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Abstract
Boundary representation (B-rep) is a popular representation scheme for mechanical objects due to its ability to ac-
curately represent piecewise smooth surfaces bounding solids. However, non-trivial topology and geometry of the
surface patches hinder point generation, classification, searching, and other algorithms. We propose a new hybrid
representation that addresses these shortcomings by imposing on the boundary representation an additional simplicial
structure. The simplicial structure applies a triangle-mesh metaphor to the usual boundary representation, allowing
access to points on the exact solid boundary or its many approximations. The resulting simplicially enhanced bound-
ary representation (B-rep SE) simplifies and accelerates the usual boundary representation queries. We discuss full
implementation of B-rep SE with the Parasolid kernel and demonstrate the advantages of B-rep SE in applications
that integrate and visualize arbitrary fields on a solid’s boundary.

1. Introduction

Classical, non-tessellated, boundary representations (B-reps)
and triangular meshes have complementary properties. The
boundary representation for artifacts in engineering applica-
tions is usually conceptualized as a cell complex in �

3 with
faces represented by trimmed parametric surfaces, edges by
parametric curve segments, and vertices by points. B-reps,
see Figure 1 (a), thus have arbitrary accuracy and smooth-
ness that lead to slow queries implemented in proprietary,
high resolution geometric engines. In contrast, a triangular
mesh is a particular type of B-rep that uses triangles, line seg-
ments, and points to represent faces, edges, and vertices re-
spectively. Mesh approximations of exact B-reps, see Figure
1 (b), are typically constructed to support rapid query com-
putation through widely available tools in a multi-resolution
framework. Unfortunately, triangular meshes have finite, fixed
accuracy and lack the smoothness of non-tessellated B-reps.

1.1. Queries with B-reps and Meshes

Engineering applications that compute with solids fre-
quently require point generation. Point generation in-
volves the distribution of points on the geometric bound-
ary in a controlled fashion for tasks such as render-
ing, numerical integration[MM97], or meshing. Most of
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the work in this area has been in the generation of
points on exact B-reps for meshing, including techniques
for decomposition of a solid’s faces into manageable
pieces[KSSP01], distribution of points based on surface dif-
ferential properties[CB97, KS95, SYI97, Pet94], or vertex in-
sertion based on geometric measures of mesh angles and edge
lengths[VB93, SH93]. Other algorithms recursively subdivide
the parametric domains of the faces with a quadtree[Sam84]
until the segment of the face within each cell is unambiguous,
or meets flatness criteria[FK90]. Typically, once the paramet-
ric domains for the faces have been suitably decomposed, they
are triangulated, the triangles are mapped to �

3 , and the para-
metric decompositions are discarded. Generation algorithms
are frequently slowed when faces with non-trivial topology
and non-planar geometry are encountered. As demonstrated
in [KSSP01, RHD89], significant computational overhead is
required to decompose faces possessing non-trivial topology
and geometry into regions that lend themselves to treatment
by some standardized algorithm. With triangular meshes, how-
ever, all cells of a given dimension possess the same topology
and similar geometry so their interiors are easily parameter-
ized using barycentric coordinates and generated points are
simply convex combinations of appropriate vertices.

Classification is the answering of queries involving a point
and geometric boundaries. Examples include membership
(in/out/on) and distance (to nearest boundary point). For B-
reps, the popular algorithms for classification queries involve
iterative Newton-type methods that operate on the the para-
metric geometry describing a solid’s boundary[Mor97]. With
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(a) (b) (c)

Figure 1: Three representations. (a) Shows a B-rep solid with curved faces; the top face containing a hole and curved edges. (b)
Shows a mesh approximation of the same solid as in (a). (c) Depicts simplicial enhancement of the B-rep from (a). The additional
curved edges are logical incidence links between points on the boundary.

triangular meshes, point membership classification by ray-
boundary intersection is rapid since ray-cell intersections have
closed form solutions. Even faster techniques take advantage
of signed triangles or enclosing tetrahedra sharing a common
vertex whose membership is known [FTU95]. Distance com-
putations against meshes are further accelerated through pre-
processing with 3D bucket sorting techniques [CLR90]. Of
course classification algorithms against meshes still produce
results that are only as accurate as the resolution of the mesh
approximation. As Figure 2 shows, attempts to refine mesh
approximations to curved surfaces will generate new vertices
that lie, not on the exact surface where we would like, but on
the original polyhedral approximation to the surface.

Figure 2: Nonconforming mesh subdivision. This figure
shows how refinement of a triangular mesh by subdivision will
not conform to exact geometry that is curved.

