossing while moving in opposite directions. Our new neighborhood performs accurate merging
computations and avoids both unwanted fusion in the reconstruction and incorrect fluid interaction in the simulation. On the right, our
accurate neighborhoods lead to different shape of the splash, and enable the reconstruction of the fluid with an adequate topology while
avoiding bulging at distance.

Abstract
Particle based simulations are widely used in computer graphics. In this field, several recent results have improved the simula-
tion itself or improved the tension of the final fluid surface. In current particle based implementations, the particle neighborhood
is computed by considering the Euclidean distance between fluid particles only. Thus particles from different fluid components
interact, which generates both local incorrect behavior in the simulation and blending artifacts in the reconstructed fluid sur-
face. Our method introduces a better neighborhood computation for both the physical simulation and surface reconstruction
steps. We track and store the local fluid topology around each particle using a graph structure. In this graph, only particles
within the same local fluid component are neighbors and other disconnected fluid particles are inserted only if they come
into contact. The graph connectivity also takes into account the asymmetric behavior of particles when they merge and split,
and the fluid surface is reconstructed accordingly, thus avoiding their blending at distance before a merge. In the simulation,
this neighborhood information is exploited for better controlling the fluid density and the force interactions at the vicinity of
its boundaries. For instance, it prevents the introduction of collision events when two distinct fluid components are crossing
without contact, and it avoids fluid interactions through thin waterproof walls. This leads to an overall more consistent fluid
simulation and reconstruction.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Physically based modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation.

1. Introduction

Fluid simulation for computer graphics is a very active research
area for which more and more realistic solutions are expected.
Among the different methods, point-based simulations, includ-
ing the popular Smoothed Particle Hydrodynamics (SPH) method,
were first introduced for astronomical simulations [Luc77, GM77].

They became very popular in computer graphics for their effi-
ciency when they are applied to fluid simulations [MP89, MCG03,
MSKG05, BTT09]. They are now widely used by the animation
industry. In point-based simulations, the fluid is discretized with
a set of particles carrying its physical properties (mass, velocity,
density, etc). These properties then evolve during the simulation
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according to the influence of the local environment (collision with
obstacles, external forces, etc) and the particle interactions within
the fluid. We refer to the survey of Ihmsen et al. [IOS∗14] for a
recent overview of SPH fluids.

When computing the internal interactions within the fluid, a
common and critical step is the computation of a particle neigh-
borhood that defines which particles influence the evolution of the
fluid’s physical properties. Although only the particles within a lo-
cally common fluid component physically interact, current neigh-
borhood computations do not consider the fluid topology and they
simply return the set of particles located at a distance lower than a
certain threshold. In general, the computation of fluid interactions
requires this distance to include at least three rings of neighbors
around a particle. On the one hand, this Euclidean neighborhood is
computationally very efficient and representative for the fluid inner
parts. On the other hand, at the vicinity of the fluid boundaries, par-
ticles belonging to disconnected fluid components can be neighbors
and for all of them, the physics is solved as if they are all within the
same contiguous part of the fluid. This often happens when simu-
lating flows and splashes, and it introduces incorrect behaviors in
the simulation such as inappropriate rotations and fluid interactions
through thin walls.

At each time step, once the simulation is computed, the fluid
surface has to be reconstructed in order to be visualized. In point-
based simulation, the fluid surface is in general implicitly defined
as the level-set of a smooth field function [Bli82] or a distance
field [ZB05, SSP07, APKG07, BGB15], which are reconstructed
through 3D radially-symmetric fall-off functions attached to the
particles. In these reconstructions, a neighborhood computation is
also required to blend the contributions of the nearby particles,
and thus produce a smooth reconstruction. When using Euclidean
neighborhoods, all particles are automatically blended together to
form the reconstructed surface. This method also merges close fluid
components which are not in contact. This produces an inaccurate
final surface, which is not exactly representative of the simulated
fluid. This behavior can be minimized, but not prevented, using
anisotropic fall-off functions [YT10]. To our knowledge, the only
work tackling this issue proposes to group the particles globally by
connected components and to blend only the particles within the
same component for rendering [YT13]. In this method particles are
considered in the same component if they are close enough. Even
though it provides a partial solution for improving the fluid render-
ing, this global approach does not allow the detection of disjoint,
but close parts of the same component. Neither is the method able
to detect the local fusion and separation of particles in an accu-
rate fashion nor produce the asymmetric behavior of fluid fusion
and separation. Two fluid components are to be fused only when
they collide, while surface tension forces maintain two fluid com-
ponents connected during separation up to a split when the fluid
junction becomes too thin.

Most of the research on the control of shape composition and
blending from 3D field functions is found in the field of compos-
ite geometric modeling by implicit surfaces. As explained in Sec-
tion 2, the management of an accurate fluid topology, adequate for
both simulation and surface reconstruction is still an open, yet chal-
lenging problem.

Contribution: In this paper, inspired by the blending graphs intro-
duced to control the compositions in soft object modeling [OM93,
DG95], we propose to manage the fluid topology using a graph. The
fluid topology is represented at the level of each particle by its list
of neighbors within its local fluid component. The main contribu-
tions are then the temporally coherent neighborhood updates during
the simulation with a detection and treatment of the particles fusion
and separation together with a dedicated surface reconstruction. We
take into account the asymmetric behavior of particles fusion and
separation, while maintaining the coherence between the physical
simulation and the reconstructed surface. Thereby, we avoid the in-
troduction of the inconsistent particle behaviors caused by the use
of Euclidean neighborhoods, and we bring a solution to a problem
made extremely complex in the context of point-based simulation
in which tens of thousands of particles are involved. The neigh-
borhood management is computationally intensive and we show
how computations can be efficiently accelerated and reduced (Sec-
tion 6).

