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Abstract

In this paper we describe the design of B-spline surface models by means of curves and tangency conditions. The intended
application is the conceptual constraint-driven design of surfaces from hand-sketched curves. The solving of generalized curve
surface constraints means to find the control points of the surface from one or several curves, incident on the surface, and pos-
sibly additional tangency and smoothness conditions. This is accomplished by solving large, and generally under-constrained,
and badly conditioned linear systems of equations. For this class of linear systems, no unique solution exists and straight for-
ward methods such as Gaussian elimination, QR-decomposition, or even blindly applied Singular Value Decomposition (SVD)
will fail. We propose to use regularization approaches, based on the so-called L-curve. The L-curve, which can be seen as
a numerical high frequency filter, helps to determine the regularization parameter such that a numerically stable solution is
obtained. Additional smoothness conditions are defined for the surface to filter out aliasing artifacts, which are due to the dis-
crete structure of the piece-wise polynomial structure of the B-spline surface. This leads to a constrained optimization problem,
which is solved by Modified Truncated SVD: a L-curve based regularization algorithm which takes into account a user defined

smoothing constraint.

Categories and Subject Descriptors (accordingto ACM CCS): 1.3.5
[Computer Graphics]: Splines; G.1.2 [Approximation]: Spline and
piecewise polynomial approximation; G.1.3 [Numerical Linear Al-
gebra]: Linear systems (direct and iterative methods)

1. Introduction

B-spline curves and surface have been recognized as an impor-
tant representation for free-form shapes early on, in [GR74]. It
is our observation that current free-form modeling tools are still
far away from generating sculpted shapes with desired properties
by few pen-strokes or mouse-clicks: the creation of complex free-
form surface models is a time-consuming and tedious procedure
which requires a knowledge about the underlying curve and sur-
face representation. We claim, that in the context of surface model-
ing the power of constraint-based methods have not yet been fully
exploited. This fact and the experience we have gained from inves-
tigating methods for interactive manipulations of solids with con-
straints for planar and analytic surfaces [BDKMO0O, DMB98] has
led to the idea to extend this approach to free-form surface models:
The designer creates or modifies B-spline surfaces by sketching
one or several 3D curves. These curves are seen as design param-
eters which determine the shapes of the surfaces. The designer is
free to further modify these curves by re-styling their shapes, add
new curves, or, delete the existing ones. The curves are automati-
cally constrained as incident on the surface which leads to a set of
constraints determining the surface.

In our previous paper [MKBO02] we have investigated methods
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for correct and intuitive interpretation of hand sketched 3D curves.
In this paper, which can be seen as a continuation of our previous
work, we are concerned with two fundamental issues:

1. Techniques to manage networks consisting of B-spline surfaces,
curves and constraints among them.

2. Interpolation of B-spline surfaces from curve-surface inci-
dence and tangency constraints for arbitrary (non-isoparametric)
curves.

The curve-surface incidence constraints are expressed as linear
systems of equations between degrees of freedom of the surface
and the design parameters — the control points of sketched curves.
How to obtain these equation efficiently and with high numeri-
cal precision was described in [Mic03]. Our current paper con-
tains further details about the user interaction and solving of in-
verse problems which were not mentioned in previous publica-
tions [MB99, MB00O, MBO01]. The equation systems are, in gen-
eral, under-determined and ill-conditioned. Hence, special numer-
ical techniques are necessary to compute a numerically stable so-
lution. We present a powerful and reliable method which automat-
ically extracts an optically pleasing surface from an ill-conditioned
and under-determined system of linear equations. A surface exactly
satisfying given curve constraints does not always exist — in this
case designers are guided by the system towards a compromise be-
tween their intention and the satisfaction of constraints.
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1.1. Structure of the paper

The remainder of this paper is divided into five sections organized
as follows: section 2 reviews the related research and points out
the differences between our work and previously achieved results.
In section 3 we describe the concept of an interactive, constraint-
driven surface modeler. Section 4 describes the interpolation of
a B-spline surface from non iso-parametric curves. The theory is
rounded off by several design examples. Finally, section 5 sum-
marizes the research achievements of this work and compiles an
outlook on future research.