B-reps constructed from exact parametric geometry do
not lend themselves to direct treatment in a multi-resolution
framework possessing varying levels of geometric detail. The
complex adjacency relationships among the intersecting faces
are not easily maintained when faces are approximated by sim-
pler geometry. To enable multi-resolution treatment, mesh ap-
proximations of B-reps are created. Meshes support the cre-
ation of multi-resolution representations including ones with
levels of detail defined relative to one another in a hierar-
chical structure[FP95, Hop96, GH98a]. Most of these multi-
resolution approximations are constructed by a sequence of
decimation steps that generate models at different levels of

accuracy. Association of cells among levels produces the hi-
erarchy of meshes, each with increasing levels of accuracy.
Such structures speed up classification algorithms by provid-
ing good starting points after fast localizing computations that
cull non-candidate elements in the mesh. The remaining can-
didate elements map to a set of more accurate candidates
where the culling operation is repeated[Sab01, O’R98]. Sub-
division surfaces[SZD�98, Sab02], in a sense, invert the multi-
resolution paradigm by starting with coarse meshes. Through
the generation of progressively finer resolutions, subdivision
surfaces build up arbitrary levels of accuracy and smoothness,
defined by application of specific subdivision rules. Subdivi-
sion surfaces are thus easily stored and exchanged, with arbi-
trary precision and smoothness available by application of the
subdivision rules.

1.2. B-rep SE

We propose that the traditional boundary representation be en-
hanced by combining the attractive properties of both exact
B-reps and triangular meshes. The resulting hybrid represen-
tation, called B-rep SE, possesses many of the computational
advantages of subdivision surfaces. By inducing on the exact
B-rep, a simplicial structure that contains the same geometric
information as the B-rep, the B-rep’s accuracy and smoothness
is retained while providing the speed (through approximation
and multi-resolution) and simplicity (identical cell topology,
similar geometry) of triangular meshes. Figure 1(c) shows
simplicial enhancement of the B-rep from Figure 1(a). The
simplicial structure provides spatial addressing, with exact and
approximate representations of the solid arising as particular
geometric realizations of the simplicial structure. By defining
a correspondence between points in the exact and approximate
realizations, approximation error can be quantified and sub-
division carried out to generate adaptive approximations that
converge to the exact B-rep in the limit.

The remainder of this paper is organized as follows. In Sec-
tion 2 we discuss the conceptual structure of the B-rep SE as
well as some of the issues in its implementation in a computer
data structure. In Section 3, we discuss application of the B-
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rep SE to geometry visualization as well as visualization and
integration of externally defined scalar fields on the boundary
of solids. We finish with some concluding remarks and sug-
gestions for future work.

2. B-rep SE Concepts

To combine the attractive properties of both the B-rep and the
triangular mesh, we need a common formal framework that ap-
plies to both structures. Since B-reps and meshes are both cell
complexes, they share a common foundation in the realm of
abstract complexes. The simplest of these abstract complexes
are the abstract simplicial complexes which conveniently rep-
resent the topology of meshes. We induce such a simplicial
structure on the B-rep to create the B-rep SE. We discuss the
B-rep SE in detail, following an introduction to some support-
ing terminology and definitions.

2.1. Definitions and Components

We consider a boundary representation S as a complex of
closed cells in �

3 . 2-cells in this complex are faces, 1-
cells are edges, 0-cells are vertices. To represent S we use
Parasolid[UGS]; however, any appropriate data structure can
be used. The cells of S are not necessarily homeomorphic to a
ball, but are smooth manifolds of appropriate dimension. Be-
cause the cells of S form a complex, any two cells either inter-
sect on another cell in the complex or are disjoint. We choose
to define our B-rep as a complex of closed cells as this simpli-
fies our ensuing definitions.

In order to combine meshes and B-reps, they need to be
defined in the same space. However, linear meshes are de-
fined in �

3 whereas B-reps are defined as mappings from
parametric space to �

3 . Further, meshes do not generally de-
fine the same pointset as the B-rep. Fortunately, both B-reps
and meshes have a common denominator in an abstract cell
complex. An abstract complex, A, is a finite set of elements
a0

�a1
� ���� called (abstract) vertices, together with a collection

of subsets �ai0
�ai1

� ����ain�� ���� called (abstract) faces, with the
property that any subset of a face is itself a face. When every
face is a simplex, a simplicial complex results. The dimension
of an abstract simplex is one less than the number of vertices
in it, and the dimension of A is the maximum of the dimen-
sions of its simplexes[HY88, Mau80]. Figure 3 illustrates the
idea behind an abstract simplicial cell complex. Essentially,
an abstract complex takes a collection of abstract vertices and
assigns logical incidence among them. We use simplicial com-
plexes because they embed naturally as triangular meshes.