2. Related Work
In point-based simulations, the fluid surface is most of the time
defined as an iso-surface in a 3D scalar field computed by sum-
ming all the 3D field functions representing each individual parti-
cle. This sum is the blending operator for implicit surfaces intro-
duced by Blinn [Bli82] that produces a smooth surface from the
sum of a set of positive, compactly supported, radially decreasing
field functions [WMW86,MCG03]. The main limitation of this op-
erator when applied for reconstructing a fluid surface is the blend-
ing at distance artifact. It deforms disjoint fluid components when
they come in proximity and even merges them if they come closer
while they are not colliding. This shape representation problem has
been widely studied over the past years but no effective solution
has been proposed for the very challenging case of the blending
of tens of thousands of dynamic particles with the additional con-
straint that the fusion behavior of particles (when two fluid compo-
nents collide) is different from their separation behavior.

The blending between particles is generated by the summation of
their respective field contributions. Thus, the blending size is con-
trolled by the radial slope and radius of the field functions defining
the particle contributions to the fluid representation. For instance,
the higher the field values and the larger the radius, the larger the
blending size. A first family of approaches tries to adapt these slope
and influence by particle [BS95,BGC98,WW00,HL03] so that the
blending size between a particle and its neighborhood can be lo-
cally adjusted. This results in an isotropic blending behavior where
a particle cannot both blend with its neighbors and not blend with
others that are at proximity but not in the same fluid component.
Extending this idea, an anisotropic particle field contraction or di-
latation [dWv09] allows the same particle to blend differently with
different particles around it. This approach is effective in the case of
a low number of neighbors, when the local field deformation only
influences the desired particles. This is not the case in point-based
simulations where a single particle has often a very large number
of neighbors. In that case, the local field modifications do not only
affect the desired neighbors but also a set of nearby particles for
which a different blending behavior is expected, making this ap-
proach ineffective.
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In order to overcome these limitations, blending graphs have
been introduced [OM93, GW95]. In these structures, particles are
sorted by component such that all particles within the same com-
ponent blend while those in different components collide and gen-
erate a contact surface. In this graph, components can be connected
by duplicating, in each component, the particles by which they are
linked. The surface is however C0 continuous at these junctions.
Desbrun and Gascuel [DG95] propose a dynamic version of this
graph in which each particle stores its list of neighbors in its com-
ponent. A seed-based technique for contact detection and volume
preservation is then presented in order to perform contact defor-
mations and fusion when particles collide. This seed-based update
mechanism remains however computationally too expensive to be
considered in point-based simulations involving tens of thousands
of particles.

Recently, more advanced blending operators automatically con-
trolling contact and blending effects between particles have been
developed. Bernhardt et al. [BBCW10] detect and process the
particle collisions from their mesh representation. In order to
avoid the expensive mesh-based collision detection, Gourmel et
al. [GBC∗13] introduce gradient-controlled blending operators.
While very effective in the presence of a small number of sparse
particles, these operators are binary (they compose field functions
by pairs) and thus they cannot control the blending of a large num-
ber of dense particles. Finally, Zanni et al. [ZCG14] adjust the
blending behavior of convolution implicit surfaces [BS91] by lo-
cally scaling the field functions according to their gradient norm.
This requires an homogeneous radial variation of field functions
which does not hold for SPH simulations in which the radial slope
of field functions varies according to the local particle density.

Currently, no blending operator is able to reconstruct a smooth
fluid surface respecting the fluid topology and the asymmetry of
the fusion/separation effects in a point-based simulation. Our solu-
tion to surface reconstruction solves both problems and in addition,
it provides a topologically consistent update of particle neighbor-
hoods. This is required to avoid the incorrect behavior of point-
based simulations when distinct fluid components are in proximity.

3. Overview

Our neighborhood computation can be used in most point-based
fluid simulation and without loss of generality, it is exposed and
illustrated in an SPH simulation. Each particle of index i is associ-
ated with a position pi, a density ρi varying over time, and a con-
stant mass mi. For simplifying the exposition, we assume that all
particles have the same radius of influence 2h and their radius is
h/2. At each time step, the density and position of each particle i
are updated from the set Ni of particles j within a given distance 2h
from i, that is Ni = { j | ‖p j−pi‖< 2h}. As motivated in the intro-
duction, this set of Euclidean neighbor particles might improperly
include particles belonging to a different component of the simu-
lated fluid, which is problematic for both simulation and surface
reconstruction. Our main objective in this work is therefore to fil-
ter these neighborhoods such that only the particles that are locally
part of the same fluid component interact. As illustrated in Figure 2,
we intuitively define this notion of local components by consider-
ing the pairs of particles that are directly connected by a “piece” of
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Figure 2: Overview of our approach at two successive time steps.
Particles are shown in black, and the reconstructed fluid surface is
in blue. Top row: standard Euclidean neighborhood and blending
by sum. Bottom row: simulation and reconstruction using our topo-
logical neighborhoods (in red), which are updated at each time step
according to fusion and separation events.

fluid. These so called topological neighborhoods Gi ⊆ Ni are com-
puted and stored for each particle i and maintained throughout the
simulation such that both the simulation and visualization remain
consistent.

