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Abstract

The notion of €-sample, as introduced by Amenta and Bern, has proven to be a key concept in the theory of sampled surfaces.
Of particular interest is the fact that, if E is an €-sample of a smooth surface S for a sufficiently small €, then the Delaunay
triangulation of E restricted to S is a good approximation of S, both in a topological and in a geometric sense. Hence, if one
can construct an €-sample, one also gets a good approximation of the surface. Moreover, correct reconstruction is ensured by

various algorithms.

In this paper, we introduce the notion of loose €-sample. We show that the set of loose €-samples contains and is asymptotically
identical to the set of €-samples. The main advantage of loose €-samples over €-samples is that they are easier to check and to
construct. We also present a simple algorithm that constructs provably good surface samples and meshes.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Curve, surface, solid, and object repre-

sentations

This work has been partially supported by the IST Programme of
the EU as a Shared-cost RTD (FET Open) Project under Contract
No IST-2000-26473 (ECG - Effective Computational Geometry for
Curves and Surfaces).

1. Introduction

Meshing and reconstructing surfaces are two fundamental prob-
lems in geometry processing. In surface reconstruction, a finite set
of points E on a surface S is given and one wants to compute a
good approximation of S from E. This is of course only possible if
E is a good sample of S in some sense. In surface mesh generation,
the problem is somehow opposite. A surface S is known and we
want to compute a triangulated surface that suitably approximates
S. Clearly, the vertices of the triangulated surface have to sample
correctly S. Hence, in both applications and also in many others,
including the new arena of point set surfaces [1, 2], the notion of
good sample is crucial.

The notion of e-sample, as introduced by Amenta and Bern [3],
has proven to be a key concept in the theory of sampled surfaces.
Roughly, an e-sample E of a surface S is a (non necessarily uni-
form) point set that is sufficiently dense with respect to the distance
to the medial axis of S — see section 2. Of particular interest is the
fact that if E is an €-sample of a smooth surface S for a sufficiently
small &, the Delaunay triangulation of E restricted to S, Del|s(E), is
a good approximation of S, both in a topological and in a geometric
sense (see section 2 for more details). Hence, given an €-sample of
a surface, it is easy to get a good approximation of the surface.

This result (and variants of it) plays a central role in the analysis
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of all surface reconstruction algorithms that offer theoretical guar-
antees [9]. In particular, if E is an €-sample of a smooth surface S
for a sufficiently small €, these algorithms can reconstruct a surface
that has the same topology type as S and is close to S.

One drawback of the concept of e-sample is the fact that it is dif-
ficult to check whether a sample is an €-sample of a given surface,
and even more difficult to construct a (preferably sparse) €-sample
of a given surface. This is due to the fact that a direct application of
the definition of an €-sample leads to complicated operations like
cutting the surface with balls.

In this paper, we introduce the notion of loose €-sample. The set
of loose e-samples contains and is asymptotically identical to the
set of e-samples. The main advantage of loose e-samples over &-
samples is that they are easier to check and to construct. Indeed,
checking that a sample is a loose €-sample reduces to checking
whether a finite number of spheres are small enough with respect
to the distance from their centers to the medial axis of the surface.

We also present a construction algorithm which is a variant of
Chew’s surface meshing algorithm [14]. Given a smooth closed sur-
face S, the algorithm generates a sparse €-sample E and at the same
time a triangulated surface Del, s(E). The triangulated surface has
the same topological type as S, is close to S for the Hausdorff dis-
tance (see theorem 4.8) and can provide good approximations of
normals, areas and curvatures. A remarkable feature of the algo-
rithm is that the surface needs only to be known through an oracle
that, given a line segment, detects whether the segment intersects
the surface and, in the affirmative, returns an intersection point and
the distance to the medial axis at that point (or any smaller non-
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zero quantity). This makes the algorithm useful in a wide variety of
contexts and for a large class of surfaces.

The paper is organized as follows. In section 2, we recall useful
concepts and introduce the notion of loose €-sample. In section 3,
we present some local properties of loose e-samples that are used
in section 4 to establish our main results. We prove that, for suffi-
ciently small &, Del|g(E) is a 2-manifold without boundary that is

ambient isotopic to S and whose Hausdorff distance to S is 0(82).
We also prove that S is covered by the so-called surface Delaunay
balls, and that loose €-samples are €(1 + 16€)-samples. In section
5, we bound the size of loose e-samples. As an application of our
results, we present in section 6 our surface mesh generator.

2. Definitions and preliminary observations

In the paper, S denotes a compact, orientable, twice-differentiable
surface without boundary. S will be called a smooth closed surface
for short. By 7' (p) we denote the surface normal at point p € S,
and by T'(p) the plane tangent to S at p.

Our analysis uses the fact that locally a smooth surface is the
graph of a function. More precisely, given an orthonormal frame
(0,x,y,z) of R3, a subset of R? is said to be xy-monotone if it is the
graph of a function of the two variables x and y. A terrain is a sur-
face that is xy-monotone in some frame (O, x,y,z) of R>. Similarly,
given an orthonormal frame (O, x,y) of R, a subset of R is said
to be x-monotone if it is the graph of a function of variable x.

2.1. Restricted Delaunay triangulation

In the paper, E denotes a finite point sample of S and Del(E) the 3-
dimensional Delaunay triangulation of E. By V(E) we denote the
set of the edges of the Voronoi diagram of E.

We call Delaunay triangulation of E restricted to S, and we note
Del|g(E), the sub-complex of Del(E) that consists of the facets of
Del(E) whose dual Voronoi edges intersect S. An edge or vertex of
Del(E) belongs to Del|g(E) if it is incident to at least one facet of
Del|5(E). Notice that we depart from the usual definition [14, 19]
and do not consider vertices and edges with no incident facet of
Del IS (E ) .

A facet (resp. edge, vertex) of Del|g(E) is called a restricted De-
launay facet (resp. restricted Delaunay edge, restricted Delaunay
vertex). For a restricted Delaunay facet f, we call surface Delau-
nay ball of f any ball circumscribing f centered at some point of
SN f*, where f* is the Voronoi edge dual to f. We call surface
Delaunay patch the intersection of a surface Delaunay ball with S.
Notice that the centers of the surface Delaunay balls are precisely
the intersection points of S and V(E).

2.2. e-samples and loose e-samples

The medial axis of S, denoted by M, is the topological closure of
the set of points of R? that have more than one nearest neighbour
inS.

For a point x € R3 , we call distance to the medial axis at x, and
write dp(x), the Euclidean distance from x to the medial axis of S.

As noticed by Amenta and Bern [3], djs is 1-Lipschitz, i.e.
ldp (x) —dp (y)| < [lx =yl

We define diff = inf{dy(x), xeS} and dy’ =
sup{dpy(x), x € S}. Since S is a smooth closed surface, both
d}f,}f and d;,l;p are finite and strictly positive constants.

We borrow from Amenta and Bern [3] the notion of e-sample,
defined below. In the whole paper, B(c, r) denotes the ball of center
¢ and radius r.

Definition 2.1 E is an €-sample of Sif Vx € S, ENB(x,€ dy(x)) #
0.

For sufficiently small values of €, e-samples enjoy many beautiful
properties. We recall the most important ones in our context.

— Normals: the angle between the normal to a facet f of Del|(E)
and the normal to S at the vertices of f is O(¢g) [3].

— Area: the area of Del|g(E) approximates the area of S [25].

— Curvatures: the curvature tensor of § can be estimated from
Del|s(E) [15].

