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Abstract

We present a framework for the systematic study of parametric variation in planar mechanical parts and for efficiently com-
puting approximations of their tolerance envelopes. Part features are specified by explicit functions defining their position
and shape as a function of parameters whose nominal values vary along tolerance intervals. Their tolerance envelopes model
perfect form Least and Most Material Conditions (LMC/MMC). Tolerance envelopes are useful in many design tasks such as
quantifying functional errors, identifying unexpected part collisions, and determining device assemblability. We derive geomet-
ric properties of the tolerance envelopes and describe four efficient algorithms for computing first-order linear approximations
with increasing accuracy. Our experimental results on three realistic examples show that the implemented algorithms produce
better results in terms of accuracy and running time than the commonly used Monte Carlo method.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computational Geometry and Object Modeling]: Curve,
surface, solid, and object representations, J.6 [Computer-aided design (CAD)]: Computer Aided Tolerancing

1. Introduction

Manufacturing and assembly processes are inherently imprecise,
producing parts that vary in size and form. The need to control the
quality of the production and to manufacture parts interchangeably
led to the development of toleranced specifications. Tolerance spec-
ifications are the critical link between the designer and the manu-
facturer. Designers prefer tight tolerances to ensure that the part
will fit in the assembly and perform its function. Manufacturers, on
the other hand, prefer loose tolerances to lower the production cost
and decrease the need for quality machine tools, and precision mea-
surement machines. Tolerance analysis methods play a key role in
bridging between the two.

Tolerance allocation is difficult even to the most skilled of de-
signers because it requires identifying the critical interactions of
toleranced dimensions, which often have complex dependencies.
Tolerancing methods have been developed and incorporated into
most modern CAD software. Given a tolerance allocation, toler-
ance analysis consists of predicting the effect of the allowed varia-
tions on the design functions. Tolerance synthesis consists of find-
ing tolerance intervals that meet the functional requirements at the
lowest cost.

A key problem in tolerance analysis is computing the tolerance
envelope of a part from its tolerance specification. Tolerance spec-
ifications define a family of parts consisting of all valid instances
of the part. The tolerance zone of a part is the difference between
the smallest volume containing all part instances and the largest

volume contained in all part instances. Its boundaries, called the
part tolerance envelopes, define the worst-case variability of the
part features, and thus model perfect form Most and Least Material
Conditions (MMC/LMC). Part tolerance zones are useful in design
tasks such as quantifying functional errors, identifying unexpected
part collisions, and determining device assemblability.

Recent research in Computer-Aided Tolerancing (CAT) de-
scribes methods for defining and computing tolerance zones
for individual features from their tolerance specifications
[Ame94, CRSV97, WGJ94]. However, many issues regarding tol-
erance zones for entire parts remain open: what is their geometric
complexity, what are good approximations, and how to efficiently
compute them. Previous works are limited by the descriptive power
of their variational models, by the quality of the approximations
they produce, and by their computational efficiency.

In this paper, we present a framework for the systematic study
of parametric variation in planar mechanical parts and for effi-
ciently computing approximations of their tolerance envelopes.
The framework reflects current tolerancing practice, incorporates
common tolerancing assumptions, and exposes the computational
trade-offs. Of the two commonly used tolerance specification meth-
ods [Voe93], geometric and parametric, we chose parametric spec-
ification because it is best suited for functional tolerancing, can de-
scribe most geometric specifications and has a simple, mathemat-
ically well-defined semantics within which part variability can be
studied analytically. In the proposed model, part features are spec-
ified by explicit functions defining their position and shape as a
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function of parameters whose nominal values vary along tolerance
intervals. We derive geometric properties of the worst-case toler-
ance envelopes and describe four efficient algorithms for comput-
ing first-order linear approximations with successive accuracy. Our
experimental results on three realistic examples show that the im-
plemented algorithms produce simpler, faster, and/or more accurate
results than the commonly used Monte Carlo method.

The remainder of this paper is organized as follows. In Section 2
we review previous methods for worst case tolerance analysis using
tolerance zones and their counterparts in parametric spaces. Section
3 describes the parametric tolerancing model that we use, and Sec-
tion 4 deals with the geometric properties of tolerance envelopes
resulting from this model. Section 5 describes four algorithms for
computing the tolerance envelopes with increasing accuracy, and
Section 6 presents our experimental results. Section 7 concludes
with a summary and a description of current and future work.