The cells of S can have arbitrary topology and geome-
try; however, because they are smooth manifolds, they are
triangulable[Lee00, Cai68, Req77]. The connectivity of such
a triangulation is key to the simplicial enhancement of S:

Definition 1 A simplicial enhancement E � �A�g� of a B-rep
solid S is an abstract simplicial cell complex A, and a vertex
map g : A� S with the following properties:

1. For every 0-simplex a in A, g�a� is a unique point on the
boundary of S.

2. g can be extended (non-uniquely) to an embedding g� such
that every cell in S is the union of some simplexes in g��A�.

Figure 3: Abstract complex and embedding. This
figure shows a simplicial complex A consisting of
0-simplexes �a�b�c�d�e� along with their logical
incidence edges. 1-simplexes in this complex are:
�ad�ab�ac�bd�bc�be�cd�ce�de� and 2-simplexes are:
�abd�adc�acb�bce�bed�dce�. On the right is shown a sim-
plicial enhancement of a sphere �A�g� using a particular
embedding g�.

Figure 3 shows a simplicial enhancement of a sphere �A�g�
for a particular embedding g�.

2.2. B-rep SE

Definition 2 A B-rep SE is a pair: �S�E�, where S is a B-rep
representation of a solid and E is an associated simplicial en-
hancement of S.

From Definition 2 we have a finite set of points on S with
the abstract simplicial complex, A, assigning incidence among
them. The arbitrarily shaped cells of S are now the union of
cells in a triangulation of S, so navigation over S is by traversal
of the simplexes as a graph. The idea of having a set of ver-
tices with explicit connectivity is similar to subdivision sur-
faces [Sab02] except in our case the exact surface is defined
not as the limit of a subdivision process; rather it is the un-
derlying geometry of the boundary representation. We are thus
able to construct application-specific subdivision rules that de-
pend not on the geometry of the mesh, but on a variety of con-
trols such as globally defined fields, local measures of mesh
accuracy, or surface curvature, among others. Further, vertices
inserted during subdivision will lie precisely on S. In Section
3, we discuss subdivision based on both field interpolation er-
ror and deviation of mesh geometry from corresponding exact
surfaces.

Just like with subdivision surfaces, the simplicial structure
of the B-rep SE may be used to induce an approximation of the
exact embedding. The most popular and important approxima-
tion is a piecewise linear approximation constructed by taking
convex combinations of the vertices of each embedded 2-cell
from A. The result is a triangular mesh approximation of S. The
vertices of this approximation will lie on S and have edges cor-
responding to the connectivity of A. This mesh can be used in
place of the exact boundary representation, assuming a close
correspondence exists between the two representations.
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Figure 4: Invalid approximation of an embedding. On the
right is an example of an invalid mesh (improper orientation)
produced by an approximation of the embedding g� shown on
the left.

Note that a triangular mesh constructed in the above man-
ner may not have the same topology as S unless the embedded
0-simplexes are sufficiently close to one another. For example,
the mapping from the exact surface to the approximation may
not be an embedding because the mapping is not 1-to-1. Even
if the mapping is an embedding the resulting approximation
may not have the same orientation as the exact boundary rep-
resentation (see Figure 4 for an example). For many (but not
all) engineering purposes, such approximations are not valid;
however even invalid approximations may be refined by sub-
division into a valid approximation of the boundary represen-
tation.

From the conceptual structure presented here, some useful
consequences arise. The B-rep SE has the usual smoothness
and completeness properties of a B-rep plus some additional
capabilities. The addition of the simplicial structure improves
spatial addressibility of the boundary of S since the interiors of
the cells of S are now simplicially decomposed and could be
parameterized for point generation. The usual advantages of
meshes (multi-resolution and rapid classification) also apply
with the full accuracy of the B-rep available for refinement
operations. Below, we discuss how these operations may be
implemented with a typical B-rep SE.

Figure 5: B-rep data structure. This figure illustrates the
conventional B-rep data structure. Faces are represented by
trimmed parametric surfaces, Φi�u�v�. Each edge, the inter-
section of adjacent faces, is represented by the trim curves,
τ j�i�t�, in the parametric space of the adjacent faces as well as

by a parametric curve in �
3 .

2.3. B-rep SE Implementation

The conventional data structure for representing our B-rep
solid S is depicted in Figure 5. The faces of S are represented
by parametric surfaces whose parameter domain is bounded by
trim curves. Points within the domain evaluate to points on S.
In practice, trim curves are usually approximated within some
tolerance. Our work does not address these tolerance issues;
we allow the modeling engine to deal with the representation
of geometry at its own level of accuracy.

