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Abstract 
Parameterization of 3D meshes is important for many graphics and CAD applications, in particular for texture 
mapping, re-meshing and morphing. Current parameterization methods for closed manifold genus-n meshes usually 
involve cutting the mesh according to the object generators, fixing the resulting boundary and then applying the 2D 
position for each of the mesh vertices on a plane, such that the flattened triangles are not too distorted and do not 
overlap. Unfortunately, fixing the boundary distorts the resulting parameterization, especially near the boundary.  A 
special case is that of closed manifold genus-1 meshes that have two generators. They can therefore be flattened 
naturally to a plane without the use of a fixed boundary while still maintaining the continuity of the parameterization. 
Therefore, in treating genus-1 objects, this attribute must be exploited. This paper introduces a generalized method for 
planar parameterization of closed manifold genus-1 meshes. As in any planar parameterization with a fixed boundary, 
weights are assigned over the mesh edges. The type of weights defined depends on the type of mesh characteristics to be 
preserved. The paper proves that the method satisfies the non-overlapping requirement for any type of positive 
barycentric weights, including nonsymmetrical weights. Moreover, convergence is guaranteed according to the Gauss-
Seidel method. The proposed method is simple to implement, fast and robust. The feasibility of the method will be 
demonstrated on several complex objects. 
 
Categories: Planar parameterization, Genus-1 meshes, unfixed boundary.  

  
 
 
1. Introduction 
 
Parameterization of 3D meshes is important to many graphics and 
CAD applications, in particular for texture mapping, re-meshing 
and morphing. Until now, planar parameterization with fixed 
boundaries has primarily been considered [CSGL02] [DMA02] 
[DS95] [Flo97] [Flo03] [SDs01] [Tut63]. Planar parameterization 
of closed meshes that have been cut and flattened suffers from 
large distortions, especially on meshes whose genus is originally 
higher than zero. To cope with distortion from cutting the mesh 
and fixing its boundary, some works have considered spherical 
parameterization [Ale00] [GSG03] [GY02] [ST98] [SGD03] for 
genus-0 objects.  

A recent work [GY00] has offered a solution for the open 
problem of conformal parameterization for manifolds with genus-
n. In this solution, a gradient field is constructed over the mesh 
edges by solving a linear system that satisfies three conditions: (1) 
closedness; (2) harmonity and (3) conjugacy and duality. 
Closedness means that if the gradient field is integrated over an 
oriented loop such that it is homeomorpic to a disk, the 
integration result is zero. Harmonity means that the edges around 
a vertex must satisfy the Laplacian operator. Conjugacy and 
duality means that integration of the gradient field around the hole 
generator is equal to a predefined real number. The first and third 
conditions are approximated by summing the gradient field over 
the edges. The second condition, harmonity, is approximated by 
using the cotangent (harmonic) weights presented by [EH96]. 
Different weights can be used in place of the cotangent weights, 
but these weights must be symmetric. That is, in the case of an 
edge eij with a weight kij , kij must be equal to kji. Thus, the mean-
value weights [Flo03] or the shape preserving weights [Flo97] 
cannot be used, nor can any other non-symmetric weight. Also, 
[GY00] uses the harmonic weights, indicating that the mesh 
triangles should not have obtuse angles. If the mesh includes 

triangles with obtuse angles, the mesh should be re-meshed 
without obtuse angles. An obtuse angle causes the harmonic 
weights to be negative. When negative weights are used, the 
process converges more slowly and the triangles might overlap.  

A solution is given in [GSG03] for coping with the above 
problems of distortions near the boundary and continuity of the 
parameterization with respect to genus-0 objects. In this method, 
any positive weights for genus-0 meshes can be used. The result 
is a spherical parameterization, and the solution is achieved by 
solving a non-linear system.  