2. Previous work

Several models have been proposed to model parametric part
variations. These include simple-shaped regions around bound-
ary points [GCO∗98, YC97] and fixed-distance boundary offsets
[RR86, LWC97], which are computationally efficient but are of-
ten inaccurate since they ignore parameter dependencies. Pino et al
[PBF01] describe a kinematic model to simulate the “motion” of
the features tolerance zone but do not describe how to compute the
entire part tolerance zone. Pasupathy and Wilhelm [PW01] model
tolerance envelopes with B-splines and describe how to verify if
a part is in tolerance without explicitly constructing its tolerance
envelope. Bhide et al. [BDS01] use areal coordinates to describe
the Tolerance Map, a convex volume of points corresponding to all
possible locations and variations of a plane which can arise from
geometrical tolerances on size, form, and orientation. Desrochers
et al. [DBL03] use a similar concept, in which the location and ori-
entation of the plane are described by screw parameters of small
displacement. Both these methods enable stack up analysis in an
assembly, but do not compute the corresponding volumes for the
entire part. Sacks and Joskowicz [SJ98] developed a kinematic tol-
erance analysis method that computes contact tolerance zones of
planar parametric parts in configuration space. The method uses a
parametric part model similar to ours, and computes contact zones
which are complementary to our part tolerance zones.

Several CAT packages provide tools for computing worst-case
part tolerance zones [SvHK97]. Some compute tolerance zones
from many randomly generated part shape instances drawn from
a presupposed parameter distribution (the Monte Carlo method)
[DS87, Gro76]. This is expensive and incomplete, as parts typically
have hundreds of features defined by tens of parameters. ADAPT
[Sch00], developed by Ford for internal use, computes the toler-
ance envelopes of parametric planar parts with procedural defini-
tions [Hin94]. It has one procedure for each of the many feature
definition cases and incorporates ad-hoc simplifying assumptions
that preclude quantifying the approximation error. These draw-
backs motivate our work.

������� �	�
�
�
������� 
 � �

 � ��� ����� ��� � �
�	����� 
 � ��
 ���

 � ��� ��������� ����
 ����� ��������� ���
�� ���� 
 � ��
  ��"!�#	$�� �&% ��' 
 � ' 
 ���


  ��
$�( ��� �&% ��'�
 � ��� ����� �� ��' 
 ����� ����� �)� � �
��%*��� 
 � ��
  ��"!�#	$�� �&% ��' 
 � �

  ��
$�( ��� �&% ��'�
 � ��� ����� �� � �
�	+���� 
 � ��
  ��"!�#	$�� �&% ���

 , �
$�( ��� �&% � �
�	-���� 
 � �
�
�

 �	�/.��10/��2 ."343

 ���65	�10/��2 ."343

 ���87����10/��2 9�3:3

  ��87;5	�10/��2 9�3:3
�����<9
.�2 7�=�0>7�=
�����/5	?�2 9�=�0>7�=
�)����.�.�2 @	=�0>7�=
�� ��>7�A�2 B�=�0>7�=
�&%*��C��	=�0>7�=

D ���/B	�E0���2 5
343
D ����.	9F0���2 5
343
D ����.��E0���2 ."343
D  ���.��E0���2 ."343

G �

G � G � G � G �

G  

H �

H �

H �
H)I

J �

J �

J �

J  

K��

K	�
K	�

K� 
K�%

K�+

K	-
H %

Figure 1: Tolerance specification of a portion of a sewing ma-
chine cover. Vertices v1, . . . ,v7 are functions of subsets of the 13
parameters: lengths li, angles αi and radii ri. The part illus-
trated is the nominal part instance defined by the parameter vector
(l̄1, . . . , l̄4, ᾱ1, . . . , ᾱ5, r̄1, . . . , r̄4).

3. Tolerancing model

We propose the following tolerancing model for planar parts, which
is very general in its semantics and has good computational prop-
erties.

Let A be a simple planar part whose boundary consists of curved
segments. Its nominal shape and variation is defined by an m-
dimensional parameter vector p. Each parameter has a nominal
value and a tolerance interval, typically much smaller than the nom-
inal dimension. Formally, the toleranced parametric part model is a
4-tuple A = 〈V,S, p̄,∆〉, such that:

• V = {v1(p),v2(p), . . . ,vn(p)} is the vertex set, where each
vertex vi(p) = (xi(p),yi(p)), 1 ≤ i ≤ n, is defined by an ex-
plicit standard elementary function of the parameter vector
p = (p1, p2, . . . , pm).