— Homeomorphism: Del|4(E) is homeomorphic to S [3].

— Hausdorff distance: the Hausdorff distance between S and
Del|s(E) is O(g) [10]. In this paper, we give an 0(g?) bound
(theorem 4.8).

— Reconstruction: several algorithms can reconstruct from E a sur-
face that is homeomorphic [3, 4, 9, 17] or even ambient isotopic
[6] to S.

We will show that these properties hold for loose e-samples as well.

Definition 2.2 E is a loose e-sample of S if Vx € SNV(E), EN
B(x,edpy(x)) #£ 0.

Since the centers of the surface Delaunay balls are precisely
the intersection points of S with the Voronoi edges, E is a loose
e-sample if and only if every surface Delaunay ball B(c,r) has a
radius of at most € dy(c).

e-samples and loose €-samples are closely related but not iden-
tical concepts. The next lemma follows from definitions 2.1 and
2.2.

Lemma 2.3 If E is an e-sample, then it is a loose €-sample.

The converse is true asymptotically, as we will see in section 4.3
(corollary 4.13).

2.3. Other notations

The following constants are used in the paper:

e g is the only positive root of equation 13729 -+ arcsin IL_E -
T = 0.g9~0.091.

e £ is the only positive root of equation ; 3878 +arcsin %g —7=0.
€ ~ 0.096.

e & = oz = 0.097.

e £3 is the only positive root of equation 1_858 + arcsin%g -
% = 0. €3 ~0.17.
e &4 is the only positive root of equation 13848 + arcsin%z -
T =0.g~012

We also use the notation (%, V') to denote the modulus of the
angle (measured in [—T, 7)) between vectors  and v of R?, and

.V to denote their dot-product.

(© The Eurographics Association 2004.
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3. Local properties of loose e-samples

In this section, we prove that surface Delaunay balls of sufficiently
small radii keep important properties of planar disks. In particular,
we show that they intersect S along topological disks whose bound-
aries pairwise intersect in at most two points (proposition 3.9).

3.1. Technical lemmas

In this paragraph, we recall several lemmas by Amenta and Bern
[3] that will be useful in the remainder of the paper.

Lemma 3.1 Let f be a facet of Del|g(E). Assume that every sur-

face Delaunay ball B(c, r) of f is such that r < p djs(c), with p < 7
Let a be a vertex of f. If a has an inner angle of at least 7t/3, then the
smaller angle between the line normal to f and the normal to S at a

pV3

is at most arcsin T—p" Otherwise, the smaller angle between the line

pf

normal to f and the normal to § at a is at most 5+ arcsin T—

Proof The radius of any surface Delaunay ball of f is at most
% dy(a), thus the proof of lemma 7 of Amenta and Bern [3]
holds here. [

Lemma 3.2 For any two points p and ¢ on S with ||p —¢|| <
p du(p), the smaller angle between the line segment pg and the
surface normal at p is at least % — arcsin %

Lemma 3.3 For any two points p and ¢ on S with ||p —¢|| <
p min{dy(p),dm(q)}, for any p < %, the angle between the nor-

mals to § at p and at g is at most 5 p3p

We will need the two following corollaries of the above lemmas.
Lemma 3.4 Let ¢ and ¢’ be two points of S such that ||c —¢|| <

(dM( Y4dy(c')), where € < %. There exists a vector v orthogo-
nal to c¢’, such that the angle between V' and the normal to S at any
point of SN B(c,2€ dy(c)) is at most 125 + arcsin 1. Hence, if
€ < g, this angle is at most J.

Proof Let BT = B(c,2e dys(c)). We have
V€ BT NS, |x—c| <2edulc) (1)
thus
Vx € BT NS, dy(x) >dy(c)—|lx—c| @
> (1—-2¢) dy(c)

(1) and (2) give

2
Vxe BT NS, [lx—c| < 1788 min {dy(c), dy(x)}

which implies, according to lemma 3.3,
2e/(1—2¢) 2¢

Vxe BT NS, (7 (x), 7 (c)) < T—6e/(1-2¢) T %

We have Hc—c | <edulc)+edu(c’) <2edylc)+elc—c||
ice. |lc—c'|| < 1% du(c). Thus, lemma 3.2 tells that
’; I T €
min {(cc’, 7 (¢)), (7 (c),cc’)} > 3 —arcsin ¢ 3)

be the unitary vector that is or-
7 (c). Ac-

R
Inside plane (c,cc’, 7 (c)), let ¥
—

thogonal to ¢¢’ and has a positive scalar product with
cording to (3) we have (7'(c), V') < arcsin 1. Thus,
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VxeSNBT, (7(x),7) (7 (3,7 () + (7 (), 7)

<
<7 8S + arcsin 1 -

O

Lemma 3.5 Let B = B(c,r) be a ball centered at ¢ € S of radius
r<edy(c), withe < é, and let v be a point of SN B. The normals
to S at v and at any point of SN B (v,2r) make an angle of at most
li—e%. Hence, if € < &, this angle is less than % and, by lemma 9.4,
SN B(v,2r) is a terrain.

Proof We have r < € dy(c) <
most & (dy(v) +r) since v lies in B. Thus, r < 1=
fore, Vx € SN B (v,2r),

e (dy(v )“'HV—CH) which is at
=% du(v). There-

[lx—v]| <2r< dM( )

= (dM( )+ lx=vl)

which implies [|x —v|| < 1—33 dM( ). It follows that ||x — v|| <

pmin{dy(x),dpy(v)}, with p = 1 . Thus, according to lemma
3.3,
(T, 7)< P = %
’ ~—1-3p 1-9¢
U

3.2. Topological disks and terrains

Lemma 3.6 ([8]) Let B be a ball that intersects S. If the intersection
is not a topological disk, then B contains a point of the medial axis
of S. As a consequence, if E is a loose €-sample, with € < 1, then
surface Delaunay patches are topological disks.

Lemma 3.7 If E is a loose e-sample, with € < &5, then, for ev-
ery surface Delaunay ball B = B(c,r), for any point x € SN B,
SN B(x,2r) is a topological disk and a terrain.

Proof Since E is a loose &-sample, we have r < e dye) <
e(dy(x) + |x—cl|) < &(dy(x) +r), that is, r < 155 dpy(x). Thus,
2r < dp(x) since € < €5 < % According to lemma 3.6, SNB(x,2r)
is thus a topological disk. The fact that SN B(x,2r) is a terrain fol-
lows from lemma 3.5, since € < &,. [

3.3. Pseudo-disks

Definition 3.8 Topological disks are pseudo-disks if they pairwise
intersect along topological disks (that may be empty or reduced to
a point) and if their boundaries pairwise intersect in at most two
points.

Observe that the boundaries of two pseudo-disks either do not
intersect, or intersect in one point tangentially, or intersect in two
points transversally.

Proposition 3.9 If E is a loose €-sample, with € < €, then surface
Delaunay patches are pseudo-disks.