A great deal of work has been devoted to finding a cut-graph 
for the class of genus-n meshes [DS95] [EH02] [Kar99] 
[LPVV01] [SF03] [SF02]. A cut graph is a connected graph 
containing 2*genus loops, also called generators [Hat00] 
[Mun84]. Cutting the mesh according to the cut graph yields a 
one-boundary mesh that is homeomorphic to a disk. The resulting 
one-boundary mesh can then be flattened using any planar 
parameterization method known today. The parameterization 
resulting from the above procedure has large distortions, 
especially near the boundaries. In this paper we offer a solution of 
the parameterization problem for genus-1 objects. 

 
1.1.  Contribution 
 
A closed genus-1 manifold has exactly two generators. These two 
generators can be seen as the folding of a bounded plane to a 
torus. If we cut the mesh according to these generators and then 
flatten it, the resulting parameterization will suffer from large 
distortions, especially near the boundaries. Methods such as 
[DMA02] [SDs01] can be used to cope with the large distortion 
near the boundaries, but in such cases the continuity of the 
parameterization along the boundary cannot be controlled, nor can 
the characteristic of the mesh to be preserved in the 
parameterization.  
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This paper presents a parameterization method for genus-1 
objects that is based on planar barycentric coordinates. The paper 
focuses on flattening of genus-1 objects onto the plane using any 
combination of barycentric weights [GSG03] while reducing the 
distortions over the boundaries and preserving the continuity of 
the parameterization. Moreover, a proof of the correctness of the 
method is provided. The proposed method can be solved using the 
Gauss-Seidel procedure. Hence, the solution of the linear system 
can be achieved by repeatedly updating each vertex value as a 
weighted average of its neighbors.  

In our previous work [SF03], a method is given for finding 
the generators of genus-n objects. This method will be applied to 
find the generators of the genus-1 objects. The generators can also 
be found by using an algebraic method, such as the boundary 
operator and the Smith normal form [Mun84] [Kar99] [GY02]. In 
this paper the method in [SF03] was chosen because it is faster 
and does not involve mesh simplification. Moreover, it finds the 
types of the generators: the meridian (the generator around the 
body) and the longitude (the generator around the hole). We 
intend to use this property in the future to extend this work for 
parameterization of genus-n objects. In the next section we give a 
short preview of the method for finding generators described in 
[SF03] and of the barycentric coordinates method, which serve as 
a basis for the parameterization method for genus-1 meshes. 

 
1.2.  Finding the generators  
 
In [SF03] a method is given for finding the two generators of each 
hole in a genus-n object. The method is based on an extension of 
the EdgeBreaker growing process presented in [LRSS02]. First, 
the mesh is traversed, while keeping a contour homotopic to a 
circle, also called the active contour. When the active contour 
touches itself, a split is generated. In case of a split, two contours 
are created. A merge indicates that a loop defined by the mesh has 
been closed. The two generators of each hole are found when a 
merge occurs. A merge occurs when an active contour touches 
another contour. That is, the active contour touches a contour 
created by the split that had created the current active contour or 
its primary father in the split lineage. While traversing the mesh, 
the algorithm adds faces, edges and points to the growing area, 
also called the visited region (Figure 1). The merge is handled in 
the following steps:   

1. All generator edges found until this point (except the last 
one) are marked as uncrossed. 

2. The active contour is selected as one of the generators. 
3. The shortest path (using the Dijkstra algorithm) over the 

mesh from the merge point back to itself through the visited 
region is traced, yielding the second generator.  

4. While the number of found generators < 2n where n is the 
genus, go to 1. 

When an edge is set to an uncrossed edge, wave propagation 
from the merge point cannot pass this edge. Setting all generator 
edges found until now (except the last one) as uncrossed ensures 
that the new path will not define a generator that has already been 
found. The procedure for setting the uncrossed edges is similar to 
cutting the mesh using the generators (found until now) as cutting 
curves. Thus, the new path cannot pass through a cut edge and 
therefore cannot construct a generator that has been already 
found. If the genus is one, only steps 2,3 should be performed. 
 