• S = {s1,s2, . . . ,sn} is the segment set, where the ith segment is
a curve connecting the vertices vi,vi+1, 1 ≤ i ≤ n− 1. Segment
sn connects the vertices vn,v1. A curve is a parametric function
si : [0,1]×<m → E2, denoted by si(λ, p). Certain curves depend
on additional variables, such as Bézier control points, which are
also functions of the parameter vector p.

• p̄ = (p̄1, p̄2, . . . , p̄m) is the nominal parameter vector, where p̄i
is the nominal value of the ith parameter, 1 ≤ i ≤ m. The offset
vector δ of parameter vector p is the offset from the nominal
parameter vector p̄, that is δ = (δ1,δ2, . . . ,δm), where δi = pi −
p̄i.

• ∆ = {(δ−1 ,δ+
1 ),(δ−2 ,δ+

2 ), . . . ,(δ−m ,δ+
m)} is the tolerancing set,

where δ−i and δ+
i are the minimal and maximal allowed varia-

tions from the nominal parameter value p̄i.

The tolerance interval of the ith parameter is the interval: Pi =
[ p̄i + δ−i , p̄i + δ+

i ]. The tolerance interval of the model is an m-
dimensional hyperbox defined by the Cartesian product of the inter-
vals: P = P1 ×P2 × . . .×Pm. An instance A(p) of the part model
is the part defined by the parameter vector p = (p1, p2, . . . , pm),

c© The Eurographics Association 2004.

136



Y. Ostrovsky-Berman & L. Joskowicz / Tolerance envelopes of planar mechanical parts

where pi ∈Pi, 1 ≤ i ≤ m. Fig. 1 shows an example of a parametric
part model of a portion of a sewing machine cover.

The tolerance envelopes of a point and of a segment of the part
model are the boundaries of the union of all their instances. The
outer and inner tolerance envelopes of a part model are the bound-
aries of the union and the intersection of all the instances, respec-
tively.

The model can be directly generalized to parts with holes by
treating each boundary separately. Note that the proposed model
has the same semantics as the standard dimensional tolerancing
scheme. Conventional tolerance drawings can be translated to the
explicit functional representation. In the following, we assume that
the parameters define geometrically valid part instances with the
same topology and no self-intersections. When these assumptions
do not hold, the specification describes physically unrealizable
parts with no engineering meaning. Such invalid part models must
be identified and reported to the engineer, so they can be fixed.
The automatic validation of tolerance specifications is an important
topic of current research [Ste93, APS98, KSD01].

4. Tolerance envelope properties

We now discuss the properties of the tolerance envelopes of indi-
vidual segments. These form the basis for efficient computation of
the part tolerance envelope.

We define the functions sl , sa, and sb to parameterize line, arc,
and Bézier curve segments, respectively. The parameter λ ∈ [0,1]
interpolates between the endpoints v1(p) and v2(p).

sl(λ, p) = (1−λ)v1(p)+λv2(p) (1)

sa(λ, p) = (1−λ)v1(p)+λv2(p)+h(λ, p)v⊥12(p) (2)

sb(λ, p) =
n−1

∑
i=0

Bn−1
i (λ)bi(p) (3)

where h(λ, p) =
−1+

√

1+4λ tan2 α(p)
2 −4λ2 tan2 α(p)

2

2 tan α(p)
2

is the height of the

triangle connecting the segment v1(p)v2(p) to the arc point, v⊥12
is the normalized vector perpendicular to v2 − v1, α(p) ≤ π is the
arc angle, bi(p) are the Bézier control points such that b0(p) ≡
v1(p),bn−1(p)≡ v2(p), and Bn

i (λ) =
(n

i
)

λi(1−λ)n−i are the Bern-
stein polynomials.

With today’s manufacturing capabilities, tolerance intervals are
usually at least two orders of magnitude smaller than nominal di-
mensions. Therefore, we use the standard first-order approximation
and linearly approximate the vertex and segment functions around
the nominal values. The linear approximation of vertex vi(p) is de-
fined as:

vi(p) ≈ vi( p̄)+
m

∑
j=1

(

∂vi( p̄)

∂p j

)

δ j (4)

where δ j ≡ (p j − p̄ j) is the jth parameter offset and ∂vi(p̄)
∂p j

≡

∂vi(p)
∂p j

|p=p̄ is the partial derivative of vi(p) by parameter p j evalu-
ated at the nominal parameter value p̄. Similarly, the linear approx-
imations of line, arc, and Bézier curve segments are, respectively:
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Figure 2: Tolerance envelope of a point and its cone diagram with
three non-zero partial parameter derivatives

sl(λ, p) ≈ sl(λ, p̄)+
m

∑
j=1

(

(1−λ)
∂v1( p̄)