Proof Let B = B(c,r) and B' = B(c’,r") be two surface Delaunay
balls. According to lemma 3.6, D = BN S and D’ = B’ NS are topo-
logical disks, since € < €y < 1. Their boundaries C and C’ are topo-
logical circles. Let us assume that balls B and B’ intersect, the other
case being trivial. Notice that none of them can be contained in
the other one, since they are Delaunay balls. Thus, their bounding
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Figure 1: Definition of G

Figure 2: Definition of G’

spheres @B and 9B’ also intersect. Let " be the circle BN JB’, p
its radius (p < min{r, r'}) and P its supporting plane. We define
A = BN P and notice that I = dA. Since S is a closed surface, we
have C C 0B and C’ C 0B’, which implies that

cnc’ csnr Q)
Let B = B(c,2r). Since |jc — /|| < r+ 7 < edy(c) +edy(c),
where € < g, by lemma 3.4 there exists a vector v orthogonal to
bl

cc’ such that

VxeSNBT, (W), V)< X )

— 4

Let us choose in R? a reference frame of ori gin ¢, of y-axis directed
—

along ¢’c, and of z-axis directed along V. We call L; and L, the two

lines of P, parallel to the z-axis, that are tangent to I'. The region of

P bounded by L; and L, is called G (see figure 1). In the following,
€ denotes SNBT NG.

Lemma 3.10 & is a connected x-monotone arc.

Proof According to (5), we have Vx € SNB™, (7'(x),7v) < %.
Thus, by lemma 9.4, BTNSis xy-monotone, which implies that
& is x-monotone. Moreover, according to lemma 9.5, BY NS lies
outside the cone of apex ¢ € S, of vertical axis and of half-angle %.

The equation of the cone in our frame is 2=x+ y2. It intersects

P along two hyperbolic arcs of equations z = +v/x% + d2, where
d < r is the distance from ¢ to P. Consider the subregion G’ of G
that is bounded vertically by the two hyperbolic arcs (see figure 2).
Since SN B lies outside the cone, & is included in G’.

The points of G’ that are farthest from c¢ are the points
(£p, —d,++/p? +d?). Their distance to c is

2(p2+d?) < 2r

In other words, G’ C int(BT). It follows that & is included in
int(B™) and cannot intersect dB™. Its endpoints must then lie on
the vertical lines L, and L;. But there can be only one endpoint
per vertical line, since & is x-monotone. Hence, & has at most two
endpoints and is thus connected. []

Lemma 3.11 [SNI| < 2.

Proof Let us assume for a contradiction that [SN | > 2. First, we
show that there exists a point where the curvature of & is high and
hence the distance to the medial axis M is small. Then we work out
a contradiction with the fact that E is a loose €-sample, with € < g¢.

Claim 1 There exists a point g at which the curvature of & is at least
1

o
Proof We made the assumption that |[SNT7| > 2. Since I' C G and
I C B, £ also intersects I more than twice. And since & is con-
nected by lemma 3.10, there is a subarc ab of § that lies outside A
and whose endpoints a and b lie on I'. This subarc may be reduced
to a point (a = b), since § may be tangent to I'. But in this case, in
the vicinity of a, & is locally included in A and tangent to I at a.
Thus, its curvature at a is at least é which proves the claim with
g = a. So now we assume that arc ab of £ is not reduced to a point.
Since & is x-monotone by lemma 3.10, a and b lie on the same half
of I', upper half or lower half (say upper half). Thus, the smaller
arc of I that joins a and b is also x-monotone. Then, by lemma 9.3,
there is a point g of arc ab of & at which the curvature of § is at least
%, which proves the claim. []
Claim 2 dy(q) < pv/2.

Proof Let Wi(q) be the normal to planar curve & at point ¢. By
inequation (5), 77’ (¢) is not orthogonal to P, thus 7% (g) is oriented
along the projection of 7’ (¢) onto P. Hence, by lemma 9.2, we have
(7' (q), 7e(q)) < (W (q), V') which is at most § by inequation (5).
According to theorem 9.1, we then have at ¢

/gt T en
1€ E) > cos T 1]

&’ is the unit tangent vector of € at ¢ and ||€” || is the curvature of &

at g, which is more than % according to claim 1. So, at ¢ we have

1E.e) > L

€.8)2 5 ©)
Recall that 7 is a symmetric bilinear form, thus it can be diago-
nalized in an orthonormal frame, and its eigenvalues are the min-
imum and maximum curvatures of S at ¢. Let us call these val-
ues Kpin(g) and Kmax(q) respectively. Since &’ is a unit vector, we
have I(§',&") < max {|Kmin(q)|, |Kmax(q)|}. Tt follows, according
to (6), that max {|Kyin(q) ], |Kmax(q)|} > ﬁ, or, equivalently, that

the minimal radius of curvature of S at ¢ is at most p+/2. The result
follows. [

(© The Eurographics Association 2004.
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The end of the proof of the lemma is immediate. We have

du(c) < du(q)+llc—4ll
pﬁ+ 2r
r(\f2+2)

So, the radius of ball B is at least

A

<
<

\[ dp(c), which contradicts

the assumption that E is a loose €-sample, with € < g <

U
From lemma 3.11, it immediately follows that |CNC’| < 2, by (4).

\f+2

Lemma 3.12 SN A is not reduced to two points.

Proof Let us assume that S intersects A in two points exactly, say
a and b. Then, the subarc of & that joins points a and b lies outside
A. It follows, by the same reasoning as in the proof of claim 1,
that there exists some point g of & at which the curvature of & is at
least . It follows by claim 2 that djs(q) < pv/2, which leads to a

contradlcuon as in the end of the proof of lemma 3.11. [

It follows from the above lemmas that D and D’ intersect along
a topological disk. The result is clear if D C D’ or if D' C D.
Otherwise, we have [CNC’| < 2, by lemma 3.11. If |CNC’| = 0,
then DND’ is empty. If |CNC’| = 1, then DN D’ is reduced to
a point. If |[CNC’| =2, then DN D’ is either a topological disk
or equal to CNC.Butif DND' =CNC’, then SNA=CNC’
since CNC’ C SNA C DND'. This contradicts lemma 3.12. Hence,
DND’ is not equal to CNC’ and is therefore a topological disk. This
ends the proof of proposition 3.9. [

4. Global properties of loose e-samples

In this section, E is a loose €-sample of S, with € < gg. We prove
that Del|s(E) is a manifold without boundary (theorem 4.5), ambi-

ent isotopic to S (corollary 4.7), at Hausdorff distance 0(82) from
S (theorem 4.8). From the latter we deduce that E is an €(1 + 16¢)-
sample of S (corollary 4.13). We also prove that the surface Delau-
nay balls cover S (theorem 4.15).

4.1. Manifold

We first prove that every edge of Del| s(E) is incident to exactly two
facets of Del|g(E). We then prove that every vertex of Del|g(E) has
only one umbrella. An umbrella of a vertex v is a subset of facets
of Del,| s(E) incident to v whose adjacency graph is a cycle.

Lemma 4.1 The dual of a facet of Del|g(E) intersects S only once,
and transversally.

Proof Let f be a facet of Del|g(E), and f™ its dual Voronoi edge.
We denote by a the vertex of f that has the largest inner angle. We
have @ > %, and since € < gy < %, lemma 3.1 says that

eVv/3

(7 (a), @ y) < arcsin i

@)

where 7’ r denotes the unitary vector orthogonal to f that makes
the smaller angle with 7' (a). Let B, be the ball B(a, 15 du/(a)).
For any surface Delaunay ball B(c, r) that circumscribes f, we have
le—al|=r <edylc)
< ¢ (du(a)+|lc—all)

(© The Eurographics Association 2004.