To represent A, we need a data structure that captures the
incidences among the vertices of A and enables efficient com-
putation of the vertex map g�A� as well as its extension, g��A�.
As depicted in Figure 6, the vertex incidences of A may be
represented by edges in triangulations of the parametric do-
mains of the solid’s surfaces. g�A� can be computed through
the evaluation of the parametric surface function at the vertices
of these triangulations. Points in the extension, g��A�, can be
similarly computed by evaluating points within the edges and
faces of these triangulations. In our implementation A is re-
ceived from the modeling kernel as triangulations of the para-
metric domains, constructed using the kernel’s built-in tessel-
lation routines. The trim curves are represented in piecewise
linear fashion by edges in the data structure. When request-
ing the triangulations from the kernel, we specify that valid
connectivity of the triangulations across the solid’s edges be
enforced. Because we approximate the trim curves by linear
segments, there will be some error when computing g��A� in
the vicinity of parametric boundaries. The error introduced by
this approximation is controlled by specifying an error toler-
ance when calling the kernel’s tessellation subroutine. This tol-
erance can be adjusted based on application-specific accuracy
requirements.

2.3.1. Approximations and Correspondence

Approximations of g��A� are useful for a variety of tasks like
visualization, classification, and rendering. The most famil-
iar approximation is the triangular mesh, constructed from the
vertices of g�A�, connected using line segments and planar tri-
angles in �

3 according to the incidence in A. As Figure 6 sug-
gests, higher resolution mesh approximations are constructed
by evaluating and connecting more points from the interior of
cells of g��A�.

Correspondence mappings can be defined and constructed
between points in g��A� and its approximations. A straightfor-
ward means of accomplishing this is to take advantage of the
representation of A in the parametric domain of the faces of S.
When A is represented using a linear triangulation in the para-
metric domain, barycentric coordinates can be used to identify
corresponding points in both g��A� and its approximation on
a per-cell basis. Thus, we define points in the approximation
and points in g��A� to correspond if they possess the same
barycentric coordinates. Obviously, other methods of corre-
spondence computation can be used depending on application.
We choose the barycentric basis because it is efficient and is
a natural extension of our representation of A. In the conclu-
sion, we briefly discuss higher order approximations of g��A�
as well as other types of correspondences.
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Figure 6: A representation of B-rep SE. The abstract complex, A, can be represented using triangulations of the parametric
domains of a solid’s faces (a single 2-simplex is shown for clarity). To the right is the extension of the vertex map to an embedding,
g��A�, computed through the parametric surface equation. At the bottom are approximations of the embedding. Correspondence
functions map points between the embedding and its approximations.

Figure 7: Refinement by subdivision. This figure shows how
subdivision of the abstract complex A refines the mesh approx-
imation of S with new vertices that lie on S.

2.3.2. Refinement

Approximations of g��A� may be invalid or have insufficient
accuracy as measured by some defined correspondence. Re-
fined approximations can be constructed by increasing the
density of the embedded vertices, thereby increasing the reso-
lution of the approximation. A natural way to refine the B-rep

SE is through subdivision as shown in Figure 7. Subdivision
of A produces a new complex A� with more vertices and ab-
stract simplices, resulting in smaller edges and triangles in the
approximation. The embedding of this new complex will still
have vertices that lie on S but they will be closer together. If the
correspondence mapping is bijective and meets the Lipschitz
condition (i.e., �h�x1��h�x0�� � K�x1� x0� for some constant
K, where h��� is the correspondence map), we can expect ap-
proximations to converge to the embedding g��A� in the limit.
The Lipschitz condition places a bound on the distance that
the embedding will deviate from its approximation. Since the
vertices of g�A� are in the approximation of g��A�, as the dis-
tance between vertices shrinks, so does the maximum devia-
tion of the embedding from it’s approximation. The ability to
make the error arbitrarily small is a capability that is useful in
sampling and approximation applications.

Through subdivision, mesh approximations are thus arbi-
trarily refineable. In other words, points on the boundary can
be generated with arbitrarily small separation, and their inter-
polation can be made arbitrarily close to the exact boundary. In
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contrast, (apart from subdivision surfaces) subdivision of tra-
ditional triangular meshes introduces vertices that only lie on
the geometry of the original mesh approximation (see Figure
2). However, unlike subdivision surfaces, subdivision of B-rep
SE can adapt locally or globally in a manner that is best suited
to a particular task or application, always leaving the original
surface itself unchanged.