∂p j
+λ ∂v2( p̄)

∂p j

)

δ j (5)

sa(λ, p) ≈ sa(λ, p̄)+
m

∑
j=1

(

(1−λ)
∂v1( p̄)

∂p j
+λ ∂v2( p̄)

∂p j
+

h(λ, p̄)
∂v⊥12( p̄)

∂p j
+

∂h(λ, p̄)

∂p j
v⊥12( p̄)

)

δ j (6)

sb(λ, p) ≈ sb(λ, p̄)+
m

∑
j=1

(n−1

∑
i=0

Bn−1
i (λ)

∂bi( p̄)

∂p j

)

δ j (7)

A key property of these approximations is that they depend only
on the parameters that define the segment coordinates, which are
those with non-zero partial derivatives. The number of such pa-
rameters, ki, is usually much smaller than the total number of part
model parameters m. In the following, k is the maximum number
of dependent segment parameters.

Consider now the tolerance envelope of a point v( p̄) on the
part boundary. According to Equation 4, the displacement of v(p)
from the nominal point in a given direction d is 〈v(p)− v( p̄),d〉 =

〈∑m
j=1 u jδ j,d〉, where u j ≡

∂v(p̄)
∂p j

. Thus the maximal displacement
of a vertex v in direction d occurs at extremal parameter offset val-
ues δ+

j or δ−j . The sign of each parameter offset depends on the
direction d and on the directions of the partial derivatives:

δd
j =











δ−j 〈u j,d〉 < 0
δ−j 〈u j,d〉 = 0 and 〈u j,d⊥〉 < 0
δ+

j otherwise
(8)

where d⊥ is clockwise perpendicular to d and 〈u j,d〉 is the vector
inner product. Note that even when the derivative u j is perpendicu-
lar to d, we assign an extremal value to δ j . This ensures that v(p) is
a unique vertex of the tolerance envelope rather than a point on the
boundary. Equation 8 shows that each non-zero partial derivative u j
divides the plane into two halves separated by a line L j perpendic-
ular to u j , so that one half gets a maximal offset δ+

j and the other
a minimal offset δ−j . We define L j as passing through the nominal
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Figure 3: Topological changes in the cone diagram. Cone diagram
lines are dashed, and the tolerance envelope of the point is solid.
The top figure shows a switch event, in which two cone diagram
lines (L2 and L3) merge before switching position. The bottom fig-
ure shows a flip event, in which the line defined by u2 changes ori-
entation as a result of u2 becoming zero.

vertex v( p̄), and oriented so that the positive offset sign is on its
left.

The lines L j induce a subdivision of the plane into 2k cones,
which we call the cone diagram (Figure 2). The parameter offset
signs for all directions d within a cone are the same, and define a
vertex vd(p) = v( p̄)+ ∑m

j=1 u jδd
j which achieves the maximal dis-

placement of v(p) in the cone’s directions. The following theorem
summarizes the properties of the tolerance envelope of a point.

Theorem 1 Let A be a toleranced parametric part model and let
v(p) be a point on its boundary with k non-zero partial derivatives.
Then the tolerance envelope of v is the boundary of a convex, cen-
trally symmetric polygon with at most 2k vertices, and can be com-
puted in optimal O(k logk) time.

Proof For each of the parameters pi with non-zero deriva-
tive ui, define the segment ξi ≡ [uiδ−i ,uiδ+

i ]. Let v(pi) =
v( p̄1, p̄2, . . . , pi, . . . , p̄m), that is all parameters but pi are at their
nominal values. Observe that as pi changes from p̄i +δ−i to p̄i +δ+

i
the point v(pi) moves along the segment ξi translated by v( p̄), so
it traces the set {v( p̄)+ x|x ∈ ξi} which is the Minkowski sum of
v( p̄) and ξi. The Minkowski sum operation is commutative, so the
tolerance envelope of v is the sum of v( p̄) with all the segments ξi
where ui 6= 0. The Minkowski sum of segments is a convex cen-
trally symmetric polytope called a zonotope [Zie94]. The complex-
ity of a zonotope in the plane is at most twice the number of gen-
erating segments, that is 2k. To compute the envelope, first sort the
derivatives according to their angle with the x-axis, and construct
the corresponding cone diagram. Then, choose an arbitrary cone
and compute its sign vector and corresponding vertex according
to Equation 8. Compute the next vertices by advancing the cones
counter-clockwise, updating the vertex coordinates according to the
parameter that inverts its sign. The running time is dominated by
the sorting operation, which takes O(k logk). The algorithm is op-
timal because the angular sorting problem can be directly reduced
to finding the tolerance envelope of a point.