Hence, ||c —al| < 155 dy(a). In other words, every center of sur-
face Delaunay ball of f lies in Bg. In addition, we have

< 155 du(a)

< £ =& (dy (%) +|lx = al])

which implies ||x —al| < 125 du (x) According to lemma 3.3, we
then have Vx € B, NS,

Vx € B4NS, ||x—al|

/\

i\ = e/(1-2) ¢
(), 7 (@) < T3 —20) ~ T=5¢

¥

(7) and (8) give
Vx € BaNS, (W(x)77f) (77 (x ),7(a))+(7(u)77f)
S

<
< 5 +arcsin §43

which is less than % since € < g9 < €3. Thus, by lemma 9.4, B, NS
is a terrain over the plane Iy that supports f. Since f* is orthogonal
to Iy, it cannot intersect B, NS more than once, nor tangentially.
And since every center of surface Delaunay ball of f lies in By, f*
cannot intersect S more than once, nor tangentially. []

For a restricted Delaunay facet f, we denote by By = (c, ) the
corresponding surface Delaunay ball. The surface Delaunay patch
of f, SN By, is denoted by Dy. We define Cy = E)Df.

Lemma 4.2 Let f and f’ be restricted Delaunay facets that share
an edge. They make a dihedral angle greater than %

Proof This result is a consequence of theorem 1 of [24]. The latter
states that the dihedral angle is at least T — 2 ( =z T arcsin E‘[)

which is greater than J sincee <gg <eg4. [
From lemmas 4.1 and 4.2 we deduce the following result.

Proposition 4.3 Every edge of Del, s(E) is incident to exactly two
facets of Del|(E).

Proof Let e be an edge of Del|g(E). We denote by e* the Voronoi
face dual to e. Since S has no boundary, SN aff(e*) is a union of
simple closed curves, none of which intersects the boundary de™ of
e* tangentially, by lemma 4.1. Thus, by the Jordan curve theorem,
each curve of SNaff(e™) intersects de™ at an even number of points.
It follows that S intersects de™ at an even number of points. More-
over, by lemma 4.1, each edge of de® can be intersected at most
once by S. Thus, S intersects an even number of edges of de™, and
e is incident to an even number of restricted Delaunay facets.

In addition, two restricted Delaunay facets incident to e make a di-
hedral angle greater than % by lemma 4.2. It follows that e may
be incident to at most three restricted Delaunay facets. In conclu-
sion, the number of restricted Delaunay facets incident to e is even,
strictly positive (since e € Del, s(E)) and at most three, hence it is
equal to two. [

It follows from the above proposition that the restricted Delau-
nay facets incident to a vertex of Del s(E) form a set of umbrellas.

Proposition 4.4 Every vertex of Del g (E) has exactly one umbrella.

Proof Let a be a vertex of Del|g(E). Let F(a) be the set of all
facets of Del|g(E) that are incident to a. Let fa be the facet of F(a)
that has the surface Delaunay ball of largest radius. We call r, this
radius. Then B(a,2ry,) contains the surface Delaunay balls of all
facets of F(a). Moreover, by lemma 3.7, SN B(a,2ry, ) is a topolog-
ical disk and a terrain over some plane IT. We project SN\ B(a,2ry, )
onto II. This projection preserves topological properties such as
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pseudo-disks. For simplicity of notations, we shall identify objects
with their projection onto IT. Let F (@) be an umbrella of a. We call
U, (a) the union of the facets of Fj(a), and R (a) the union of the
surface Delaunay patches associated with the facets of Fj (a).

Claim a € int(R(a)).

Proof 1f a € int(U (a)), then it is clear that a € int(R;(a)), since
surface Delaunay patches are pseudo-disks, by proposition 3.9.
Now, let us assume that a lies on the boundary of U (a). Let [av]
be an edge of the boundary that is incident to a. By proposition 4.3,
[av] is incident to two facets of Del|g(E), say (a,v,x) and (a,v,x").
These facets belong to Fj(a) since they are incident to a, and they
both lie on the same side of [av] which is a boundary edge of U| (a).
Thus, since surface Delaunay patches are pseudo-disks by proposi-
tion 3.9, either x is included in the interior of the surface Delaunay
patch of (a,v,x") or x is included in the interior of the surface De-
launay patch of (a, v,x), which violates the Delaunay property. [

We now assume for a contradiction that there exists a restricted
Delaunay facet f = (a,b,d) ¢ Fi(a) that is incident to a. Vertices
b and d lie outside int(R;(a)), whereas a lies in int(R; (a)), by the
above claim. It follows that C intersects the boundary of R; (), at
some point z that lies on the boundary of the surface Delaunay patch
of some facet f* = (a,b’,d") of F\(a). By proposition 3.9, Cy and
Cy intersect at points a and z only. By the same proposition, open
arcs (a,b’) and (a,d") of Cy are included in int(R; (a)). Since a €
int(Ry(a)), zlies on arc (b',d") of Cy/. If z # b" and z # d’, then b’
and d’ lie on different sides of C 'r, hence one of them lies inint(Dy),
which violates the Delaunay property. Otherwise (say z = b’), d’
must lie outside Dy. In this case, consider the facet /"' = (a,b’,d"")
of Fi(a) that is incident to f’ through edge [a,b’]. By proposition
3.9, Cy intersects arc (b',d"") of Cy at point b only, thus d’ and d”’
lie on different sides of Cy. Hence, either d’ or d” lies in int(Dy),
which violates the Delaunay property. []

The next theorem follows from propositions 4.3 and 4.4.

Theorem 4.5 Let S be a smooth closed surface and E a loose €-
sample of S. If € < &9 ~ 0.091, then Del|g(E) is a 2-manifold with-
out boundary.

Since Del|(E) is a closed 2-manifold embedded in R3, we can
orient the normals of its facets consistently. For instance, they
can be chosen so as to point to the unbounded component of
R*\ Del(E).

4.2. Homeomorphism and ambient isotopy

Letn: R*—§ map each point of RR3 to the closest point of S. In
[4], the authors have shown that the restriction of 7 to a 2-simplicial
complex W whose vertices lie on S is a homeomorphism between
W and S, provided that:

HO W is a manifold without boundary.
H1 W has a vertex on each connected component of S.

H2 The angle between the oriented normals of any two incident
facets of W is less than %.

H3 (SMALL TRIANGLE CONDITION) every facet f of W has a
circumcircle of radius at most %'—fng(a), where a is any vertex of

f.

H4 (FLAT TRIANGLE CONDITION) the normal to ev-

ery facet f of W makes an angle of at most arcsmlmi +
11 32)) with 7' (a), where a is the vertex

with the largest interior angle in f.

2
arcsin sin ( 2 arcsin
( V3 (

We will show that HO, H2, H3 and H4 are satisfied by W =
Del|s(E) in our context. HO has already been stated for Del|s(E)
in theorem 4.5.

Proof of H2
Let a be a vertex of Del|g(E) and let F (a) be the umbrella of a. By

lemma 3.1, the smaller angle between 7( ) and the line normal to
any facet of F(a) i 8\[
Tsince e <gy <egy. It follows that the angle between 7' (a) and
the oriented normal of the facet is less than % or greater than 37“‘
Moreover, any two consecutive facets in the umbrella of a make a
dihedral angle greater than % by lemma 4.2, thus the angles be-
tween 77 (a) and the oriented normals of the facets of F(a) are all
less than %, or they are all greater than 34—n. It follows that the angle
between the oriented normals of any two facets of F(a) is less than
10

Proof of H3

Since E is a loose e-sample, every facet f of Del s(E) has a surface
Delaunay ball By = B(cy, ry) of radius ry < €dpr(cy). Let a be any
vertex of f We have dy(cy) < dy(a) + |la—crll < du(a) +ry,
thus rp < 15 dM( ). It follows that the circumcircle of f has a
radius of at most £ dy(a) < % dy(a). Since € < g, the radius
( ) 0.1dy(a). [

, which is less than

is at mos

Proof of H4
Let f € Del|g(E) and a be the vertex of f with the largest inner

angle. By lemma 3.1, we have (7', 7' (a)) < arcsin 8\[ , which is
at most arcsin % + arcsin <\% sin (2 arcsin 1 )) Since € < g,
the angle is at most arcsin %ﬁ ~ 0.175 radians. [

The following result is then a direct consequence of theorem 19
of [4].

