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Abstract
We consider Nonlinear Rotation-Invariant Coordinates (NRIC) representing triangle meshes with fixed combinatorics as a
vector stacking all edge lengths and dihedral angles. Previously, conditions for the existence of vertex positions matching given
NRIC have been established. We develop the machinery needed to use NRIC for solving geometric optimization problems.
Moreover, we introduce a fast and robust algorithm that reconstructs vertex positions from close-to integrable NRIC. Our
experiments underline that NRIC-based optimization is especially effective for near-isometric problems.

1. Introduction

Variational problems are at the core of many applications in ge-
ometry processing. Here we consider Nonlinear Rotation-Invariant
Coordinates (NRIC) for solving them on triangle meshes. These
coordinates offer benefits such as their inherent invariance to rigid
transformations and their natural occurrence in discrete deforma-
tion energies. Prior work on shape interpolation by Winkler et al.
[WDAH10] and Fröhlich and Botsch [FB11] showed that linear
blending of the NRIC of a set of shapes already yields alluring
nonlinear deformations. However, since in general vertex positions
that realize given edge lengths and dihedral angles may not exist,
these methods rely on optimization in the space of vertex positions.
In contrast, we use constrained optimization in NRIC to avoid this.

2. The NRIC manifold of edge lengths and dihedral angles

We consider the fixed connectivity graph G = (V,F ,E) of a tri-
angular surface, where V is an index set of vertices, F the set
of faces, and E the set of edges. Then an admissible embed-
ded mesh is given by the image of an immersion and we define
N := {I(V) | I : V → R3 immersion } ⊂ R3|V| which we denote
the space of discrete surfaces. We aim at describing N by the
Nonlinear Rotation-Invariant Coordinates (NRIC), i.e. the vectors
of edge lengths and dihedral angles. To this end, we first define
Z : N → R2|E|, X 7→ (l(X),θ(X)) mapping a discrete surface to
its edge lengths and dihedral angles. Furthermore, we will consider
z = (l,θ) ∈ R2|E| a tuple of lengths and angles, regardless of the
fact whether it belongs to a discrete surface or not. Then the image
of Z defines the NRIC manifold M := Z(N ) of tuples that actu-
ally do. Next, we will explain howM can be defined as an implicit
submanifold via a set of integrability conditions.

Discrete integrability conditions. In this section, we briefly
review the integrability conditions introduced by Wang et al.
[WLT12] for simply connected surfaces. The first straight forward
necessary condition is fulfilling the triangle inequalities for each
face f ∈ F . Furthermore, we define for adjacent faces fi and f j the
transition rotation Ri j := R0(θi)R2(γ j), where γ j is the interior an-
gle at v in f j and θi is the dihedral angle at the common edge. Then
one can phrase the integrability condition as

Iv(l,θ) :=
nv−1

∏
i=0

Ri,(i+1)mod nv

!
= 1 (I)

for the nv-loop of faces around all interior vertices v ∈ V0. Wang et
al. [WLT12] proved for simply connected surfaces the sufficiency
of the two conditions for the existence of a matching discrete sur-
face.

Embedding as an implicit submanifold. To reduce the number
of constraints, we choose Euler angles Λ(Q) ∈ R3 in x−y−z
orientation for every rotation matrix Q ∈ SO(3) and reformulate
(I) as Λ(Iv(z)) = 0 for all interior vertices v ∈ V0. This yields
a vector-valued constraint functional G : R2|E| → R3|V0|, where
G(z) = (Gv(z))v∈V0 = (Λ(Iv(z)))v∈V0 . To condense the triangle
inequality and the integrability (I) in a single condition, we set
Gv(z) =∞ whenever the triangle inequality is violated for a face f
with v ∈ f . This allows one to rewrite the NRIC manifold as

M=
{

z ∈ R2|E| ∣∣G(z) = 0
}
. (1)

This implicit formulation allows to compute the tangent space of
M as TzM = kerDG(z). The gradient of Gv can be computed in
O(nv) cost exploiting its structure via the chain and product rule for
matrix-valued maps. Furthermore, it is sparse and has only O(nv)
non-vanishing entries. With the tangent space at hand, one can for
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instance easily verify the infinitesimal rigidity of z ∈M by check-
ing for tangent vectors with zero length component, cf. Fig. 1.