1.3.  The method of weighted barycentric coordinates 
 
This section gives a brief description of the weighted barycentric 
coordinates method. A full description can be found in [GSG03]. 
The basic idea of the weighted barycentric coordinate method is 
to fix the boundary of a manifold mesh with one boundary on a 

convex polygon and then repeatedly update each internal vertex 
as the weighted average of its neighbors. It was proven in [Flo97], 
which is a generalization of a proof given by Tutte [Tut63], that 
the resulting parameterization has no foldovers when using 
positive weights and convex boundary. The method of barycentric 
coordinates can be formulated as the solution to the 2D vector 
Laplace equation on the interior vertices, as given in Eq. 1, where 
Lw matrix is the Laplace matrix, X is the vector of variables and b 
is the vector of solutions. It has no zero entries due to the 
boundary conditions derived from the convex boundary. We will 
define Lw= (I-W), where I is the unity matrix and W are the 
weights matrix. 

LwX=b  (1) 

The following process describes the construction of W and b (Eq. 
1) according to [GSG03]: 
 
1. To each entry (i,j) of W that has a corresponding edge eij, 

assign a positive weight wij such that ij
j N(i)

w 1
∈

=∑ , where 

N(i) is the list of vertices neighboring the ith vertex. 
2. To all other entries (i,j) of W, assign wij=0. 
3. Embed the boundary vertices in the plane such that they 

form a closed convex polygon. 
4. Solve the following linear systems for the x and y 

coordinates of the n interior vertices:  
(I-W)x=bx,(I-W)y=by,  
where W is an n x n matrix containing wij and Lw=(I-W). bx 
and by are vectors with non-zero entries corresponding to the 
vertices adjacent to the boundary. 

 
The matrix Lw is a weakly dominated matrix and is therefore 

non-singular. The vector b has entries that are non-zero; therefore, 
this linear system has a unique solution. Due to the weakly 
dominated property of the Lw matrix, this linear system can be 
solved using the Gauss-Seidle procedure and is guaranteed to 
converge for any initial guess of X. The normalized Laplacian Lw 

has a unit diagonal, with negative entries at each mesh edge, and 
zero otherwise. Because the sum of all weights, wij around vertex 
vi is one, all rows of Lw sum to zero, so that the matrix is singular. 
The rank of Lw is (n-1), where the matrix size is n x n. By fixing 
one vertex in the parameterization plane, the matrix becomes non-
singular. The weakly dominated matrix is defined as follows: 

 
n

ij ii
j 1
j i

C C
=
≠

≤∑  holds for all the matrix rows, and the inequality 

itself must hold at least once, where Cij represents the i,j cell of a 
matrix. The weakly dominated matrix is known as a non-singular 
matrix. This non-singularity can be proved using the Gauss 
elimination procedure. 
 
 

Visited

Merge Point
(a) (b)  

 
Figure 1: Constructing the complementary generator when merge 
occurs: (a) visited region (in eggplant purple) grows until merge 
occurs, (b) color map of Dijkstra values over the visited region. 
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2. The planar parameterization for genus-1 meshes. 
 
The input to our algorithm is a closed genus-1 manifold mesh 
without boundaries and two generators, such that the generators 
intersect only once. Instead of cutting the mesh according to the 
generators and then fixing its boundary on a convex polygon, as is 
customary, we fix only one vertex and replace the fixed boundary 
conditions by cyclic boundary conditions. By fixing one vertex 
we ensure that Lw is non-singular. By applying the cyclic 
boundary conditions we ensure that the solution will not converge 
to the fixed vertex. The linear system can then be solved using the 
Gauss-Seidel procedure. Convergence of the Gauss-Seidel 
procedure is guaranteed for any initial guess of the solution X 
(Eq. 1). The proof for the convergence is given in Appendix A. In 
section 2.1, the cyclic boundary conditions are defined. Section 
2.2 provides the proof that there is at most one foldover caused by 
the fixed vertex, which can be handled very simply. In section 3 
the implementation of the method is given. Section 4 provides 
examples that demonstrate the feasibility of the method, and 
section 5 includes a summary and conclusions. 