The two main steps of our algorithm are depicted in Figure 2.
The top row illustrates the surface reconstruction with blending at
distance obtained in the case of a standard simulation, and the bot-
tom row shows both the surface and the graph with topology control
produced with our approach. Given the set of n particles indexed by
i∈ [1,n] and the set {Gi} of their topological neighborhoods at time
t (respectively black dots and red lines in Figure 2 bottom-left), we
start by reconstructing a fluid surface having an adequate topology
(in blue in Figure 2 bottom-left and Section 4). Then, the particles
at the next time step t +1 are updated by restricting the simulation
to the current topological neighborhoods {Gi}. This integration of
our neighborhoods in the underlying SPH simulation is discussed
in Section 6.1. From these new positions (black dots in Figure 2
bottom-right), the neighborhoods are updated by detecting merges
and splits according to the surface reconstruction as detailed in Sec-
tion 5 (red lines in Figure 2 bottom-right). This provides the new
particles with their neighborhoods that are used for the next surface
reconstruction at time t +1 (in blue in Figure 2 bottom-right).

4. Surface Reconstruction

In this section we assume that each particle i knows its topological
neighborhood Gi. We now need to propose a surface reconstruc-
tion respecting this topological neighborhoods. Our proposition is
based on the summation of field functions fi : R3 → R associated
with each particle i. These field functions are standardly defined as
follows [MCG03]:

fi(x) =
mi

ρi
W (‖x−pi‖) , (1)

where pi is the particle position, mi its mass, ρi its density and W
is a compactly supported kernel of radius 2h for which we take the
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following polynomial:

W (d) = max
(

0,
(

1− ( d
2h )

2
)5
)

.

The density ρi is computed by integrating the mass mi over the
topological neighborhood Gi:

ρi = ∑
j∈{Gi∪i}

m j W (‖pi−p j‖) . (2)

Whereas the masses, the kernel and its radius match the physical
simulation, we emphasize that these densities are computed for re-
construction purpose only. They usually do not coincide with the
densities computed in the physical simulation, as discussed in Sec-
tion 6.1. For instance, this explains why the kernel W does not have
to be normalized as any normalization factor would cancel in Equa-
tion 1.

At this stage, our goal is to avoid the reconstruction artifacts pro-
duced by the sum of all fi, i.e., the blending at distance that gen-
erates surface attraction and unwanted connections as illustrated in
Figure 3(a). We define a field function φ : R3→ R reproducing in
each point x ∈ R3 the sum of the particle’s functions fi that are in
the same local fluid component only. To do so, for each particle i
we define a field function gi representing its blend with the particles
of its topological neighborhood Gi:

gi(x) = fi(x)+ ∑
j∈Gi

f j(x) . (3)

Figure 3(b) illustrates the set of such blended particles from the
ones depicted in Figure 3(a). Particles i are in red and the neighbor
particles in Gi are linked with a red edge. By construction, each
field function gi respects the neighborhood Gi and taking the union
of these functions, for instance using maxi gi [Sab68,Ric73], yields
a reconstruction with adequate topology as shown in Figure 3(c).
This Figure also illustrates that this topologically coherent recon-
struction only produces C0 continuous surfaces. This is due to the
union of the functions gi that generates sharp edges where they in-
tersect, which is undesired for the reconstruction of a fluid surface.

By construction of our neighborhoods (see Section 5), when a
particle j is in Gi then i is in G j meaning that the volumes described
by the functions gi and g j largely overlap each other. We thus need
to slightly blend functions gi, just enough to avoid sharp edges,
without generating bulge and blending at a distance. This is done by
introducing a weighted Ricci’s [Ric73] blending operator defined
as follow:

φ(x) =

(
∑

i

gi(x)s

|Gi|+1

) 1
s

, (4)

where s is the sharpness parameter controlling the amount of blend-
ing. The larger blending is obtained with (s = 1) and a sharp edge
is generated when (s =∞). The normalization factor |Gi|+1 com-
pensates the multiple occurrences of the same particle field func-
tion, say fi, in the different g j, thus avoiding the introduction of
bulges. The multiple occurrences of field functions fi come from
the overlapping of the different neighborhoods G j (Figure 3(b)).
We found that taking s = 20 provides a good tradeoff for maintain-
ing the expected topology while smoothing the edges as illustrated
in Figure 3(d). The final fluid surface is then reconstructed as an
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Figure 3: Illustration of our surface reconstruction in 2D. Parti-
cles are shown with black dots, and the reconstructed surface is in
blue. (a) Blending the particles with a sum leads to either unwanted
blend at a distance (left red arrow) or unwanted bulging (right red
arrow). (b) In our approach, each particle stores its list of topolog-
ical neighbors (red connections) from which local reconstructions
are defined, one per particle. (c) Taking their union yields the ex-
pected topology with sharp edges that (d) are smoothed using our
weighted Ricci’s operator.

iso-surface defined by {x ∈ R3 | φ(x) = C}, where C is taken such
that the radius of an isolated particle is h/2, that is, C =W (h/2).

Providing a smooth fluid surface reconstruction is important for
several reasons: it generates a smooth normal field well suited for
shading and it enables an accurate mesh extraction through binary
search along grid edges or re-projection. in addition, it enables the
high-quality ray-tracing of the surface.