Conceptually, the tolerance envelopes of segments are the bound-
aries of the area swept by the point tolerance envelope as it moves
along the nominal segment from one endpoint to another (Fig. 4).
The tolerance envelope of a point on a nominal segment is com-
puted as for vertices, except that the vectors u j are now functions
of λ (the terms in brackets in Eqs. 5, 6, and 7). As the point moves
between the segment endpoints, its cone diagram lines rotate, thus
changing the shape of the tolerance envelope. When the cone di-
agram lines overlap or change their orientation, the topology of
the diagram (and therefore of the point envelope) changes (Fig. 3).
This observation is true for all segment types. The only difference
is the equations that determine the topological events, and the type
of curves traced by the point envelop vertices as they sweep from
one endpoint to the other. We detail the properties of the resulting
envelope in Section 5.4.

5. Tolerance envelope computation and approximation

We now address the representation and computation of part toler-
ance envelopes. We are interested in part tolerance envelopes whose
segments are as few and as simple as possible, yet are as close as
possible to the real boundary. Simple segments follow the perfect
form assumption, which stipulates that the tolerance envelope of a
segment is a chain of segments of the same type, and facilitates fur-
ther analysis and manipulation, such as stack-up tolerance analysis,
collision detection, and assembly planning. Fewer segments speed
up computation but compromise accuracy and simplicity, e.g., one
long spline curve versus many short line segments. Since different
applications will require different trade-offs between shape sim-
plicity, accuracy, and efficiency, we define four successive approx-
imations for segment tolerance envelopes: 1. Vertex Envelope Ap-
proximation (VEA); 2. Extremal Parameter Approximation (EPA);
3. Extremal Vertex Approximation (EVA); 4. Best Segment Ap-
proximation (BSA). We describe them next.

5.1. Vertex Envelope Approximation (VEA)

This is the simplest approximation, connecting the tolerance en-
velopes of neighboring vertices with two segments. The tolerance
envelope of a line segment is the boundary of the convex hull of the
points on the tolerance envelopes of its two endpoints. It is com-
puted in linear time by finding the outer tangents of the endpoint
envelopes. The convex hull contains all the instances of the line
segment, and therefore contains its tolerance envelope. We say that
this envelope is conservative, because it never underestimates the
worst case behavior of the part. There is no analogue for the con-
vex hull in circular and Bézier segments, so for these one of the
other approximations must be used.

5.2. Extremal Parameter Approximation (EPA)

The vertices of the tolerance envelope of the starting endpoint have
unique offset vectors that define instances of the toleranced seg-
ment. These instances define the starting paths of the vertices in the
sweeping of the tolerance envelope described at the end of Section
4. Similarly the vertices of the tolerance envelope of the other end-
point define the end of the sweep paths. The instances correspond
to the starting and ending topology of the tolerance envelope, and
if there are no additional topological events in between, then the
upper and lower envelopes of the arrangement they define is a good
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Figure 4: Tolerance envelopes of individual segments. Solid thick lines represent the nominal segments, solid thin lines tolerance envelopes,
and dotted polygons instances of point tolerance envelopes along the segment.

approximation to the upper and lower parts of the tolerance enve-
lope. We find the upper and lower envelopes of the arrangement
with a divide and conquer technique [Her89].

5.3. Extremal Vertex Approximation (EVA)

The tolerance envelope defined by the interpolation parameter λ is
the boundary of a convex polygon containing all the points s(λ, p)
with p ∈ P . Except for specific values of λ (see below), there is a
unique polygon vertex that attains the maximal displacement from
the nominal point s(λ, p̄) in the direction d orthogonal to the tan-
gent to the nominal segment at s(λ, p̄). We call this vertex an ex-
tremal vertex. This vertex has the offset vector of the cone that
contains the direction d, and as we change λ it will trace a path on
the instance defined by this offset vector. The offset vector of the
extremal vertex changes only when the cone containing d changes.
We call this an extremal event. The values of λ at which extremal
events occur are solutions to the equation 〈ui(λ),d⊥(λ)〉= 0 (there
are O(k) such events). In extremal events λe, the tolerance envelope
polygon has an edge parallel to the tangent at s(λe, p̄). One end-
point of this edge is the extremal vertex of λ < λe, and the other
is the next extremal vertex. Note that because of the symmetry
of the point tolerance envelope, there is a symmetrical vertex for
each extremal vertex (from the other side of the nominal segment).
The EVA extends EPA by computing the extremal events and the
instances of segments corresponding to all the extremal vertices
along the sweep. It computes the upper and lower envelope of the
arrangement defined by these instances.