 
2.1. The cyclic boundary condition 

 
Applying cyclic boundary conditions in the parameterization 
process preserves the continuity of the parameterization over 
boundaries. The generators are directed and marked as a and b. 
To set the cyclic boundary conditions, the algorithm first traverses 
the generators and marks all vertices that are neighbors and are on 
the right side of the generators as Nr(a) or Nr(b). Neighbor 
vertices of the generators will be marked as Ng(a) or Ng(b). 
During the traverse each edge of the generator is visited only 
once. Calculation of each vertex vi position during each iterative 
step is given as follows:  

( )
x

x

ij j x

i
j 1.. N(i) ij

j 1.. N(i)

W v f (i, j)
v

W=
=

+
= ∑

∑
 (2) 

( )y

y

ij j y

i
j 1.. N(i) ij

j 1.. N(i)

W v f (i, j)
v

W=
=

+
= ∑

∑
 

where 

i i g

x i j

i j

0 v a v N (a)

f (i, j) 2 v a v Nr(a)

2 v Nr(a) v a

 ∉ ∧ ∉
= π ∈ ∧ ∉
− π ∈ ∧ ∈

 (3) 

 

i i g

y i j

i j

0 v b v N (b)

f (i, j) 2 v b v Nr(b)

2 v Nr(b) v b

 ∉ ∧ ∉
= π ∈ ∧ ∉
− π ∈ ∧ ∈

.  

 
and Wij is a positive weight calculated for edge eij. The the wij is 
given as:  
 

ij
ij

ij
j 1.. N(i)

W
w

W
=

=
∑

 (4) 

xi
v is given as: 

( )
x xi ij j ij x

j 1.. N(i)
v w v w f (i, j)

=
= +∑   (5) 

 
By separating the sigma on the right side we get: 

x xi ij j ij x
j 1.. N(i) j 1.. N(i)

v w v w f (i, j)
= =

= +∑ ∑  (6)  

 
and by moving the neighbors' weighted average to the left side of 
the equation we get:  

x xi ij j ij x
j 1.. N(i) j 1.. N(i)

v w v w f (i, j)
= =

− =∑ ∑  (7) 

 
The same process can be applied on 

yi
v .Since the connectivity of 

the mesh does not change during the process, the neighbors of a 
and b do not change their connectivity relations. Therefore, the 
right side of Eq. 7 is a constant. 

We can see that on the left side of Eq. 7 we have Lw such that:  

ij

w

w i j : edge(i, j) M

L (i, j) 0 i j : edge(i, j) M

1 i j

− ∀ ≠ ∈
= ∀ ≠ ∉
 =

 

where M is the mesh. The right side of Eq. 7 defines the entries 
on the right side vector of Eq. 1. To make Lw non-singular, we 
fixed the crossing vertex between the generators to be at 

( )2 ,2π π . In Eqs. 2-7 we described how to replace the fixed 

boundary condition with cyclic boundary conditions. As a result, 
continuity between the two sides of the imaginary boundary 
created by the generators is preserved.   
 
2.2. Parameterization without foldovers 
 
Due to the definition of the Lw matrix and the proof for the 
convergence of the linear system (Appendix A), all vertices 
except the fixed vertex vfix must be equal to the weighted average 
of their neighboring vertices. We will refer to the first 
neighboring vertices of vfix as 1-neighbors. At first we prove that 
all vertices except vfix and its 1-neighbors vertices cannot cause 
foldovers. Then, we relate to vfix and its 1-neighbors. 
 
2.2.1. No foldovers in vertices that are not 1-neighbors. First 
we consider all vertices except vfix and its 1-neighbors vertices. 
We divide all edges on the boundary of the fan around vertex vi 
into three classes: Edge-A, Edge-B, Edge-C. Class Edge-A 
contains all the edges that are on the convex hull of the 
neighboring vertices of vertex vi (Figure 2.a, edge e3); class Edge-
B contains all the edges that have concave vertex vc at their ends  
(Figure 2.a, edge e4); class Edge-C contains all the edges that 
have two convex vertices at their ends but are not on the convex 
hull  (Figure 2.d, edge e5). Those three classes contain all the 
edges on the boundary of a fan around vertex vi. Therefore, there 
cannot be foldover because each of the following cases 
contradicts the assumption that all weights are positive and that 
each vertex is equal to the weighted average of its neighbors.  