5. Topological Neighborhoods

Given the surface reconstruction described in the previous section,
we explain how the set of topological neighborhoods {Gt

i} at a time
step t is updated from the previous simulation step t− 1. In order
to maintain an adequate topology, the main challenge is the detec-
tion of fusion and separation events in the fluid surface. Through-
out these updates, we require that both the neighbor relation is
symmetric: j ∈ Gi ⇔ i ∈ G j and the topological neighborhoods
are consistent with respect to the fluid components, i.e., particles
that are within the kernel support of each other and that are part
of the same local fluid component must remain topological neigh-
bors even though a split or non-merge event has been detected. This
property boils down to the following local transitive-closure of the
neighbor relation:

∀i, j s.t. i 6= j and ‖pi−p j‖< 2h,
if ∃k ∈ Gt

i ∩Gt
j s.t. max(‖pi−pk‖,‖p j−pk‖)≤ αh

then i ∈ Gt
j and j ∈ Gt

i .
(5)

In contrast to classical transitive-closure, our local variant restricts
the transitivity condition in two ways. It only applies to the pairs of
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particles that are less than 2h apart (first line in Equation 5), and it
can be inferred only from existing pairs of particles that are close
enough to each other. This proximity is controlled by the parameter
α in the second line of Equation 5. We control this proximity be-
cause in SPH simulation and reconstruction, the kernel support of
the field functions is usually very large, it approximately matches
a three-ring neighborhood. Without this restriction, a transitive-
closure would connect distant particles that would not be connected
by the surface reconstruction, which is inconsistent. A typical ex-
ample is the one presented in Figure 2 for which connections would
be created across the fluid handle. Our experiments shown that tak-
ing α = 5/4 is an effective choice.

Since any neighbor change modifies the reconstructed surface,
satisfying all these constraints might lead to a chicken-egg problem.
Our solution to avoid this involves the following three steps which
are summarized in Algorithm 1.

Algorithm 1 SIMULATION STEP

1: {pt
i} ← sph_update( {pt−1

i }, {ρt−1
i }, {Gt−1

i } )
2: {ρt

i} ← reconstruction_density_update({pt
i}, {G

t−1
i })

Merging stage:
3: {G′i} ← merge_update({pt

i}, {ρt
i}, {G

t−1
i })

4: local_transitive_closure({G′i})
5: {ρt

i} ← reconstruction_density_update({pt
i}, {G′i})

Splitting stage:
6: {Gt

i} ← split_update({pt
i}, {ρt

i}, {G′i})
7: local_transitive_closure({Gt

i})
8: {ρt

i} ← reconstruction_density_update({pt
i}, {Gt

i})

9: surface_reconstruction({pt
i}, {ρt

i},{Gt
i})

Firstly: the particle positions are updated through the SPH sim-
ulation routine using the neighborhoods {Gt−1

i } (Algorithm 1 line
1). For the initial time step, these neighborhoods are initialized with
all particles within the radius of influence 2h (i.e., G0

i = N0
i ). As the

particles have moved, their surface reconstruction densities have to
be updated using Equation 2 (Algorithm 1 line 2).

Secondly: particle fusions are detected among the pairs of parti-
cles whose supports intersect and which are not already neighbors
in {Gt−1

i } (Algorithm 1 line 3). As detailed in Section 5.1, this
step yields intermediate neighborhoods {G′i}. Before going any
further, these neighborhoods have to be completed to satisfy the
local transitive-closure property (Algorithm 1 line 4), and surface
reconstruction densities have to be recomputed to take into account
the novel connections (Algorithm 1 line 5).

Thirdly: pairs of particles which are connected in {G′i} but that
appear to be locally disconnected with respect to the fluid surface
are removed (Algorithm 1 line 6) as detailed in Section 5.2. Again,
the local transitive-closure property has to be ensured (Algorithm 1
line 7) to obtain the final updated neighborhoods {Gt

i}. Those are
used to update the densities one more time (Algorithm 1 line 8)
before to perform the surface reconstruction (Algorithm 1 line 9).

In the following, we detail how merges and splits are efficiently
detected and explain in Section 5.4 how our approach is extended
to ensure temporal coherence during fusions.

i j
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Figure 4: Illustration of the merge detection mechanism between
two primitives i and j formed by the red and green particles respec-
tively. Top row: the current particles and reconstruction. Middle
row: the plot of the field function gi of the particle i (red curve), and
its local approximation by a cubic polynomial (blue curve) passing
through the four sampled positions (black dots). Bottom row: novel
connections and reconstruction after merging. Two cases are de-
picted: (a) the position of the iso-contour is found using the first
tested range, (b) whereas for a uneven sampling, a second range
has to be tested.

5.1. Component Fusion

For each particle i, we compute an intermediate neighborhood G′i as
the union of the topological neighborhood Gt

i and all other particles
j within its kernel support for which their respective local fluid
components collide or interpenetrate. We thus consider each pair
of particles i- j such that j /∈ Gt−1

i , i /∈ Gt−1
j and ‖pi−p j‖ ≤ 2h.

Since our reconstructed surface is very close to the union of the
blended neighbor particles (i.e., φ ≈ maxi gi), we can assume that
each of the two blended neighborhoods gi and g j well represent
the local fluid component around particles i and j respectively. Our
problem is then to detect whether these two pieces of fluid intersect.