5.4. Best Segment Approximation (BSA)

This method computes the tolerance envelope of a segment up to
the desired degree of accuracy. For applications that support gen-
eral algebraic curves, it computes the exact tolerance envelope (af-
ter the linear approximation of the segment). The algorithm per-
forms the sweep of the tolerance envelope from one endpoint to the
other. A key issue is the identification of discrete events in which
the topology of the cone diagram changes (Fig. 3). The values of λ
in which topological changes occur are solutions to the equations
〈ui(λ),u⊥j (λ)〉 = 0 and ui(λ) = 0, where u⊥j (λ) is perpendicular
to u j(λ). The first equation corresponds to two cone diagram lines
coinciding. We call this a switch event. The second equation corre-
sponds to a cone diagram line disappearing before changing its ori-
entation. We call this a flip event. Flip events are degenerate cases
that occur frequently in practice. They are equivalent to k simul-
taneous switch events, but we treat them separately for efficiency
and robustness. There are O(k2) switch events and O(k) flip events.
Between topological events, each vertex of the point envelope has

���

�)� �F� �

�)�;�

���i���	 i¡�¢�£&¤i¥i�	¦�§
�	¨&¨T¦"¢��i© ª«�� �©�¢�¤

¬"­�®�¯
¬"­�®�°1¥T®�¯

(a) line sweeps

±�²
±&³

±�² ´

±)³�´

µ�¶¸·�·	¹¸ºF»�¼i½�¾T¿*À�Á
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Figure 5: Boundary of segment sweeps between two consecutive
topological events. (a) the edge endpoints move along linear paths.
The figure shows both the exact boundary of the swept area (solid)
and the approximation with four line segments (dashed); (b) the
endpoints move along circular arcs

a constant parameter offset vector, and therefore moves on a curve
of the same type as the nominal segment.

A basic step in the algorithm is to compute the boundary of the
area swept by two neighboring point envelope vertices (an edge)
from one topological event to the next. Figure 5 shows the area
swept by an edge moving along line and arc segment paths. The
boundary of the swept area consists of a chain of segments of the
nominal type and a general curve. The general curve is obtained in
one of the following methods:

1. Using the general technique of Kim et al. [KA93] that computes
the boundary of a general time dependant curve swept along a
general trajectory. The complexity of this method depends on
the degree of the segment curve and the size of the output. In
our case these are small constants.

2. Using a closed form expression for the special case of line and
arc sweeps. The expression is derived as follows. Let s(p) de-
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1. Solve the topological event equations 〈ui(λ),u⊥j (λ)〉 = 0 and ui(λ) = 0
2. Sort the solutions in increasing order
3. Compute the offset vectors of the starting tolerance envelope and store their corresponding segment instances
4. For each topological event:

- If switch event (λ, i, j)
a. Sweep the four edges defined by (i, j) from previous to current λ
b. Update the two middle cones’ instances by flipping the i, j parameter offset signs

- If flip event (λ, i)
a. Sweep all the edges from previous to current λ
b. Update all the instances by flipping the ith parameter offset sign.

5. Compute the upper and lower envelopes of the segments from all the sweeps

Table 1: The Best Segment Approximation (BSA) algorithm of a single segment.

note the toleranced segment instance with parameter vector p,
and let pq1 and pq2 denote the parameter vectors of the end-
points of the swept edge (note that they differ in one parame-
ter sign only). Define the parameter vector p(ξ) = (1−ξ)pq1 +
ξpq2. The general curve in the swept boundary is determined
by the intersection of instances with infinitesimal difference in
the parameter vector (see Figure 5a). Compute the expression
for the intersection of s(p(ξ)) with s(p(ξ + dξ)) (there are two
solutions for arc segments), and take the limit as dξ → 0. The
resulting expression is the desired parametric curve with param-
eter ξ. The curve is clipped at the values of ξ corresponding to
the intersections with the extremal instances s(pq1) and s(pq2).
We followed the above derivation steps using Maple and derived
a polynomial curve of second degree for the linear sweep, and a
non-rational curve of second degree for the circular sweep.