1. If a vertex vi creates a foldover through an edge belonging to 
class Edge-A (Figure 2.b), the penetrated edge is a 
hyperplane H (Figure 2.b) dividing the plane into two sides. 
One side of the plane contains all the neighbors of vi, while vi 
is on the other side. 

2. If vi penetrates an edge of class Edge-B (Figure 2.c), a 
hyperplane H can be found such that all neighbors of vc are 
placed on one side and vc is on the other side (Figure 2.c). 

3. If vi penetrates an edge of class Edge-C, a concave vertex vc 
(Figure 2.d) must be found as well as a hyperplane H such 
that all neighbors of vc are placed on one side and vc is on its 
other side (Figure 2.e). 

If a vertex vc cannot be found, the penetrated edge must then be 
on the convex hull. That is, it belongs to class Edge-A, which we 
have already proven cannot be penetrated. 
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e3 

e4 

 
 
Figure 2: Edge states:  (a) The boundary of the fan around vi, (b) penetrating a convex-hull edge, (c) penetrating an edge with 
concave vertex, (d) a boundary of a fan with convex region which is not on the convex-hull, (e) penetrating an edge of a convex 
region which is not on the convex-hull. 
 

a b c 

vfix 
vfix 

vfix 

vfn 

vfn 

vfn 

 
Figure 3: Fixed vertex, overload state: (a) vfix on a concave region of the fan boundary, (b) penetrating an edge belongs to vfix, (c) 
subdivision of  vfix fan. 

 
2.2.2. Foldovers in the fixed vertex and its 1-neighbors 
vertices. This section considers the 1-neighbors vertices of the 
fixed vertex vfix. A vertex that is a 1-neighbor of vfix will be 
referred to as vfn. vfn cannot penetrate  an edge eij such that vi is 
a vertex neighboring to vfix and vj is not vfix. This contradicts 
the first part of the proof given in section 2.2.1. Thus, the only 
possible way for foldover to happen is when vfix holds a 
concave angle on one of the fan boundaries of its neighbors, as 
seen in Figure 3.a. If vfix holds a convex angle relative to the 
fan boundary around vfn, the edges connected to vfix construct a 
convex region, and as proven in section 2.2.1 vfix cannot cause 
foldovers. When vfix holds a concave angle on the vfn fan 
boundary, the resulting weighted average calculation for vfn 
can be outside the region of its fan, as can be seen in Figure 
3.b. Due to the fact that vfix is fixed, this (Figure 3.b) can be a 
possible solution of the linear system. Then, if vfix holds an 
obtuse angle, there is a possibility that foldover will happen. In 
practice on all the modules with flattened using cyclic 
boundary conditions, foldover did not occur. A simple solution 
that solves this problem is to subdivide the two overlapped 
triangles connected to vfix, as shown in Figure 3.c. Further 
details are given in the implementation section, Section 3. 
 
3. Implementation 
 
The implementation complexity of the proposed method is 
similar to the complexity of the process of flattening a mesh 
using a fixed boundary. The steps are: 

1. Positive weight is calculated for each edge.  
2. The fixed vertex values are determined.  
3. All vertices on the right of the generators are marked.  
4. The position of each vertex except the fixed one is 

calculated to be the weighted average of its neighbors, while 

considering the neighboring vertices type and the current 
vertex type.  

In the following we will explain Steps 2-4 and how to handle 
the only foldover that might occur.  
 
3.1.  Fixing the crossing vertex values 
 
The crossing vertex is the vertex belonging to both generators. 
If the solution of the linear system demands Lw, we set all 
entries of the crossing vertex row in Lw to zero except the 
diagonal, which is set to one. If the system is iteratively solved 
by setting each vertex value to the weighted average values of 
its neighbors, then we simply set its values ones and then 
ignore it throughout the iteration process. 
 