Theorem 4.6 Let S be a smooth closed surface and E a loose &-
sample of S, with & < &y 2 0.091, such that Del|g(E) has a vertex
on each connected component of S. Then the restriction of the map-
ping 7 to Del|g(E) is a homeomorphism between Del|g(E ) and S.

Corollary 4.7 Let S be a smooth closed surface and E a loose €-
sample of S, with € < €~ 0.091, such that Del|5(E) has a vertex on
each connected component of S. Then Del, s(E) and S are ambient
isotopic.

Proof Since the SMALL TRIANGLE CONDITION is verified by the
facets of Del|g(E), lemma 12 of [4] tells that Vx € Del|g(E), [|x—
7(x)|| < 0.165 dps(m(x)). Moreover, according to theorem 4.6, Tt is
a homeomorphism between Del, s(E) and S. Thus, by theorem 9 of
[6], Deljg(E) and S are ambient isotopic. [

4.3. Hausdorff distance

Theorem 4.8 Let S be a smooth closed surface and E a loose €-
sample of S, with € < gy &~ 0.091, such that De1| s(E) has a vertex
on each connected component of S. Then the Hausdorff distance
between S and Del|g(E) is at most 8.5 € dsuP

(© The Eurographics Association 2004.
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The idea is to bound the distance from Del|g(E) to S, and then to
use the surjectivity of T to prove that the bound also holds for the
distance from S to Del|g(E).

Lemma 4.9 Let ¢ € S. For any point x € S at distance at most
€ dy(c) from c, the distance from x to 7'(c) is at most %ssz(c).

Proof Let B and B, be the two balls of radius dj(c), tangent to S
at c. Their interiors cannot intersect S and therefore do not contain
x. Let x’ be the intersection point other than ¢ of the segment [c, x]
with the boundary of B; UB;. Let h be the distance of x to T'(c) and
0 the angle between ¢x and T'(c). We have

e —x"|| = 2dp(c)sin® < ||c — x| < edp(c)
Therefore, sin@ < £ and = [|c — x||sin < Je?dy(c). O
Lemma 4.10 Let ¢ € S and let y be a point of 7'(c) at distance at

most € dyy(c) from c. The distance of y to S is at most 8% djy(c).

Proof Let z be the point of S closest to y, ¢ its projection onto T'(c)
and ¢ = Zyzt, which is also the angle between the normals to S at
¢ and z. We have

lle =zl < lle=yll+1ly—zll < 2fle =yl < 2e du(c)

It then follows from lemma 4.9 that ||z —¢|| < 4&? dj(c). Moreover,
dy(c) < dpy(z) +||c —z]|, thus |jc —z|| < %d}w(z). It follows

from lemma 3.3 that ¢ < ;2. Since € <&y < 0.1, we have 12 <

1, thus ¢ < 1. It follows that 1< . <14 q)2, from which

cosd — ;¢ =
2
we deduce
B 2
ly—z) = Izt gﬁm@(wﬁﬁJ)
< 82 dy(c)
]

With lemmas 4.9 and 4.10, we can bound the distance from
Del|S(E) to S.

Proposition 4.11 Every point x € Del|g(E) is at distance at most

8.5e%dy(c) < 8.5 Szd;:;p from S, where c is the center of the sur-
face Delaunay ball of the facet that contains x.

Proof Let x € Del|g(E). Let f be a facet of Del|g(E) on which x
lies, and let B(c, r) be the surface Delaunay ball of f. Let x" be the
orthogonal projection of x onto T'(c). For any vertex a of f, we
have |la — ¢|| < r, which is at most € dy(c) since E is a loose -
sample. Thus, by lemma 4.9, the distance from a to T'(c) is at most

%82 dp(c). Since this is true for every vertex of f, it is also true for

any point of f, and for x in particular. Hence, [|Jx—x'|| < %82 dpy(c).

In addition, we have ||x’ —¢|| < ||x—¢|| < e dp(c). Thus, by lemma
4.10, the distance from x’ to S is at most 82 dj(c). It follows that
the distance from x to S is at most 8.5 €2 djy(c) < 8.5 € dyt. O

We can now bound the distance from S to Dels(E), which com-
pletes the proof of theorem 4.8.

Proposition 4.12 Every point x € S is at distance at most
min {8.5 €%dy,", 10.5 €?dy(x) } from Del g (E).

Proof Let x € S. Since the restriction of 7 to Del|g(E) is surjec-

. —1 / —1
tive, we have 0 et s (E) (x) £0.Letx’ € 0 et ()

proposition 4.11, ||x —x'|| < 8.5 €%dy(c) < 8.5 %dy;”, where c is
the center of the surface Delaunay ball of the facet that contains x’.

(x). According to

(© The Eurographics Association 2004.

In addition, we have ||x" —c|| < & dy(c), since E is a loose &-
sample. Thus, ||x —c|| < (e+8.5€2)dy (c) < (e+8.5€%)(dp(x) +

2 . .
|lx = c|]). It follows that ||x — || < %dﬁ,;(x), which is at
most 0.2 dj(x) since € < €. Hence,

l[x—x|| < 8.5€%dy(c) < 8.5 (dyr(x) + [|x—c||) < 10.5 e%dpy (x)
O

By lemma 2.3, we know that e-samples are loose €-samples. The
converse is not true but the following corollary shows that loose
e-samples are close to be e-samples.

Corollary 4.13 Let S be a smooth closed surface and E a loose €-
sample of S, with € < &y & 0.091, such that Del|g(E) has a vertex
on each connected component of S. Then E is an €(1+ 16 €)-sample
of S.

Proof By proposition 4.12, any point x € S is at distance at most
10.5 €2 dyy(x) from Del|s(E). Let x’ be the point of Del|s(E) clos-
est to x, and f the facet of Del|g(E) that contains ¥, We call ¢
the center of the surface Delaunay ball of f, and ¢’ the center of
the circumcircle of f. Let a be the vertex of f closest to x”. Since
x’ belongs to f, we have ||x’ —a|| < ||’ —a| < |lc —al|. More-
over, ||c —al| <edy(c) <eldy(a)+|c—all), thatis, [[c—a| <
=:du(a). Thus,

< fx =+l + "~
< 10.5€* dy (%) + 15 du(a)
< 10.5€% dy (x) + 155 (dy(x) + ||lx—al))

[lx —all

It follows that

10.5(1 —
el < 29902 2 g4 2

< dp(x)

Since € < g, we have % < 12 and 1—123 < 1+4e, thus,

llx—al| <12 €% dy(x) +&(1 +4€) dpr(x)
O

4.4. Covering

Let UfeDel‘g(E) By (or Uy By, for short) denote the union of the
surface Delaunay balls.

Let fo = (a,b,c) be a facet of Del|s(E). Our goal is to prove that
Cy, Cint <U B f>. In fact, we will prove a slightly more precise

result, stated as lemma 4.14.

Let F(fo) be the set of all facets of Del|g(E) that are incident to
fo. except fo. Since, by theorem 4.5, Del|g(E) is a manifold with-
out boundary, F(fp) contains one facet of Del|g(E) incident to fy
through each edge of fj. We define R(fj) as the union of all surface
Delaunay patches associated with facets of F(fp).