We detect fusion by searching along a 1D parametric line con-
necting the two particles. Let ri j be the signed distance between
pi and the fluid surface defined in gi in the direction of p j, that is,

ri j is the largest real value such that gi

(
pi + ri j

p j−pi
‖p j−pi‖

)
= C. By

defining r ji analogously, our fusion condition becomes:

‖pi−p j‖< β(ri j + r ji) ,

where β is a small tolerance factor compensating for the small
blending produced by Equation 4 and favoring early over late fu-
sions. We always use β = 1.01.

Since each field function evaluation has a computational cost, we
estimate the values ri j with cubic polynomial approximations. Even
though quadratic polynomial interpolation would ease the subse-
quent root finding, the use of cubic interpolation is required since,
as depicted in Figure 4, the scalar field along the 1D ray is expected
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Figure 5: Detection of a split event between two connected parti-
cles i and j. (a) Current configuration and reconstruction. (b) Plot
of the max of the two field functions gi, g j along the segment i- j
(red), and its approximation by a quadratic polynomial fitted on
four sample points (black dots). (c) Since the minimum is below C,
the pair is split, resulting in disconnected particles.

to exhibit an inflection point, which cannot be reproduced with a
quadratic polynomial. As depicted in Figure 4 left, we first con-
sider the interval [h/4,3h/4] along the given parametric line, and
construct the cubic polynomial that interpolates four sample values
of gi uniformly taken within this range. In most cases, this strategy
succeeds in providing the expected result. In some rare cases, as
in Figure 4 right, an uneven sampling of the particle might signifi-
cantly shrink the surface. The current particle might even lie outside
its own local fluid component. In this case, the first sampled value
is below the isovalue (i.e., gi(h/4) < C), and the search interval is
shifted to [−h/4,h/4]. The same fitting procedure is then applied.
Finally, if the first sampled range is within the fluid component
(i.e., gi(3h/4) > C) then the particle cannot be at the boundary of
the component, and no merge is explicitly detected for this pair. A
connection might eventually be established later through transitive-
closure as explained in Section 5.3.

We emphasize that this detection of fusion does not depend
on the look-up order of the particles as all primitive evaluations
are based on the fixed neighborhoods {Gt−1

i }, whereas newly de-
tected neighbors produce {G′i}. Implementation-wise, the use of
four sample values to fit the cubic polynomial permits to fully ex-
ploit the SIMD vector instruction sets of current CPUs: these four
evaluations are carried out at the cost of a single evaluation.

5.2. Component splitting
Component separation or split occurs when particles of the same
fluid component move apart from each other. Each pair i- j of neigh-
bor particles (i.e., j ∈ G′i and i ∈ G′j) is checked in case splitting is
required once all fusions have been performed. Two neighbor par-
ticles i and j are split only if the segment [pi,p j] joining them has
a part lying outside the local fluid component defined by the union
of their respective blended neighborhoods gi and g j (see Figure 5).

More formally, let ḡi j be the minimum of max(gi,g j) along the
segment [pi,p j]. If ḡi j < C, then the pair i- j is split. Otherwise,
the particle i (resp. j) is inserted into Gt

j (resp. Gt
i). In practice, we

quickly estimate ḡ by fitting an univariate quadratic polynomial to
a given number of sample values of max(gi,g j) uniformly taken
in the segment [pi,p j], as illustrated in Figure 5. As for detecting
fusions, we found that taking four samples is accurate enough in
practice while enabling fast SIMD evaluations.

(a) (b) (c)

Figure 6: Local transitive-closure. (a) A given particle in red with
its current neighbors in green, its kernel support (large circle), and
the set of particles that can be potentially connected to it in blue.
(b) The first sweep of transitive-closure update for this given parti-
cle yields the addition of the five connections in red. The dashed
blue line indicates a potential connection that has not been al-
ready established because their respective shared particle was too
far away from them. This one will be established during the next
sweep. (c) Resulting connections after applying this step to all par-
ticles repeatedly until convergence is achieved. Again, the dashed
blue lines indicate a few connections that are not introduced (on
purpose), because the edges that could infer them are above our
threshold length αh.

This procedure requires every pair of connected particles to be
tested, which is very expensive as the number of such pairs is two
orders of magnitude larger than the number of particles. The num-
ber of splitting tests can be drastically reduced by observing that
if two connected particles are close enough to each other, then a
separation is very unlikely to occur. Each connected pair i- j such
that ‖pi−p j‖< αh are thus preserved and ignored by the splitting
test, where α = 5/4 as for the local transitive-closure in Equation 5
because it plays the same role.

We can now take advantage of local transitive-closure property
to further reduce the number of splitting tests. Indeed, given a con-
nected pair of particles i- j that can be potentially split, if there ex-
ists a third particle k satisfying the local transitive-closure property
of Equation 5, then we know that the pairs i-k, and j-k will not be
split, and thus the pair i- j has to be preserved bypassing the split-
ting test.