Figure 8: Coarsening. This figure shows how the density of
the vertices in the piecewise linear approximation of S can be
reduced through the collapse of 1-simplexes of A. The edges
marked with the circles have been collapsed to produce the
complex on the right.

2.3.3. Coarsening

Coarsening is the removal of simplexes from A to reduce
the number of vertices in its embedding. As shown in Figure
8, the collapse of a 1-simplex removes one 0-simplex (ver-
tex), three 1-simplexes (edges), and two 2-simplexes (faces)
from A. However, unlike edge collapses as applied to trian-
gular meshes[GH97], coarsening of A through collapses of 1-
simplexes involves no loss of information since new vertices
can always be inserted by subdivision. Any 1-simplex can be
collapsed so long as the conditions on simplicial enhancement
(Def. 1) are not violated. The conditions of Def. 1 ensure that
g��A� will always cover the solid boundary and enable subse-
quent recovery of the full B-rep accuracy.

Additional restrictions on the collapse of 1-simplexes are
imposed by the data structure we choose to represent A. For
example when A is represented by planar triangulations in the
parametric space of the solid’s faces, any collapses must main-
tain validity of this triangulation. The triangulations must con-
tinue to cover the parametric domain with properly oriented,
non-overlapping triangles. Representation of the trim curves
by linear segments may also prevent collapse of these edges
depending on the accuracy required by an application. Restric-
tions may be imposed by the parametric surface itself if it is
periodic or contains degeneracies that govern the orientation
and connectivity of edges in its parametric triangulation.

Repeated coarsening steps up to the limits imposed by Def.
1 and representation of A suggests the notion of minimal sim-
plicial enhancements that retain the full accuracy of the B-rep
while possessing a minimum number of simplexes. Obviously,
such minimal structures are not unique since there are many
ways to triangulate a manifold. However, all such structures
contain the same information: they introduce minimal over-
head to the original B-rep while enhancing it with subdivision
capabilities.

3. Application of B-rep SE

In this section we discuss application of the B-rep SE to adap-
tive geometry visualization, adaptive field visualization, and
surface integral computation. In the conclusion we propose
other applications for the B-rep SE. We discuss how its capa-
bility for arbitrary refinement and coarsening can be applied in
any environment where multi-resolution representations have
application.

3.1. Geometry Visualization

Geometry visualization is important in the design process to
get visual feedback of part shape as changes are made. Since
graphics engines typically accept geometry data in the form of
triangular meshes, we need a way to generate triangular mesh
approximations of our solids. Many algorithms exist for gener-
ating triangular meshes of solids, and it is a standard operation
in solid modeling engines. With the B-rep SE, we can generate
meshes for display and locally adapt them to more accurately
represent the exact geometry they depict. Using the notion of
correspondence, we can also quantify the error in the mesh ap-
proximation of the exact solid. Further, through refinement and
coarsening steps, the accuracy can be locally adapted based on
the measured error.

For example, our implementation of geometric visualiza-
tion follows a system inspired by Velho et al in [VdFG99].
In their work the coherency of hierarchical mesh approxima-
tions to parametric surfaces is maintained by subdivision of
triangles according to templates that are chosen after finding
those edge points having maximum deviation from the surface.
Occasionally triangle interiors are randomly sampled and sub-
divided as well. As in Velho’s work, we carry out adaptation
of 1-simplexes first since the error maximization process takes
the form of a simple 1-D search problem. Error at points in the
mesh approximation is measured by the Euclidean distance,
δ � ��x�� h�x����, where x� is a point on the linear approxi-
mation of the embedding and h�x�� is the corresponding point
on the embedding. Where δ is a maximum and greater than a
user-specified threshold, the 1-simplex is subdivided. By pro-
cessing all existing 1-simplexes in a single step, better aspect
ratios for the approximating triangles result and geometric ac-
curacy generally improves more rapidly with fewer subdivi-
sions. 1-simplex subdivision is complete when all errors are
below the user-specified geometric error threshold. After 1-
simplex subdivision has finished, adaptation can be performed
within 2-simplexes to ensure geometric detail is fully captured.
The cycle is repeated until no more subdivisions are required.
The results of several cycles of this process are shown in Fig-
ure 9.