3. Approximating the curve without explicitly computing it by uni-
formly sampling a constant number of instances s(p(ξ)) with
values of ξ in [0,1], and computing their upper and lower bound-
ary.

For applications that require perfect form tolerance envelopes, we
approximate the swept curves either directly as in method 3 above,
or by sampling a constant number of points on the curve using a
variation on the Douglas-Peucker heuristic [DP73] for continuous
curves. In our implementation, we approximated the curve with five
segments using method 3.

Table 1 summarizes the BSA algorithm. The algorithm starts by
calculating the topological events and sorting them by λ values. It
then iterates over the events, computing the upper and lower en-
velopes of the area swept by the edges that participate in the cur-
rent topological change. Switch events require O(1) for update, as
they affect only six cones (three symmetrical ones). Flip events af-
fect all the cones and require O(k) time for sweeping all the edges.
These steps produces O(k2) segments and curves, although not all
contribute to the tolerance envelope. The last step computes the
upper and lower envelopes of these segments in O(k2 logk). The
complexity of the lower and upper envelopes, which dominates the
combinatorial complexity of the actual segment tolerance envelope
(under the linear approximation) is O(k2).

Table 2 summarizes the computational properties of the approx-
imation algorithms. The VEA is the least accurate but gives good
results when there are no extremal events in the cone diagram. EPA
gives tighter results but misses segment instances that may con-
tribute to the envelope when more than one topological event oc-

Approximation Space Time Conservative
VEA O(1) O(k logk) yes
EPA O(k) O(k logk) no
EVA O(k) O(k2) no
BSA O(k2) O(k2 logk) yes

Table 2: Properties of the approximation algorithms per segment.
The actual space and time upper bounds include a multiplica-
tive factor due to the complexity of Davenport-Schinzel sequences
[SA95], which, for all practical cases, can be treated as a small
constant. For the time complexity, we assume that the intersection
of Bézier curves of low degree is found in O(1) time. The overall
complexity bound is n times the complexity of the approximation
algorithm.

curs. The EVA improves on EPA at the cost of time complexity by
tracking extremal changes without calculating topological events.
BSA is the most computationally expensive but gives both accurate
and conservative results. Let approx(A) denote the area bounded
by the outer tolerance envelope produce by the corresponding ap-
proximation of part A, then the relation between the four approxi-
mations is EPA(A) ⊆ EVA(A) ⊆ BSA(A) ⊆ V EA(A). The relation
is reversed for the inner tolerance envelope.

5.5. Tolerance envelope of the part

The tolerance envelope of the entire part is computed by merging
the tolerance envelopes of its segments. Consecutive segments have
one common vertex, at the envelope of which their segment en-
velopes terminate. When the segment envelope chains do not in-
tersect, we merge them with vertices on the common vertex enve-
lope. When they do intersect, we find the intersection with a seg-
ment intersection algorithm [Bal95] in O(c logc) time, where c is
the length of both chains, and merge the chains at the intersection
point. If there is more than one intersection then the envelope has
a hole or self intersects. In this case the algorithm informs the user
that the part model is invalid and must be fixed.

6. Experimental results

We implemented the four algorithms for parts composed of line
and arc segments. The implementation was written in C++ with the
CGAL library, and run on a 2.4 GHz Pentium 4 with 1GB RAM
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Table 3: Approximation error statistics for the BSA, EPA, and Monte Carlo envelopes (averaged over 10 random sampling of 100 instances
each), on four examples. For each entry, the first two columns show the deviation of the relative error (mean and standard), the following two
the deviation of the absolute value in millimeters, and the last one the running time in milliseconds.
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Figure 6: The sewing machine cover tolerance envelope and an en-
larged detail of it. Solid thick curves are the nominal part boundary.
Thin solid, dashed, and alternating dashed curves are VEA, BSA,
and Monte Carlo envelopes, respectively.

under Windows XP. To empirically quantify the accuracy of the ap-
proximations, we compared them with a dense sampling of the en-
velope computed without the linear approximation. For each sam-
pled point, we compute its parametric function and solve the non-
linear optimization problem consisting of maximizing the offset
in the normal direction. In the following examples, we uniformly
sampled each segment with 200 points. Running times were 15-45
minutes on MATLAB (the MATLAB profiler shows that 54.5% of
the running time is spent inside optimized built in C code, so the
running time can be cut in half at the most, still much too slow for
interactive tolerance analysis).