1.2. Notation

We shall deal with geometric elements such as surfaces, curves or
points. These are denoted by italic upper case letters, S, C or P. Our
central tool is linear algebra of matrices and vectors: Bold upper
case letters A denote matrices and bold lower case letters a denote
vectors.

2. Related work

The problem of defining surfaces by incident curves can be ex-
pressed as a system of linear equations between degrees of freedom
(DOF) of the surface and the design parameters — the control points
of 3D curves. Assume that a parameterization of a B-spline surface
F and a curve G in the domain of F are given and fixed. Further
assume that a 3D curve H’ (which serves as a shape parameter) is
mapped to a surface curve H = F(G). Then the control points of the
surface which satisfies H = F(G) can be determined as a solution
of a system of linear equations.

The B-spline surface interpolation is a standard procedure in
CAGD if H is an iso-parametric line of F, i.e. G = const. The
area of constraint-based surface design is dominated by surface re-
construction from a compatible network of iso-parametric curves
(the so-called surface “skinning”). Also, relatively well under-
stood are, so-called, multi-patch methods and the scattered data
interpolation. There is a huge amount of literature which deals
with these topics, therefore, we point only to standard books on
CAGD [Far92, HL89, PT95] and to Jérg Peter’s survey of funda-
mental methods for multi-patch surface design [Pet01].

If G is a general domain curve, the problems are two-fold: first,
it is not obvious how to formulate the equations which constrain
the incidence of an arbitrary curve. Second, in contrast to tradi-
tional methods, usually, the constraints do not uniquely determine
the surface — the problem is under-determined. In addition, it turns
out that interpolation problems of this type belong to the category
of, so-called, ill-posed problems [Han98]. These problems are char-
acterized by the property that the equation system is not simply sin-
gular: there is no clear distinction between linearly dependent and
independent subsets of equations and it is very hard to determine
the rank of the system matrix. Solving of such problems is not pos-
sible without sophisticated numerical analysis tools.

2.1. Obtaining the equations

The first problem — obtaining the equations — was approached in
three different ways. In [CW92] and [WW92], Welch et al. propose
to formulate such constraints as a continuous approximation prob-
lem: given F, G and H’ as above a linear system of equations in the

unknown control points of the surface is obtained by minimizing

the quadratic distance functional [g (H' — F(G))2 which yields a
square matrix of equations linear in control points of F. The second
approach uses the fact that a 2D curve G is mapped to a 3D surface
curve H incident on F by taking linear combinations of Fs control
points. In other words, each control point of H can be written as
a linear combination of control points of F yielding a linear sys-
tem of equations in unknown control points of F. In [EC97] Elber
and Cohen have shown how to obtain the equations for the special
case when F is a Bezier patch and G is one or several (arbitrarily
oriented) line segments. Similar approach was chosen by Ferguson
and Grandine in [FG90]: They have already pointed out that us-
ing line segments might not be sufficient and a generalization to
arbitrary curves is desired. The third approach, pursued by Dietz
in [Die98], for example, is the discretization method: the continu-
ous curve-surface incidence problem is discretized by considering
many point-surface constraints ordered along given 3D curve.

We have generalized the second method to B-spline sur-
faces and arbitrary B-spline domain curves in [Mic03] and
[MB99, MB00, MBO01]. Briefly, we have introduced the, so-called,
“unevaluated” version of blossom based polynomial composition
algorithm, the original (unevaluated) version of which was de-
scribed be DeRose et.al in [DGHM93]. Given G and parametric
structure of F, we compute a matrix A with the property that the
surface control points of the curve H = F(G) are obtained as a lin-
ear transformation of the control points of F. This yields an matrix
equation H = AF where H and F are matrices containing the con-
trol points of the curve and the surface, respectively.