With the B-rep SE, geometry visualization can be viewed as
“triangulation on demand” in the sense that triangular meshes
are not used as archival representations. They are generated
only when required by a particular application and with accu-
racy that is needed to answer particular queries. Just like with
B-rep, arbitrary resolution is available at any time, but simpli-
cial enhancement allows rapid generation of triangular mesh
approximations with local control of accuracy.
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(a) (b) (c)

Figure 9: Adaptation to geometry. On the left is a flat-shaded coarse mesh approximation of a solid boundary constructed using
B-rep SE. On the right is another flat-shaded mesh of the same geometry adaptively subdivided based on geometric error. The algo-
rithm subdivides mesh edges where their deviation from the embedding is a maximum and greater than a user-specified tolerance.
Notice in the center figure the resulting concentration of triangles in regions of high curvature, and relative sparseness in planar
regions.

3.2. Field Visualization

Fields are spatially distributed quantities that usually have
some physical interpretation such as temperature, pressure,
fluid flow, stress, or strain. In engineering, these fields may
be either measured physically through testing or computed
through analysis. Using visualization tools, engineers inter-
pret the interaction of these fields with geometry. We are es-
pecially interested in externally defined fields– fields whose
values do not depend on a particular decomposition of the
solid boundary. Such fields arise, for example, in meshless
analysis[TS02], material modeling[BST03], and in compu-
tations involving fields with differing underlying representa-
tions. In other applications, the solid may be simply used as a
“probe” into the field. The boundary of the solid then provides
a surface onto which field values are mapped for display.

Field visualization generates human-readable images allow-
ing interpretation of field values on the boundary of the solid.
The approach requires that points be generated on the solid
where the field can be sampled. The samples are then mapped
to hues, and their positions projected for display. The projec-
tion of all visible sample points by ray-casting is too computa-
tionally intensive to allow interaction with the model. Instead,
hardware acceleration is used to display a mesh approximation
of the solid. The field is sampled at the vertices of the mesh,
and the hardware linearly interpolates the corresponding hues
over the triangle interiors.

In traditional general-purpose visualization applications a
triangular mesh is used exclusively. To ensure details in the
field and the geometry are adequately captured, high resolu-
tion meshes must be employed. However, such high-resolution
meshes hinder interaction by slowing the rendering process.
Furthermore, as Figures 10 (a) and (b) illustrate, much of
the mesh density can be wasted in regions where the field

is relatively uniform. To reduce overhead, the meshes can
be decimated, reducing triangle count where geometric and
field accuracy is not affected significantly by removal of tri-
angles. Techniques like those of Hoppe [Hop99] and Garland
[GH98b] can take into account appearance attributes, but to
use these techniques successfully we still must start with a
high-resolution mesh. Adaptation to new field details after
decimation is not a trivial process, nor is it possible to quantify
the error introduced by linear interpolation of either the field
or the geometry.

Visualization with the B-rep SE uses a mesh constructed
directly from an approximation of the embedding of A. To
extend the idea of adaptation to geometry to include adapta-
tion to fields, we measure interpolation error as the difference
between the linearly interpolated field values at points on the
linear mesh and the actual field values sampled at correspond-
ing points on the exact geometry. The accuracy can be locally
adapted based on these errors. Thus, without preprocessing,
we can zoom in to arbitrary levels of detail, increasing vertex
density only where required. As with adaptation to geometry,
all necessary 1-simplex subdivisions are carried out simultane-
ously. Figure 10 (c) shows a mesh adaptively refined to display
the same field as in Figure 10 (b). The difference in display
quality between the two techniques is negligible, but there are
98K triangles in (b) while there are only 6K triangles in (d).
Further, the sample spacing used during the adaptation of the
B-rep SE is more than ten times finer than the resolution avail-
able by using the fine mesh in (a).

Adaptation of the B-rep SE for visualization involves the
refinement of the simplicial complex to capture the curvature
in the field and in the geometry. Because the spatial variations
of the field and the curvature of the geometry do not necessar-
ily correspond, we must adapt to both. For example, as Fig-
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(a) (b)

(c) (d)

Figure 10: Field visualization. This set of figures compares visualization of a field on the boundary of a solid using dense meshes
and the B-rep SE. (a) Shows a solid approximated by a dense mesh containing more than 98K triangles. Without a priori knowledge
of the field, a dense mesh is required to ensure sampling at the mesh vertices accurately captures the spatial frequencies inherent in
the field. (b) Illustrates the resulting field visualization. Comparison of (a) and (b) reveals that many triangles are used in regions
where the field is largely uniform. (c) Shows the same solid approximated by a mesh containing 6K triangles, refined adaptively
using a sample spacing more than ten times finer than the spacing available with the fine mesh in (a). (d) Shows the resulting field
visualization which is indistinguishable from (b).

ure 11 shows, the geometry can possess curvature in regions
where the field is constant or varying linearly. Likewise, in re-
gions where the field is varying, the geometry may be planar or
curved in only one direction. Thus, if we only adapt to the ge-
ometry, the spatial variation in the field will not be accurately
conveyed. And, if we only adapt to the field, the curvature of
the geometry will not be captured.