Finally, the condition for a pair i- j, i ∈ G′j and j ∈ G′i , to be
inserted into Gt

i and Gt
j can be summarized as follows:

‖pi−p j‖< αh
or ∃k ∈ G′i ∩G′j s.t. max(‖pi−pk‖,‖p j−pk‖)≤ αh
or ḡi j ≥ C

5.3. Transitive-closure

As explained at the beginning of this section, local transitive-
closure (Eq. 5) of our topological neighborhoods has to be satisfied
before their use for density estimation or local surface reconstruc-
tion. This explains why passes of transitive-closure update have to
be performed both after detecting merges and splits (lines 4 and 7 of
Algorithm 1). We also emphasize that the primary role of transitive-
closure is to ensure that two close-enough particles lying nearby
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(a) (b)

(c) (h)

(d) (g)

(e) (f)

Figure 7: Illustration of our temporal coherence mechanism on
a falling particle (in red) entering in contact with another fluid
component (a). (b) The newly established connections lead to a
quick change in the reconstructed iso-contour. The sequence (c)
to (h) shows the progressive absorption produced by our temporal
weighting.

a concave part of the fluid surface are properly connected. Other-
wise, such pairs of particles would be checked for fusion several
times until they become really close or that the local piece of sur-
face becomes not too concave so that the segment lying them is
entirely within the reconstructed fluid component. Therefore, our
transitive-closure rule does not only improve consistency, but also
the performance of the overall algorithm.

Transitive-closure is usually computed through repeated depth-
first or breath-first traversals, however in our context, the number
of pairs that can be added through local transitive-closure is con-
siderably smaller than the number of existing pairs. Therefore, we
found that a much faster strategy consists of looping over each pair
of potentially miss-connected particles, that is, each pair i- j such
that j /∈ Gt−1

i and ‖pi− p j‖ ≤ 2h, and search for a common and
close enough neighbor particle. This step has to be repeated until
convergence is achieved, that is, until no novel connection is estab-
lished. This procedure is illustrated in Figure 6. Notice that thanks
to our double locality restriction, the cavity is well preserved.

During the merging stage we loop over the set of potentially
missing pairs using the following method. Each pair for which
no merge has been detected is appended to a list. Then, during
transitive-closure updates, it is enough to loop over this list from
which a pair is removed if and only if it is added to the set of neigh-
borhoods. For the second pass of transitive-closure (after the split-
ting step), it is enough to consider only the list of pairs which have
been split.

5.4. Temporal coherence

During a fusion near to a particle i, new particles are inserted into its
topological neighborhood. These new particles are usually close to

i meaning that they immediately exhibit a significant contribution
to both the density ρi and the blended neighborhood gi of the given
particle i. As a result, popping might occur in the reconstructed
surface, as show in Figures 4 and 7. In the second figure, a falling
droplet gets immediately absorbed when contact is detected. We
address this issue by tracking the “age” ai j of each neighbor rela-
tion. For each newly connected particle i- j, ai j is initialized to zero
and updated at each frame as follows:

at
i j = min

(
1,at−1

i j +∆t/γ

)
(6)

where ∆t is the time in seconds between two frames, and γ is the
duration in which the age of the relation saturates to 1. For the first
frame, the age is initialized to one for all pairs (i.e., a0

i j = 1). This
age is used in the computation of both the densities and the local
reconstructions as follows:

ρi = ∑
j∈{Gi∪i}

ai jm jW (‖pi−p j‖), (7)

gi(x) = fi(x)+ ∑
j∈Gi

(
1-(1-ai j)

3
)

f j(x) . (8)

The difference in weighting enables a better balance between the
temporal variations of the density versus blending. The behavior
produced by such a temporal weighting scheme is depicted in Fig-
ure 7.

6. Practical implementation

6.1. Integration in a point-based simulation

Integrating our approach within an existing simulation code only
requires to replace loops over Euclidean neighbors by loops over
our topological ones. We implemented our prototype using Dual-
SPHysics [CDR∗15] for the particle simulation, for which we en-
abled the Shepard density filter for adjusting densities at the vicin-
ity of the fluid surface. From the physical aspect, some precautions
must however be taken.

The standard SPH integration kernel assumes that the ambient
space is full of particles whereas in general, only fluid particles are
simulated. This results in a bias in the density estimation at the
proximity of the fluid surface and removing particles from an Eu-
clidean neighborhood in these areas, even though they belong to
a separated fluid component, leads to physical incorrectness in the
density computations. This situation changes as soon as such under-
resolved particle neighborhoods is numerically compensated, us-
ing for instance adjusted integration kernels [BK02]. In that case,
the use of our topological neighborhood allows computing densi-
ties and forces consistently and independently of the presence of a
nearby disconnected fluid component, and inadequate fluid interfer-
ence from disconnected components are avoided. We also point out
that the use of our topological neighborhood would naturally han-
dle very thin walls between fluids as particles in each side would
belong to its own topological fluid component. This avoids particles
interactions through the wall and only wall-particle interactions re-
mains to be simulated. We do not show such an example case be-
cause the DualSPHysics fluid simulation enforces the use of large
enough walls to avoid the unexpected fluids interactions, thus pre-
venting particles on one side of the wall to come close enough to
penetrate the influence radius of particles on the other side.
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6.2. Topological neighborhood implementation

Neighborhood updates (steps 2 to 8 of Algorithm 1) are imple-
mented on the CPU. All these steps but the transitive-closure passes
are accelerated taking advantage of multi-threading with OpenMP.
In order to avoid memory reallocation during neighborhood up-
dates, each particle stores the list of all neighbors within the range
2h. Each list is kept sorted with respect to indices and such that
topological neighbors appear first. These lists are updated using
a 3D grid after the particle positions have been updated. Flags
are used to distinguish between the different stages of the update
(Gt−1, G′, Gt ). Sorted lists enable fast searches and set intersec-
tions during transitive closure updates.