3.2.  Marking right-side vertices of the generators 
 
The right sides of the generators are marked using a simple 
procedure based on the following steps: 

1. Start from the crossing vertex and traverse all generator-
oriented edges only once. While traversing the edges, mark 
each face that lies on an oriented edge and push those faces 
into a list. 

2. Pop a face from the list and mark its neighboring faces that 
are not marked and that have a vertex on the generators. 
Then, push the face to the list. 

3. While the list is not empty, return to 2. 

While marking the right side of the generators, each marked 
vertex should be signed with the generator that marked it. Also, 
a vertex can be marked by both generators. 
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3.3. Weighted average calculation 
 
To calculate the weighted average of each vertex vi we will 
consider three types of vertices: a type VA vertex is a vertex 
that is not on the generators and not on the right side of a 
generator; a type VB vertex is a vertex that is on the generator; 
a type VC vertex is a vertex that is on the right side of the 
generator. If vi is of type VA, Eq. 3 should be used while 
setting f(v) to zero. If vi is of type VB, when using Eq. 3 each 
vertex that is a neighbor to vi and is also right-sided with 
regard to the generator will have an additional 2π to its value. 
If vi is of type VC, when using Eq. 3 each vertex that is a 
neighbor to vi and is also on the generator will have an 
additional ( 2− π ) in its value. The bounding of u and v can 
differ, i.e., f(u) and f(v) can be of the form given in Eq. 9, 
where u and v form the axis of the parameterization space.  

i i

u i j

i j

0 v a v N(a)

f (i, j) u _ bounding value v a v Nr(a)

u _ bounding value v Nr(a) v a

 ∉ ∧ ∉
= ∈ ∧ ∉
− ∈ ∧ ∈

(9) 

i i

v i j

i j

0 v b v N(b)

f (i, j) v _ bounding value v b v Nr(b)

v _ bounding value v Nr(b) v b

 ∉ ∧ ∉
= ∈ ∧ ∉
− ∈ ∧ ∈

 

 
3.4.  Handling a foldover 
 
As was proven in section 2.2.2, if vfix holds a concave angle 
around the fan boundary of one of its neighbors, there is a 
possibility of a foldover. In practice, this did not happen on any 
of the modules we flattened. A simple solution to this problem 
is to subdivide the two overlapped triangles connected to vfix, 
as shown in Figure 3.c. The algorithm for handling the 
foldover problem includes the following steps:  

1. When the iterated process converges, look for flipped faces 
belonging to vfix. 

2. If there is no flipped face, then finish.  
3. Subdivide the two flipped faces to eliminate the concave 

angles at the surrounding of vfix. For the subdivision of the 
two triangles, two additional vertices are added to the mesh.  

4. Continue the iteration process from the last result calculated 
in step 1, before the local subdivision is performed. 

5. Go to 1.  
 
4. Examples 
 
The proposed parameterization method with cyclic boundary 
conditions was applied to close manifold genus-1 meshes. The 
embedding characteristic is controlled by the weights defined 
by the user. The method has been applied over meshes with 
obtuse angles and also over sparse and irregular meshes. Figure 
4 shows the difference between using fixed boundary (Figure 
4.b) and cyclic boundary (Figure 4.c) on a torus with harmonic 
weights. The corresponding parameterization is given in 
Figures 4.d and 4.e. One can see clearly the distortion near the 
generators when using the fixed boundary (Figure 4.c). In 
addition, Figure 4 emphasizes the lack of connection between 
the generators (Figure 4.a) selected when using cyclic 
boundary and the resulting parameterization. Figure 5 shows a 
comparison between the harmonic and mean-value weights on 
a loop model with a large number of obtuse angles. Figure 6 
gives a comparison between harmonic and mean-value weights 
on a motorcycle helmet model. The mesh of the model is 
irregular and includes many obtuse angles. Figure 7 gives the 
results of the texture mapping and the corresponding 

parameterization space using Tutte, edge-length, harmonic and 
mean-value weights. The model chosen for Figure 7 is very 
sparse and the mesh is considered very low quality (Figure 
7.a). Figure 7.g shows that the results for angle preserving 
when using mean-value weights are quite good regarding the 
given mesh. In Figure 7.i and Figure 7.j the cyclic boundaries 
are demonstrated by cutting the parameterization space and 
gluing it through the cyclic boundaries.  
 