3.3. Surface Integration

Surface integral computation arises frequently in engineering
in the solution of analyses requiring satisfaction of boundary
conditions on a solid’s surfaces and in the calculation of such
geometric properties as volume and surface area[LR82]. These
integrals all take on the following form:

I �
�
Ω

f dΩ� (1)

where Ω is the domain of integration and f is a scalar func-
tion of spatial variables whose integral we are interested in
computing. For surface integration, Ω is a solid boundary,
and f may be pressure, or energy flux. For volume integra-
tion, the problem can often be reduced to boundary integra-
tion using Stokes theorem [LR82]. Polynomial functions can
be integrated exactly over polyhedral geometry [CP90] or over
domains bounded by polynomial surfaces [GOMP98]. How-
ever, due to high cost, the general curved domains encountered
in engineering, and the fact the integrands are frequently not
known a priori, computation of (1) must be performed numer-
ically.

Numerical solution of (1) requires two deceptively simple
steps: one, generate sample points xi onΩ; two, assign weights
Wi for each f �xi� and sum. The schemes by which points and
weights are allocated are known as quadrature rules. Such
rules exist for standardized planar regions with weights as-
signed to guarantee exact integration of polynomials up to the
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(a) (b)

(c) (d)

Figure 11: Adaptation to both fields and geometry.(a) Shows a coarse, flat-shaded, mesh approximation of an S-shaped pipe with
a spatially varying field with sinusoidal variation in the central, straight portions and constant value in the end regions. (b) Shows
adaptation of the mesh to the exact geometry only. Notice that the mesh density is greatest in the regions where the curvature of
the geometry is greatest; however, the spatial variation of the field is not accurately captured by the long triangles in the central
portion. On the other hand, (c) shows adaptation of the mesh to the incident field only. There is a concentration of triangles in
the central portion that provides an accurate rendition of the field; however, the accuracy of the mesh in the bends is unchanged
from the original mesh in (a). (d) Shows the results of refinement that accounts for both geometric error and error in the field
interpolation. Notice that compared to (c), the bends in the pipe are approximated more closely with smaller triangles, while the
field interpolation in the central regions is unchanged.

degree of the rule. We can use various representations for Ω,
each with tradeoffs.

The customary approach to the numerical solution of (1) is
to represent Ω by a triangular mesh and use standard triangle
quadrature rules to compute the integral. With this technique,
the accuracy of the mesh approximation limits the accuracy
with which the integral can be computed. The only quadrature
rule that uses precisely the vertices of the triangles is only first
order accurate. Higher order rules and subdivision of the mesh
introduce sampling error where the exact geometry is non-
planar. The only way to decrease the integration error with a
mesh is to generate many small triangles at the outset, gaining

accuracy at the expense of increased storage and processing
time.

We can avoid the inaccuracies inherent in quadrature over
meshes by using the exact geometry of the solid’s faces in the
B-rep. The integration of a function over such parametric sur-
faces is a well studied problem, taking on the following form:

I �
�
σ

f �Φ�u�v��

�
�
�
�

∂Φ
∂u

�
∂Φ
∂v

�
�
�
�

dudv (2)

The parametric surface equation is Φ and
�
�
�
∂Φ
∂u �

∂Φ
∂v

�
�
� is the

Jacobian of the parameterization. When computing (2) numer-
ically, we apply quadrature rules in parametric space, sam-
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pling the integrand f at points on the solid boundary evaluated
through Φ. Multiplication by the Jacobian accounts for the
distortion that occurs when mapping from parametric space
to �

3 . This is especially effective when Ω is the union of
untrimmed parametric surface patches [GOMP98]. However,
since the faces of the solid are represented by trimmed surface
patches with arbitrary topology and geometry, we must de-
compose the parametric domain into primitive regions. More-
over, such decompositions can be subdivided to decrease the
sample spacing in �

3 , thus increasing the accuracy of the in-
tegral. By generating points through the surface equation, we
circumvent the problem of inaccurate sampling so the use of
high order rules is possible and the integrand is always evalu-
ated on the exact geometry.