Lemma 4.14 Cy, C int(R(fo) UDy, ).

Proof We call fu, fpe and fuc the three facets of F(fp) that are
incident to fo through edges ab, bc and ac respectively. By propo-
sition 3.9, arcs ab, bc and ac of Cy, are included in Dy, , Dy, and
Dy, respectively, and only their endpoints may lie on Cy,,, Cy, or
Cf,.. Thus, the three arcs are included in the interior of R(fp), ex-
cept for their endpoints which may possibly lie on some boundary
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of R(fp). In addition, by the claim of the proof of proposition 4.4,
each vertex of f lies in the interior of the union of surface Delau-
nay patches associated with its incident restricted Delaunay facets.
These facets belong to F(fy) U{fo}, thus each vertex of fj lies in
int(R(fo) UDy,). It follows that Cy, C int(R(fo) UDy,), which ends
the proof of the lemma. []

Theorem 4.15 Let S be a smooth closed surface and E a loose
e-sample of S, with € < g9 ~ 0.091. I U, B intersects all the con-
nected components of S, then it covers S.

Proof By lemma 4.14, the union of surface Delaunay patches has
no boundary. Thus, § does not intersect the boundary of |, By.
Moreover, since we assumed that all the connected components
of § intersect | J¢ By, S cannot exit | J; By without intersecting the
boundary of J, By. It follows that S C Uy By. [l

Recall that our definition of Del|s(E) excludes edges and ver-
tices with no incident restricted Delaunay facet. Hence there might
exist points of £ that are not vertices of Del, s(E). In fact, this can-
not happen, as stated in the following corollary of theorem 4.15.

Corollary 4.16 Let S be a smooth closed surface and let E be a
loose g-sample of S, with € < &g & 0.091, such that Del|g(E) has a
vertex on each connected component of S. Then every point of E is
a vertex of Del|g(E).

Proof Let v be a point of E. By theorem 4.15, S C |J I By. Hence, v
belongs to the surface Delaunay ball By = B(c, r) of some facet f of
Del|s(E). Since By is a Delaunay ball, v belongs to its boundary. If
f isincident to v, then v is a vertex of Del|g(E). Otherwise, By has
more than three points of E on its boundary, which means that its
center c is dual to one or more Delaunay tetrahedra, one of which
at least is incident to v. Let f’ be a facet of this tetrahedron that is
incident to v. Since c is dual to the tetrahedron, ¢ € f "* and hence
£ intersects S. It follows that " € Del|(E) and that v is a vertex
of Del|g(E). [

Theorem 4.15 also induces another version of corollary 4.13,
stated as corollary 4.17. Notice that, although the result is asymp-

totically weaker, the constant is better for € > 15*372 V161 ~0.073.

Corollary 4.17 Let S be a smooth closed surface and E a loose €-

sample of S, with & < &9 &~ 0.091, such that Del|g(E) has a vertex
29

on each connected component of S. Then E is a {=;-sample of S.

Proof Each connected component of S intersects J By since it
contains a vertex of Delg(E). Thus, according to theorem 4.15,
§ C UyBy. Then, for every point x € S, there exists a facet
fx € Deljg(E) such that x lies in By, = B(cy,,ry,). So, 1y, <
€ du(cy,) < S(dM( Y+ llx—cpll) < e(du(x)+rys,). It follows
that ry, < = du(x). Let a be a vertex of fy. Since a also lies
in By, we have Ix—all <2rf < 28 = dyr(x), which implies that
distg (x) < A = dy(x), since the Vertlces of f belong to E. As this

is true for any point x of S, E is a 2 =-sample of S. [

5. Size of loose e-samples

5.1. Lower bound

Erickson [21] has shown that Q <”(S)> with u(S) = [y dzd—’(‘x), is a
M

lower bound on the number of points of any €-sample of S, with
£< % This bound holds for loose e-samples as well, by corollary

4.13. However, in the following we rewrite Erickson’s proof in the
case of loose €-samples directly and improve on the constant.

Theorem 5.1 Let S be a smooth closed surface and let E be a loose
e-sample of S, with € < &g 2 0.091, such that Del s(E ) E) has a vertex
(S )

€2

on each connected component of S. Then |E| > 2+ in
Proof By theorem 4.15, we have S C UfeDel‘S(E) By. Thus,

dx dx
/ o ©)
2
d feDel‘ (E)7P1 diy(x)

Moreover, since E is a loose €-sample, we have Vf € Del| s(E),
Vx € Dy, ||x—cy|| <edy(cy). Tt follows that ||x —c || < 155 du(x)
and that dy(x) > (1 —€)dp(cy), since dy is 1- L1psch1tz Thus

/d2

Since Vx € Dy, [|x —cy|| < SdM(cf) and ||x—CfH < t5:dy(x), by
lemma 3.3 we have Vx € Dy, (70 (x), 7' (cf)) <
than % since € < g < H%' Thus, by lemma 9.4, Dy is a terrain
over T'(cy), the plane tangent to S at ¢ ;. We can then bound the area
of D by projecting it orthogonally onto T'(c). Let us call proj the
orthogonal projection onto T (c ). Since proj(Dy) is included in the
disk of radius edys(cy) centered at ¢y, we have

Area(Dy)
= (= e)2dy (cp)

Vf € Deljg(E (10)

=% _48, which is less

A i(D neldy (¢
rnealp)) < AERIDY)_ 7dy ey
min cos (7' (x), 7 (cy)) COS =75
x€Dy

amn

It follows from (9), (10) and (11) that

dx ne?

S) = <
us) sdy(x) — (1—g)?cos =5 "

where m is the number of facets of Del, s(E). According to theorem
4.5, Del|4(E) is a manifold without boundary, thus the number of
vertices of Del|g(E) is 2+ 75, by Euler’s formula. Hence, |E| >

2+ >2+2n(1—£) cos =5 éz),whlchls atleast2+5n éz)
smceags-:o J

5.2. Upper bound

Since adding points to an €-sample results in another e-sample, we
cannot hope for an upper bound on e-samples without making some
additional assumptions. The same observation can also be made for
loose e-samples since €-samples are loose €-samples by lemma 2.3.
This motivates the following definition.

Definition 5.2 A loose e-sample E of S is said to be K-sparse if
Vx € E, ENB(x,xedy(x)) = {x}.

In this section, we give an upper bound on K-sparse loose €-
samples or loose (g,K)-samples for short. To this end, we first
bound the size of loose e-samples with respect to the local feature
size of the sample (proposition 5.7).

Definition 5.3 The local feature size at point x € S, denoted by
p(x), is the radius of the smallest ball centered at x that contains at
least two points of E.

The local feature size was first introduced by Ruppert [26], who
showed that p is 1-Lipschitz. Notice that, for every point v € E,

(© The Eurographics Association 2004.
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p(v) is the distance from v to its nearest neighbour in E. Hence,
definition 5.2 is equivalent to

YWeE, p(v) >Kkedy(v) (12)
For every point v € E, we define B, as the open ball B(v,p(v)/2).
Notice that the balls B, are pairwise disjoint. We first prove two

lemmas that will be useful to establish lemma 5.6. The latter is
useful to bound the cardinality of E.

Lemma 5.4 For every point v € E, By is included in the Voronoi
region of v.

Proof Let w be any point of E. We have

y v—w
Vx € By, [[v—x| < % < M
Thus,
[w—x|[ = [[v=w|[ = |lv=x]| > [lv—x]|
O

In the following, E is a loose €-sample, with € < g, such that
Del s(E) has a vertex on each connected component of S.
Lemma 5.5 For every point v € E, the radius @ of By is at most
= du(v).