The disadvantage of the “continuous approximation” approach
is that the computation of the associated matrices is inefficient and
numerically not very stable (esp. because of the integration of high
degree splines). Furthermore, the system matrix is obtained by for-
mulating the normal equations. This is not the optimal approach:
it is known, that the condition number of normal equations is the
square of the actual condition of the problem [GvL89]. The uneval-
uated composition (if implemented carefully) is more efficient and
numerically much more stable. It delivers a matrix A with smaller
overall errors it its elements and, in general, of smaller size. Fur-
thermore the matrix equation H = AF can be easily extended to
define other linear curve-surface constraints; e.g., in [Mic03] we
describe an efficient method how to constrain normals along an ar-
bitrary surface curve.

2.2. Obtaining the solution

The second part of the problem is to compute the control points
of the surface F given the linear system of equations AF = H.
The equation system is generally ill-posed. In case of an ill-posed
problem we have k = rank(A) < min(m,n) but the singularity is
not easy to detect. This is the fundamental difference to problems
which are “only” singular: there is no obvious selection for the
“right” k. Methods for solving such problems are known in lin-
ear algebra, see e.g. [Han98] for further backgrounds and a pro-
found overview on regularization methods. We have applied the
so-called “L-curve” filter [Han01, CHRO1], in connection with Sin-
gular Value Decomposition (SVD) of the system matrix. The SVD
is a superior tool for solving of singular systems of linear equa-
tions. However, in its usual setting, it is not suited to solve an
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ill-posed problem because even the explicit knowledge of singu-
lar values of A is not sufficient to determine the rank of A. This
information is central in order to obtain a satisfactory solution.
We briefly summarize the SVD and its properties along with a
more precise definition of ill-posedness in section 4. The regular-
ization algorithms we have exploited are the Truncated Singular
Value Decomposition (TSVD) [Han90] and Modified Truncated
SVD (MTSVD) [HSS92] algorithms. The MTSVD algorithm is
perfectly suited to solve ill-posed constrained optimization prob-
lems. Problems of this kind are the mathematical core of the vari-
ational surface design which was pursued by many researchers,
see [BHS93, BHH93, Gre94, KPS95, GS97, SU90], for example.
The basic idea is to compute the surface as a minimum of some
application dependent objective function with respect to specified
boundary constraints. However, except of Schumaker and Utretas
in [SU90] the ill-posedness of the constraints is never mentioned.
Indeed, almost all publications deal with well-conditioned con-
straints — such as incidence of iso-parametric curves or equally dis-
tributed points on a surface. Nevertheless, variational constraints
are well suited to determine values of those control points of the
surface which are not consumed by the positional constraints — in
our case the curve-surface incidence or tangency along a curve. In
that case one chooses the objective function such that certain differ-
ential properties of the surface are minimized. There is a standard
set of candidate functions which in most cases deliver satisfactory
results (i.e. optically pleasing or smooth surfaces): one minimizes
thin plate energy of the surface, variation of curvature or similar
properties. An overview of frequently used objective functions and
their properties can be found in [GS97], for example.

Celniker [WW92, CW92], Dietz [Die98] and Ferguson [FG90]
have used variational methods in order to completely determine
the control points of the surface. However, non of the publications
have accessed the problem of obtaining a numerically stable so-
lution from the ill-posed equations. Although Celniker and Welch
have recognized that the linear systems of equations may be ill-
conditioned, it is not clear how they remedy the ill-conditioning.
They propose the usage of pivoted Gaussian elimination. However,
in most cases Gaussian elimination is not sufficient to reveal the
rank of the matrix, see e.g. [Han98]. We have carried out numer-
ous experiments which confirm this statement. In [EC97], Elber
and Cohein have used Bezier patches with carefully chosen num-
ber of degrees of freedom. In that case the ill-posedness is not that
serious problem, especially, when the domain curves do not differ
much from iso-parametric lines. However, this method results in
surface patches of very high degree. Ferguson and Grandine have
mentioned that computing solutions to such linear systems can be
difficult. Although they have have used the Singular Value Decom-
position of the system matrix, they do not mention how to select
the rank of the badly conditioned matrix.