Two common choices for primitive regions are rectangles
and triangles. Quadrature with rectangles relies on quadtree
decomposition of the parametric domain, which is effective
in most circumstances [TS02]. When use of quadtrees is not
acceptable (due to speed, accuracy, or representational con-
straints), quadrature with the B-rep SE combines the simplic-
ity of mesh-based integration with the accuracy of the para-
metric surface approach. With the B-rep SE the simplicial
structure is used to address the cells of the boundary as simply
as with a mesh. Quadrature rules are then applied through a pa-
rameterization of the simplexes’ exact embedding functions.
The use of the embedding functions generates points on the
exact boundary where f is evaluated, weighted, and summed.
The weight for each point is the product of the quadrature
weight and a weight modifier that is the Jacobian of the pa-
rameterized embedding function. When the embedding func-
tion is Φ, the integral is precisely (2). However, unlike para-
metric surface integration, with B-rep SE specific knowledge
of the solid data structure is not assumed, and special pro-
cessing for arbitrarily shaped faces is not required. Finally, in
contrast with meshes, integral accuracy can be adaptively in-
creased based on properties of the geometry, the integrand, or
both.

4. Conclusions

In this paper we have proposed the B-rep SE, a hybrid data
structure that combines the attractive properties of both trian-
gular meshes and exact B-reps; sacrificing neither the speed
of meshes nor the accuracy of the exact B-rep. The B-rep SE
can be viewed as a traditional triangular mesh extended with
arbitrary resolution, or as a B-rep enhanced with simplicial
subdivision capabilities. Currently implemented as an API, it
conveniently hides the complexity of the conventional bound-
ary representation by allowing access to the solid boundary
in a mesh-like manner. Other meshing and visualization APIs
implement partial or limited functionality of the B-rep SE. For
example, CAPRI[ADH99, HF98] provides a restricted inter-
face to boundary representations that requires a valid mesh at
all times and relies on heuristics for correspondence. The va-
lidity conditions on the B-rep SE (Def. 1) are relatively mild,
but assume the ability to overcome the usual difficulties with
seams and degeneracies in boundary representations[dCS96].

There is a wealth of unexplored applications for the B-rep

SE. In industries that rely heavily on solid modeling, mesh ap-
proximations of parts at multiple resolutions are routinely be-
ing generated, stored, and transmitted for enterprise-wide vi-
sualization. With the B-rep SE, it should be possible to make
the storage and transmission tasks superfluous through on-
line generation of meshes at the point of use. The computa-
tional overhead of maintaining the simplicial structure of the
B-rep SE is no more severe than the overhead of generat-
ing the meshes used for rendering during interactive modeling
sessions. The simplicial enhancement only requires the reten-
tion of the parametric triangulations that form the pre-image
of these rendering meshes. Further, the memory overhead for
storing the simplicial structure can be minimized by applica-
tion of coarsening steps.

The structure, as presented, relies on parametric surface
definitions, but it should be possible to extend it to cover
other surface descriptions such as subdivision and implicit sur-
faces as well. In the case of subdivision surfaces, the mini-
mal simplicial enhancement could be taken from the coars-
est control mesh and techniques such as described in [Sta98]
might allow computation of the exact embedding without ex-
plicit subdivision according to the surface’s subdivision rule.
It may be possible to provide simplicial enhancement of im-
plicit surfaces starting from a mesh approximation and using
correspondences defined using such geometric measures as
nearest-point or line-surface intersection. Of course introduc-
tion of such correspondences raises concerns about bijectiv-
ity of the correspondence mappings. Alternatively, we might
specify that the implicit surfaces be normalform functions so
that points on an approximation of the embedding have foot
points on the surface[Har00]. In such formulations, evaluation
of the implicit equation yields a signed distance to the zero set
of the function while the gradient provides the direction.

As suggested in Figure 6, the B-rep SE can be used with
other constructions for approximating embeddings. For exam-
ple, instead of using a single planar triangle to approximate the
embedding of a 2-simplex from A, a hierarchy of meshes could
be constructed with each level more closely approximating the
exact surface. Another obvious extension is to use higher-order
polynomials to approximate the embedding of simplexes from
A. This would provide better control of the error between the
embedding g��A� and it’s approximations.

We chose the simplicial structure to consist of a complex of
triangular simplexes because visualization requires coherency
of geometry across edges, and triangles are easily manipu-
lated to maintain this coherency. Tasks such as surface inte-
gration for which coherency may not be an issue, might make
use of other types of cellular enhancements. One can envision
quadtree (B-rep QE) or extended-quadtree[ABJN85] (B-rep
EQE) enhanced B-reps that decompose S into nominally rect-
angular regions.

We have focused on point membership and generation tasks,
but most geometric computations (set membership classifi-
cation in particular) reduce to a finite number of such point
tasks[Sha02]. Hence, simplicial enhancement of B-reps is gen-
erally useful and it may be worthwhile to study other algo-
rithms in detail.
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