Figure 1: The tangent space reveals an infinitesimal isometric vari-
ation at the classical Steffen’s polyhedron (middle). Indeed, extrap-
olating in this positive (left) resp. negative (right) direction (solely
in the θ component) allows for isometric deformations. Photograph
courtesy of Laszlo Bardos from cutoutfoldup.com.

3. Variational problems on the manifold

The quest for geometrically optimal, discrete surfaces often leads
to variational problems. However, in many applications, the cor-
responding objective functional can naturally be formulated in our
coordinates, thus on the NRIC manifold (1), and its first and second
variation can easily be computed. To this end, one aims at solving a
constrained optimization problem, i.e. minimize an objective func-
tional E : R2|E|→ R subject to the nonlinear constraint G(z) = 0.

A simple example of an objective functional is given by a
weighted (squared) distance measure W to some given z∗ on the
linear space R2|E|, i.e. E(z) =W[z,z∗], where

W[z,z∗] = ∑
e∈E

αe‖le− l∗e ‖2 +δ
2

∑
e∈E

βe‖θe−θ
∗
e ‖2 . (2)

This can be seen as an elastic deformation energy. In fact, almost
the same model has been used in [GHDS03] to define the Discrete
Shells energy for physical simulations based on nodal positions.

Figure 2: Paper folding with local constraints for dihedral an-
gle: simulation in vertex space (left) leads to small isometry viola-
tions whereas the result in NRIC is fully isometric (right). Triangle-
averaged mean curvature is shown as color map 0 ≥ 0.015.

In our experiments, this setup was particularly effective for prob-
lems involving near-isometric deformations. For instance, we simu-
lated folding a flat sheet of paper by imposing isometry constraints
l = l∗ and angles constraints θi 6= 0 for certain i ∈ I ⊂ E , cf. Fig. 2.
Furthermore, we show isometric extrapolation of an infinitesimal
isometric variation in Fig. 1. Beyond this, we also tested our ap-
proach on problems such as computing elastic averages, discrete
geodesics (both isometric and non-isometric), and constriction or
inflation of certain parts of a mesh via length constraints.

4. Reconstruction of an immersion

In the preceding sections, we discussed the geometry as well as
constrained optimization problems on the NRIC manifoldM, i.e.
in terms of edge lengths and dihedral angles. The remaining task is
to reconstruct for given z∈M an immersion X ∈N of the discrete
surface in R3 with z = Z(X). Additionally, one frequently asks for
an approximate immersion X ∈N for z 6∈M such that Z(X)≈ z.

X1 X2 (BFS) (MST) (SPT)

Figure 3: Left: Input shapes X1 and X2 (taken from [PRMB15]) and
reconstruction of linear average (Z(X1)+Z(X2))/2 /∈M with the
local violations of the integrability condition as color map. Right-
most shapes: reconstruction using various spanning trees color
coded with respect to the order of traversal.

Following the proof in [WLT12], one can reconstruct the nodal
positions from NRIC by traversing the dual graph and constructing
triangle after triangle. To increase robustness, we traverse it along a
spanning tree built such that we traverse faces with violated integra-
bility as late as possible. To this end, each dual edge corresponds to
a primal edge e = (v,v′) and we assign it a scalar weight reflecting
the lack of integrability we := |tr Iv(z)−3|+|tr Iv′ (z)−3|

2 . We investi-
gated using a minimal spanning tree (MST) and a shortest path tree
(SPT) built from these weights and compared them against plain
breadth-first search (BFS) in Fig. 3. Just applying our constructive
approach works very well for z /∈M as long as the violations are
localized as in Fig. 3. In the general case, we suggest the varia-
tional approach from [FB11] initialized with our output as post-
processing.
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