In order to maintain numerical accuracy, the physics solver, such
as DualSPHysics, usually subdivides the target time-step into nu-
merous sub-timesteps according to the different parameters of the
simulation. This explains why in Table 1, the larger “Splash” sim-
ulation appears to be faster than the smaller “Table” simulation.
Following this strategy, we propose to update the neighbor lists for
every main timestep, and in the sub-timesteps whenever a particle
ranges a too long distance since the last neighborhood update. This
maintains a consistent topology during the simulation while reduc-
ing the cost of a systematic detection of fusion and split events.

6.3. Efficient surface evaluation

Our reconstructed iso-surface is extracted as a mesh from a uniform
grid which is filled by evaluating φ through a CUDA implementa-
tion. Each evaluation of φ(x) (Eq. 4) involves a pair of nested loops
on each nearest primitive and each particle of the current primitive.
These loops are required to find all particles i such that gi(x) is non
null, i.e., we have to find all particles within a sphere centered at x
and of radius 4h.

In practice, this search and evaluation can be greatly accelerated
by reducing this radius. Indeed, due to the use of exponentiation
with a large power, that is g20

i in Equation 4, the contribution of
a given field function gi quickly becomes negligible when moving
away, and only the largest ones have a real impact on the result.
Therefore, thanks to the very large overlap between the field func-
tions gi, we found that it is always sufficient to consider only the
particles within a radius of 3.25h for a gain of about ×1.5. Since
the iso-surface are expected to occur at a distance h/2 of the parti-
cles, this is a rather conservative choice, and the search radius can
be aggressively shrunk without impacting the reconstruction.

A second optimization consists in stopping the sum over the
primitives as soon as it exceeds Cs, meaning that the evaluation
point x is within the fluid. As shown in Table 1, this early stop opti-
mization significantly reduces the grid filling cost, especially where
the fluid covers a large volume.

In addition, our computation of the global field φ is only required
in the vicinity of adjusted neighborhoods. Everywhere else it is
enough to sum over the particle’s field fi of the Euclidean neigh-
bors. Finally, the number of overall evaluations can be greatly re-
duced by evaluating the field function at the proximity of surface
particles, as explained by Akinci et al. [AIAT12].

Scene Table Splash
#particles 3.8k 22.8k 56k
SPH simulation 0.11 1.47 0.3
{Gi} update 0.02 0.17 0.49

G
PU

E
va

l

Grid resolution 462×264×216 2162×334
no optimization 0.68 0.83 66.33

+ early stop 0.68 0.84 14.09
+locality of adjusted

0.40 0.70 1.29
neighborhoods
Final eval time

0.33 0.54 0.99
(+CUDA warps)

Standard sum of the fi 0.15 0.23 0.28

Table 1: Average timings in seconds for the update of one frame
for the two scenes shown in Figure 1. Reported timings include
the SPH simulation using the DualSPHysics library, the update of
our topological neighborhoods {Gi} on the CPU, and the filling
of the full marching cube grid on the GPU using either our re-
construction method or a standard sum of the fi. The timings for
our reconstruction method are reported with different level of op-
timization, starting from the naive version evaluating the full field
function φ everywhere, then successively adding early-stop, the re-
striction to area containing adjusted neighborhoods, and finally the
CUDA warp coherence.

When implementing the grid filling on a GPU, additional care
must be taken to maximize parallelism among the threads of the
same warp, that is, among the packet of typically 32 threads that
follow the same execution flow. Indeed, because of the nested
loops, threads attached to nearby grid points can quickly diverge.
We enforce a coherent evaluation by attaching blocks of 4× 4× 2
grid points to the same warp that performs a common traversal
of the grid to query the primitives within the union of individ-
ual queries. This strategy yields an additional ×1.5 speedup, even
though branch divergence still exist because some primitives which
have to be processed by at least one thread might have to be skipped
for the others. Further acceleration is thus obtained by skipping
the farthest primitives in a coherent manner using the following
pseudo-code algorithm where {i1, . . . , im} denotes the set of primi-
tive indices processed by the current wrap:

k = 1
while k ≤ m do

while k ≤ m and ‖x−pi‖> 3.25h do k = k+1 ;
if k ≤ m then accumulate the contribution of gik ;
k = k+1

This algorithm has the effect of re-synchronizing the threads by
making them wait until all threads have a primitive to work on. This
yields an additional ×1.5 speedup factor for large grid resolution.

7. Results and limitations

We have evaluated our approach by comparing our results with
those obtained by using Euclidean neighborhoods for the SPH sim-
ulation, and the sum of the field functions fi for the surface re-
construction (denoted as standard). Our test scenes are shown in
Figure 1.
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Euclidean neighborhoods Topological neighborhoods Euclidean neighborhoods Topological neighborhoods

Figure 8: Short sequences of the “Table” simulations using either Euclidean or our topological neighborhoods. The white labels indicate
the respective frame number. The two fluid components A and B incorrectly interact and merge when using Euclidean neighborhoods, while
they naturally cross without interacting when using our approach (component B remains identical to its isolated copy C).