Proof Let v be a point of E. By corollary 4.16, v is a vertex of
Del|g(E), i.e. it is incident to some facet f of Del|s(E). Let B(c,r)
be the surface Delaunay ball of f, and let w be another vertex of f.
Since E is a loose e-sample, we have r < € dy(c) < &(dy(v) +r),
ie. r < tEpdy(v). Thus, [[v—wl| < 2r < Zdy(v), and 2§ <

HVEWH S%_ng(V). 0

Lemma 5.6 For every point v € E, we have Area(SNBy) >
3.2
167P (v).

Proof According to lemma 5.5, @ < IL_ng(v), which is less
than dy(v) since € < % Thus, B, "M = (. It follows that S N B,
is a topological disk, by lemma 3.6. It follows also that S does not
intersect the open balls B(y,p(v)/2) and B(z,p(v)/2), where y and
z are the intersection points of the line normal to S at v with the
bounding sphere of B,. Hence, SN B, lies outside these two balls.

area through ) B,
which S may pass

Moreover, since S has no boundary, the boundary of SN B, lies

in the bounding sphere of B,. Thus, proj(SNBy), the orthog-
onal projection of SN B, onto T(v), contains the projection of

ByNB(y,p(v)/2), which is a disk of radius Y2 p(v).

(© The Eurographics Association 2004.

S)
region through
which S can pass

proj(B, nS)

Thus,
Area(SNB,) > Area(proj(SNBy))
> qemp’(v)
U

Proposition 5.7 Let S be a smooth closed surface and let E be a

loose g-sample of S, with & < &, such that Del|g(E) has a vertex

on each connected component of S. Then |E| < l—nz Js pf@.

Proof We proceed as in the case of planar meshes [20] and bound
the integral of 1/p?(x) over the whole surface. Since SN B, C S for
every point v € E, we have

dx dx
/sz(x) S /U (ByNS) p2(x)
veE

and since the balls B, are pairwise disjoint,

dx dx
/ U B.ns) p2x) §E /<B.ns> p%(x)

veE

In addition, p is 1-Lipschitz, thus Vx € By, p(x) < p(v) +|x—v| <
% p(v). It follows that

dx 4 Area(B,NS)
> st Sl e’
/s ~9 é p*(v)

O

We can now establish an upper bound on the size of loose (&, K)-
samples that matches the lower bound of theorem 5.1 for fixed x.

Theorem 5.8 Let S be a smooth closed surface, and let E be a loose
(g,x)-sample of S, with € < &, such that Del|g(E) has a vertex on
each connected component of S. Then |E| < c@ where ¢ depends
only on K.

Proof Since E is a loose (g,%)-sample, equation (12) holds for ev-
ery point of E. If we can show that it holds for every point of S,
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with some constant ¥’ that depends only on ¥, then the result will
be proved, since, by proposition 5.7, we have

Bl [ 2 [ )
T oJspr(x) T T JswPe2dy (x) T omk/* €

Let x € S and let v be the nearest neighbour of x among the points
of E. We have Vt € E, ||x—v|| < ||x —¢]|, which gives ||[v —¢|| <
|[v—x]||+||x—¢|| <2|Jx—¢]||. This is true in particular for the nearest
neighbour w of x among the points of E \ {v}. It follows that

v=wl _ p(v
2 - 2
which is at least %dM(v), by (12). Thus,

p(x) =[x —wl >

p(x) = S (v) = T (A (x) = x—v) = 5 (e (x) — p())

which implies p(x) > 755 € dm(x) > r'f(/z € dy(x). Taking ¥’ =

ﬁ completes the proof. []

6. Application to surface sampling

In this section, we introduce our meshing algorithm and analyze its
behaviour on smooth closed surfaces. Extensions of this algorithm
and more experimental results can be found in [10]. The constants
in the analysis given in [10] can be improved by replacing the weak
versions of theorem 4.13 and corollary 5.8 by the stronger ones
given in this paper.

6.1. Algorithm

The algorithm is derived from Chew’s surface meshing algo-
rithm [14]. It takes as input a pair (S,g), where S is a surface and
g is a 1-Lipschitz function of space. The algorithm iteratively con-
structs a point sample E, and maintains its restricted Delaunay tri-
angulation Del, g(E) throughout the process. We initialize £ with a
set E as described below. Procedure insert(p) adds point p to E and
updates Del|g(E). For a surface Delaunay ball B, center(B) returns
the center of B. A surface Delaunay ball B(c,r) is said to be good
if r < g(c), and bad otherwise.

INPUT: (S, g)

INITIALIZATION
construct E and set E = E;
compute Delg(E)

REPEAT
LET B be a bad surface Delaunay ball

insert(center(B))
UNTIL all surface Delaunay balls are good

Upon termination, the algorithm returns £ and Del| S(E), ie a
point sample and a simplicial mesh, and it is easily seen that all
surface Delaunay balls are then good. The issue is to show that the
algorithm indeed terminates.

6.2. Termination

Lemma 6.1 If S is compact and if g is bounded from below by some
positive constant /4, then the algorithm terminates for any initial
sample E of S.

Proof For convenience we shall use the notion of insertion radius,
defined below:

Definition 6.2 Let v be a point inserted by the algorithm. We call
insertion radius of v (denoted by r) the distance from v to the cur-
rent point set £, at the time when v is inserted. By convention, the
insertion radius of a point v of the input point set E is the distance
from v to E\ {v}.

Let pg be the smallest distance between two points of the initial
sample E. For any point v € E, we have r, > pg. At each step,
the algorithm inserts the center of a bad surface Delaunay ball B =
B(c,r). Since B is a Delaunay ball, we have r. = r and, since B
is bad, r > g(c). Thus, re > g(c) > h. It follows that the insertion
radius remains larger than / = min {pg, A} throughout the course of
the algorithm.

Hence, the points of E are centers of pairwise disjoint open balls of
radius //2, and, since S is compact, a packing argument shows that
they are finitely many. Lemma 6.1 follows. []

6.3. Construction of £

In order to apply our results (in particular theorems 4.6 and 4.8,
and corollary 4.13), we need that Del, ¢(E) has a vertex on each
connected component of S. To guarantee this, we ask Del, s(E) to
have seed-facets, i.e. facets whose surface Delaunay balls B(c,r)
have radius at most % glc).

Lemma 6.3 A seed-facet remains in Del|g(E) throughout the
course of the algorithm.

Proof Let fj be a seed-facet of Del|g(E). Assume that, in the course
of the algorithm, fj stops being a facet of Del, s(E). This implies
that there exists a step at which the algorithm inserted a point v
inside a surface Delaunay ball B, = B(cy,,y,) of fy. By definition,
v is the center of a surface Delaunay ball B¢ of some facet f, such
that the radius 77 of By is strictly greater than g(v).

Since v lies inside By, we have ||v —c, || < % g(cp,)- And, since
g is 1-Lipschitz, g(v) > g(cp) = |[v —cpll > %g(cﬁj). Let a be
one of the vertices of fy. Since a is in By, we have |ja —v|| <
2rp < % g(cs,) < g(v) < ry, which contradicts the fact that By is
a Delaunay ball. []

6.4. Properties of £

- If g < € dyy, then the output point sample £ is a loose e-sample.
If € < gp, theorems 4.6, 4.8 and 4.15 and their corollaries apply.