5. Summary 
 
This paper has introduced a parameterization method for 
genus-1 objects using cyclic boundary conditions. The method 
is a generalization of the barycentric coordinates flattening 
process that uses fixed boundary. Moreover, the paper provides 
a proof for unfolding the flattened mesh and for process 
convergence using the Gauss-Seidel procedure. The basic idea 
of the method is based on replacing the fixed boundary 
conditions with cyclic boundary conditions. The only 
constraint on the weights is that they must be positive, so that 
any type of barycentric weights can be used, including the non-
symmetric ones such as mean-value weights and shape 
preserving. The proposed parameterization method with cyclic 
boundary condition is as robust and fast as the conventional 
method with fixed boundary. The advantage of the proposed 
method is in the low distortion, resulting in the 
parameterization of genus-1 meshes, especially near the 
generators.  
 
Appendix A:  Convergence of the Gauss-Seidel 
procedure for weakly dominated matrices 
 
The non-singularity property of strictly/weakly dominated 
matrices can be proven using the Gauss elimination procedure. 
In this section, the non-singularity property is used to prove 
that the Gauss-Seidel procedure converges for weakly-
dominated matrices. 

We will regard the linear system AX=b such that A is an n 
x n, weakly dominated matrix. We will define A=D-L-U as 
follows: 
1. L is the minus of the lower triangle of A. 
2. U is the minus of the upper triangle of A. 
3. D is the diagonal of A.  
4. L and U do not contain the diagonal of A.  
Based upon the above definition, the Gauss-Seidel iteration 
matrix G is defined as -1G=(D-L) U . To show that Gauss-Seidel 
converges, it is sufficient to show that all eigenvalues of G in 
their absolute values are less than one. The proof is as follows: 
 

( )( )-1 -1det(λI-G)=det λ(D-L) D-L +(D-L) -U       If λ  is an 

eigenvalue of G, det( I-G)=0λ can be written as: 

( )( )-1 -1det λ(D-L) D-L +(D-L) -U =0       

Therefore ( )( )-1det (D-L) λ D-L -U =0    and finally 

( )( )det λ D-L -U =0  

Assume that 1λ ≥ ; then ( )λ D-L -U  is strictly/weakly 

diagonally dominated, meaning that ( )( )det λ D-L -U 0≠ , 

which is a contradiction of our first assumption that 
strictly/weakly diagonally dominated matrices are non-singular 
and does not ensure convergence to the solution. 
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Figure 4: Torus parameterization: (a) Torus and its two generators,  (b) Texture mapping using harmonic weights on fixed 
boundary, (c) Texture mapping using harmonic weights on cyclic boundary, (d) Parameterization space when using fixed boundary, 
(e) Parameterization space when using cyclic boundary. 
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Figure 5: Loop, (a) loop with its two generators, (b) parameterization space using harmonic weights, (c) parameterization space 
using mean-value weights, (d) zooming on a problematic area with obtuse angles, (e) texture mapping using harmonic weights, 
(f) texture mapping using mean-value weights. 
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Figure 6: Motorcycle helmet: (a,b) Irregular mesh with obtuse angles, (c,d,e) texture mapping results using harmonic weights, 
(f,g,h) texture mapping results using mean value weights, (i,j,k) zooming on a problematic area with obtuse angles, 
(l,m) parameterization space using harmonic and mean-value weights, respectively. 
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Figure 7: Different weights texture mapping results on a highly irregular mesh and the resulting parameterization space: (a) Mesh 
and Tutte barycentric coordinates, (b) Tutte, parameterization space, (c) edge length, (d) Edge length, parameterization space,  
(e) harmonic, (f) Harmonic, parameterization space, (g) mean value, (h) Mean value, parameterization space, (i) cutting the 
parameterization space ,(j) gluing through the cyclic boundaries.  
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