Quality

The first scene, called “Table” (Figure 1-left), consists of two pieces
of water labeled A and B, moving in opposite directions along a flat
table, and passing nearby each other. The particles of each compo-
nent have been initialized such that the two respective fluids do not
intersect if simulating them separately. For evaluation purpose, we
added an isolated copy of the second component labeled C, which is
initialized with the exact same conditions. Figure 8 shows short se-
quences for two different simulation resolutions. When using 1260
particles per component, Euclidean neighborhoods quickly merge
the two nearby components in both the simulation and reconstruc-
tion, creating small splashes. As a result, the components becomes
significantly distorted. In contrary, our topological neighborhoods
properly resolve the reconstruction ambiguity and thus prevent the
interaction between the two disconnected components within the
simulation. As a result, the component B remains identical to its
isolated duplicate C. The effect of distant interactions of Euclidean
neighborhoods can be diminished by increasing the density of parti-
cles. Nonetheless, as shown in Figure 8-right, even after increasing
the number of particles by a factor 6, some unwanted fusions and
distortions are still present.

Figure 9: Illustration of the diverging behavior between a stan-
dard simulation (left), and our approach (right). To highlight the
simulation differences, the surface of both simulations have been
reconstructed using Euclidean neighborhoods, and the silhouette
of the right image is reported to the left one.

In the second test scene (Figure 1-right), a droplet composed of
about 180 particles hits a box of still water producing a splash. As
seen in Figure 9, the two simulations exhibit differences. In order to
ease the evaluation of our reconstruction method in Figure 10, we
thus compare it to reconstruction results obtained using a standard
sum of the fi over the Euclidean neighbors, but using the same par-
ticle simulation as in our method. Unwanted bulging and merging
at a distance can be observed throughout the sequence produced
by the Euclidean neighborhoods, whereas our approach success-
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Figure 10: Five consecutive frames of the “Splash” simulation
using our neighborhoods. This figure compares the reconstruction
with a standard Euclidean sum of the field functions fi (left), to
our reconstruction method (right). Notice how the water surface is
deformed and merged prior to the actual contact event when using
Euclidean neighborhoods.

fully tracks the expected topology of the fluid until components get
very close to each other. Figure 11 shows the effect of our tempo-
ral merging mechanism: as expected, it can be seen that the falling
droplets get smoothly absorbed by the larger fluid component.

Performance

We have measured the performance of our prototype on a com-
puter equipped with an Intel Core-i7@3.4GHz and a Geforce 580
GTX. Table 1 reports average costs of the different steps of our al-
gorithms for three different simulations. This table also details the
impact of the aforementioned optimizations when filling a grid on
the GPU for our simulations. It can be seen that the relative over-
head to update our topological neighborhood highly depends on the
simulation. Indeed, for the “Table” scene, the overhead of our ap-
proach is marginal because this scene requires several intermediate
simulation steps to avoid numerical instabilities, as automatically
determined by DualSPHysics. On the other hand, DualSPHysics

Figure 11: Comparison of the standard approach (top row), with
our approach (bottom row) on the “Splash” simulation. Notice how
our approach successfully resolve the contact event while enabling
a smooth transition through temporal weights. The falling droplet
is composed of about 180 particles.

can simulate the “Splash” scene at a much higher rate, even though
it contains more particles. For this scene, our neighborhood update
is of the same order as the SPH simulation itself.

Regarding the reconstruction step, thanks to our various opti-
mizations, the overhead of our approach compared to a standard
sum over the Euclidean neighbors ranges from a factor ×2 to ×3.

Limitations

The detection of fusion and separation relies on some heuristics,
meaning that they can be detected slightly too early or too late.
Nonetheless, the effects of these approximations are seldom per-
ceptible and they are considerably less prominent than in standard
approaches.

In this work we focused on the preservation of the fluid topol-
ogy, although we have neglected the fairness of the final fluid sur-
face. Although mesh based smoothing techniques can be used, it
would be interesting to investigate the extension of our method
to take advantage of recent advances in the reconstruction of sur-
faces with better tension properties from SPH simulations. For in-
stance, one could incorporate anisotropic primitives [YT10] within
our method. Another approach would be to define the individual
clusters gi using any implicit reconstruction methods, for instance
Solenthaler et al.’s smooth distance field [SSP07], convert it to a
local field function [CGB13], and combine them using the original
Ricci’s blending operator [Ric73].

8. Conclusion and future work

We introduced a novel neighborhood computation mechanism that
preserves the topology of the animated fluid in point-based simula-
tions. Our neighborhoods can be trivially integrated into an existing
point-based fluid simulation system as it simply replaces the clas-
sical Euclidean neighborhood. We also show how the new neigh-
borhood can be efficiently exploited to reconstruct a fluid surface
avoiding unwanted blends and bulges, while respecting the topol-
ogy of the fluid. We also take into account subtle effects such as
the asymmetric fluid behavior when fluid components merge or
split. Overall, we provide a neighborhood computation capturing
the fluid topology together with the way it can be used coherently
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in both the simulation and the surface reconstruction. Finally, our
results show that our neighborhood solves some incorrect behav-
iors in the simulation and can lead to significantly different particle
motions.

As future works, we would like to continue to diminish the com-
putational overhead brought by the use of our neighborhoods, for
instance by exploring a GPU implementation of their update, and
alternative reconstruction strategies exhibiting a lower algorithmic
complexity. We would also like to investigate how to integrate fluid
surface tension efficiently into our method.
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