We compare the results of our algorithms with those produced
by the Monte Carlo sampling method used in most CAT systems
(CATIA, TASys, TolStack). We computed part envelopes by ran-
domly generating part instances and then computing the outer en-
velopes that minimally contain the instances, and the inner en-
velopes that are maximally contained in them. We call the resulting
envelopes Monte Carlo envelopes. The part instances are gener-
ated by randomly choosing parameter values from a uniform dis-
tribution, computing the upper and lower envelope of the instances
of each segment, and merging the chains. In the following experi-
ments, we generated 100 part instances per Monte Carlo envelope.

Fig. 6 shows the results of the algorithms on the the sewing
machine cover. Note that the VEA envelope is too conservative,
while the Monte Carlo envelope is too optimistic, missing the in-
stances that cause extremal offsets from the nominal. Fig. 7 shows

a detailed comparison between the BSA and the Monte Carlo en-
velopes. Note that BSA envelope is much more accurate, with over
95% of the envelope under 0.057mm and 3.52% relative error.
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Figure 7: Error distribution of the envelope approximations of the
sewing machine cover. The horizontal axis is the difference between
the exact and the approximated distance from the nominal bound-
ary. The vertical axis is the percentage of the envelope error. The
top two graphs show the absolute difference value in millimeters,
while the bottom two show the relative difference value from the
actual distance.

Table 3 shows approximation error statistics of the BSA, EPA,
and Monte Carlo envelopes on the sewing machine cover, a part of
a handbrake mechanism, and an axis support models (Fig. 8). In all
cases, the BSA has a mean and standard deviation error value with
the same order of magnitude as the tolerance interval squared, as
expected from a linear approximation. On average, the Monte Carlo
envelope of a hundred instances is ten times less accurate and runs
ten times slower than BSA and EPA. We also ran the algorithms
on the sewing machine cover model with tolerance intervals tight-
ened by a factor of 2 (cover / 2). The effect on the error absolute
value of all the approximations is the expected scaling down. No-
tice, however, that for BSA and EPA, the relative error is also sig-
nificantly lower, with BSA maximal error of 3.01% (0.0147mm).
This demonstrates that the linear approximation becomes better as
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model BSA EPA Monte Carlo
relative(%) value(mm) time relative(%) value(mm) time relative(%) value(mm) time
x σ x σ (ms) x σ x σ (ms) x σ x σ (ms)

cover 1.71 1.30 0.023 0.019 406 1.83 2.08 0.023 0.020 172 16.7 10.9 0.294 0.274 1938
handbrake 0.23 0.32 0.001 0.001 687 0.23 0.32 0.001 0.001 437 12.7 10.2 0.071 0.080 5672
support 0.52 0.47 0.007 0.005 594 5.91 14.6 0.162 0.478 391 22.7 15.9 0.571 0.531 3100
cover / 2 0.81 0.60 0.005 0.004 411 0.85 0.97 0.005 0.005 179 18.3 11.2 0.157 0.135 1951
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Figure 8: Tolerance specification of a handbrake part (up) and an
axis support part (down) modelled with 16 vertices and 22 param-
eters, and 14 vertices and 19 parameters, respectively.

the tolerances become tighter. On the other hand, the Monte Carlo
envelope has the same relative error.

7. Conclusion

We have presented a framework for modeling parametric variation
in planar parts with curved boundaries and for efficiently com-
puting first-order approximations of their worst-case tolerance en-
velopes. Based on the geometric properties of the tolerance en-
velopes that we derived, we developed four efficient algorithms that
trade-off between shape simplicity, accuracy, and efficiency. Their
complexity ranges from O(n) space and O(nk logk) time complex-
ity for the Vertex Envelope Approximation, to O(nk2) space and
O(nk2 logk) time complexity for the Best Segment Approximation,
where n is the number of boundary segments and k is the maximum
number of dependent segment parameters, which is usually much
smaller than the total number of part parameters. The algorithms
offer clear running time, simplicity, and accuracy advantages over
the commonly used Monte Carlo method, as demonstrated by our
experimental results on three realistic examples.

We are currently investigating the use of tolerance envelopes in a
variety of mechanical design and assembly planning tasks, includ-
ing tolerance envelope stack-up in chains of mated parts, assembly
planning with tolerance parts, and toleranced configuration space
computation [SJ98]. We are also planning to develop algorithms
for statistical part tolerance envelope computation, and for spatial
parts.
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