- If g = € dy, with € < g, then the output point sample E is a
size-optimal loose €-sample, up to a constant factor. Indeed, when
g equals € dyy, every point v of E'\ E is at distance at least € dy(v)
from E at the time when it is inserted. It follows that for any two
points v and w of E \ E, we have ||[v —w|| > edy(v) or |[v —w]|| >
€ dy(w), depending on whether v was inserted last or not. In both
cases, we have [|[v —wl|| > {Tgdu(v). Similarly, if v € E'\ E and
w € E, we have p(v) > €dyy(v). Thus, for any v € E \ E, we have
P(v) > 1igdm(v). Finally, with pp = min,cg p(v), we conclude
that for any v € E, p(v) > pin = min(pg, t5gdu (v)). It follows
that E is ppin-sparse. Then, theorems 5.1 and 5.8 show that the
number of points of E is within a constant factor of any loose €-

sample of S, for € < g.

(© The Eurographics Association 2004.
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6.5. Practicality of the algorithm

Our algorithm can be applied to any surface provided that an oracle
can check whether or not a given line segment intersects the surface
and, in the affirmative, find an intersection point and the distance
from that point to the medial axis of the surface. Interestingly, we
only need to know the surface at a finite number of points.

Although the algorithm is conceptually extremely simple, its op-
timal version (g = € dyy) requires to compute the distance dy; to the
medial axis. For some surfaces, e.g. skin surfaces [12], dj is equal
to the minimum radius of curvature and can therefore be estimated
locally. However, in most cases, djs depends on the global shape of
the surface and is difficult to compute.

As observed in the previous section, the algorithm works fine if
dy is replaced by a positive lower bound of djs. Assume that one
knows d}&f (we will discuss how to compute it below). One can use
the algorithm with g = ¢ d}&,‘f to construct a loose €-sample Eq of
S. This sample is not size-optimal but it can be used to compute an
estimate dy of dys. More precisely, dy (p) is defined as the distance
from p to its pole, which is the vertex of the Voronoi cell of p
farthest from p in the Voronoi diagram of Eq U {p} (see [5, 8, 18]).
In a second step, one can restart the meshing algorithm from the
beginning, using a function g equal to € dy;. The result will be a
size-optimal loose €-sample of S, according to paragraph 6.4.

Let us show how to find diMnf. Since S is compact, there exists
some point p € S such that dy/(p) = 0l Let ¢ be the point of M
closest to p. Since ||c — p|| = di¥f, we have dist(c,S) = ||c — p]|.
Hence, the ball B(c,||c — p||) is tangent to S at two points, one of
which is p. Let g be the other one. We have ||c —g|| = |lc — p|| =
d® | thus ||c — g|| = dp(q). It follows that the balls B(p, ||c — pl|)
and B(q, ||c — ¢||) are both tangent to M in ¢, which implies that p,
¢ and g are colinear. Hence, either p = g or ¢ is the midpoint of
the line segment [p,q|. In the first case, ||c — p|| equals the mini-
mum radius of curvature of S at p, whereas in the second case, the
ball B(c,||c — pl|) is tangent to S at two diametral points. There-
fore, to compute d}ﬁf it suffices to find: (1.) the point of S at which
the smallest radius of curvature is minimal, which reduces to solv-
ing some low-dimensional optimization problem constrained by S.
(2.) the smallest sphere bitangent to S with diametral contact points,
which reduces to finding the smallest real positive root of some
zero-dimensional algebraic system.

We have implemented our algorithm for various types of sur-
faces, most notably implicit algebraic surfaces, level sets in 3D-
images and point set surfaces. Some results are reported in figure 3.
The left-hand side shows the inputs, the right-hand side shows the
outputs. From top to bottom, we have a genus five implicit alge-
braic surface of equation 54 y4 - 5y2 +74—52+11.8=0,
an isosurface in a 3D-image (courtesy of O. Clatz, from the EPI-
DAURE project at INRIA), and a point set surface of 46k points.
The oracle used for point set surfaces is based on an algorithm of
A. Adamson and M. Alexa [1] that can compute the intersection of
a ray with a local polynomial approximation of the point set. We
thank A. Adamson for providing us with his program.

7. Conclusion

We have introduced a new notion of surface sample, the so-
called loose e-samples. We have shown that loose €-samples are

(© The Eurographics Association 2004.

Figure 3: The results of our algorithm on various inputs.

€(1 + 16¢)-samples and share the main properties of e-samples.
Checking if a sample E of a surface S is a loose €-sample reduces
to comparing the radii of the surface Delaunay balls with the dis-
tances of their centers to the medial axis of S. Hence we obtain
a new sufficient condition for sampling a surface with topological
and geometric properties. This condition is similar in spirit to other
sampling conditions [19, 3, 4]. An important advantage of our con-
dition is that it leads to a simple and provably correct algorithm to
sample and mesh surfaces, which is a competitor to the celebrated
Marching Cubes algorithm [23, 13].

This paper has only considered the case of smooth closed sur-
faces. We plan to extend our work to surfaces with boundaries and
to piecewise smooth surfaces. Observe that surfaces with isolated
singular points or curves still admit loose €-samples, while they do
not admit €-samples since the distance to the medial axis vanishes
at a singular point. Experimental results [10] have shown that the
algorithm is robust and can produce good geometric approxima-
tions of surfaces with singular points or curves.
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Our approach can be used for curves in any dimension: extend-
ing the proofs of this paper is not difficult, and in fact the proofs
are simpler. Further research is needed to extend this work to mani-
folds of codimension larger than one embedded in spaces of higher
dimensions.
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Appendix: various lemmas

This appendix recalls a few well-known results. Please refer to [11] for the
proofs.

Theorem 9.1 (Meusnier’s theorem)
Let S be a C? surface, m be a point of S, and & be a curve drawn on S that
passes through m. § is parameterized by arclength. Then,

e 1€

cos®
where &' and &' are respectively the first and second derivatives of & at point
m, I is the second fundamental form of S at m, and 0 is the angle between
the normal to S and the normal to & at m.

A proof of this theorem can be found in [7]. In the cited book, the right
hand of the expression is wrong but corrected here.

Lemma 9.2 Let v be a vector of Euclidean space R3, and IT a vectorial
—
plane that is not orthogonal to V. Let v* denote the orthogonal projection
—
of ¥ onto I1. For any vector @ of IT\ { 0 }, we have (v, ) > (7, v“).

Lemma 9.3 Let f and g be two univariate functions of class C2. Let x, and
xp (x4 < xp) be two reals such that

(i) f(xa) = g(x4) and f(xp) = g(xp)
(i) Vx € [xa,xp], f(x) > g(x)
(iii) Vx € Jxg,xp[, 8”7 (x) <0

Then there exists a real x. € |x4,xp[ such that f”(xc) < g”(xc) <O0.

Lemma 9.4 Let S be a closed compact surface embedded in R3, and let
7’ be a vector. We choose an orthonormal frame (0,x,y,z) such that Vs
oriented along the [0, 7) direction. Let Q be a convex subset of R3, such that
Vx€SNQ, (7(x),V) < T, where 7 (x) denotes the normal to S at x.
Then SN Q is xy-monotone.

Lemma 9.5 Let S be a closed compact surface embedded in R3, and let

3’ be a vector. We choose an orthonormal frame (O, x,y,z) such that ¥ is

oriented along the [0,z) direction. Let B be a ball centered at point ¢ € S,
—

such that Vx € BN S, ( n(x), 7) < %. Then SN B lies outside the cone K
of apex c, of vertical axis and of half-angle %.
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