3. Constraint-based surface sketching

In the following we present our view of a constraint-based sur-
face modeling system. First, we show how we have interpreted
free-hand sketches in 3D to obtain B-spline curves. We do that
only briefly because this topic was described in our 2002 pa-
per [MKBO02]. Second, we demonstrate on an example how the
constraints are managed and how the system reacts to user inter-
action.
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3.1. Interpretation of sketch strokes in 3D

As a starting point, the system provides one default planar surface.
The initial pen stroke is projected into that plane and approximated
by a planar B-spline curve. The system uses interference of sub-
sequent pen-strokes with existing curves to embed the sketch into
an auxiliary projection plane: assume that the user continues with
another pen stroke starting at (or close to) a previously sketched
curve. Here, a pen-stroke is a set of ordered points in the current
image plane. At this stage, the system recognizes two alternatives
to compute the projection plane:

1. The stroke emanates from an existing curve and ends in the “air”
(no other curve was hit). The 3D curve is projected to current
image plane. The parameter value corresponding to the closest
point on that projected curve is found and the projection plane
is computed from point and tangent at that point, see figure 1(a).

2. If the stroke connects two existing curves, see figure 1(b), two
curve points and the bi-normal at the first curve point are used
to set up the projection plane.

(a) A simple 2D stroke emanating from existing curve
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(b) A 3D stroke connecting two curves

Figure 1: Interpretation of pen-strokes in 3D
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Proceeding this way one or several 3D curves can be obtained.
The interpretation of the curve data depends on the selected design
mode:

Sweeping mode: whenever the input stroke emanates at a planar
curve, the resulting curve is interpreted as an “axis-curve” for
sweeping the curve the stroke emanates at.

Interpolation mode: the 3D curves are interpreted as input curves
for the surface interpolation. For each curve an incidence con-
straint is automatically generated and the surface which interpo-
lates sketched 3D curves is computed.

Sculpting mode: The user draws or selects one curve incident on
an existing surface. Other curves are either “fixed” (their shape
and position must not change) — or “free” (their shape or position
are allowed to change). The selected curve is sculpted by further
pen-strokes inside of an auxiliary “orthogonal sketch space” —
an auxiliary surface which is locally orthogonal to the sculpted
surface along the original curve,see [MKBO02] for details.

Assuming that surface interpolation from arbitrary curves is avail-
able, the former two modes are relatively straightforward. The
sculpting mode, however, requires additional effort to manage the
information about the current “state” of the curve and surface data.
In the following paragraph we describe a concept of a constraint-
management for this kind of modeling.

3.2. Constraint-based surface sculpting

(©) (d)

Figure 2: Schematic Al demonstration of using the modeler in
“sculpting” mode

Assume, the user wishes to create a dome shaped surface as
shown in figures 2(a)-(d). The user sketches the closed curve A
first. The curve is projected into the parametric space of the se-
lected surface S which yields a pre-image of A in the domain of the
surface. A curve-incidence constraint is automatically generated. If
desired, the region outside the closed curve is trimmed from the

surface S. Since we want to preserve the shape of A it is marked
as “fixed”. Now, in order to bulge out the surface, the curve B is
drawn, fig. 2(b). The sketch is first interpreted in an auxiliary plane
(see §3.1) and then projected onto the surface. Then, the curve is
adjusted to be incident in appropriate sketching space determined
as described in §3.1. In our example the sketch space is denoted by
the hatched region in fig. 2(b). The pre-image of B is checked for
interference with other elements. In this case, B intersects with A at
points Py and P5. It is necessary to capture these conditions by addi-
tional constraints. Here, 4 point-curve incidence constraints among
both curves and points are recognized and generated automatically
which yields a constraint-graph shown in fig. 3(a).
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Figure 3: Constraint-graph and construction plan for the cap sur-
face example.

Whenever a sketching transaction is finished, the system offers
a shape for surface S, see fig. 2(c). The order of evaluation is de-
termined from current distribution of degrees of freedom (DOF) in
the constraint graph: in our example, the “construction plan” is as
shown in fig. 3(b): the curve A is fixed which enforces fixed points
P1 and Py. These consistency constraints consume 2 DOF from B
— thus, the dependent DOF of B must remain fixed. Every sketch
needs to be checked against these conditions. This implies that
there must be a two-way communication between the constraint
solver and the sketching system: at the time when the sketch is in-
terpreted, only this reduced number of DOF may be considered.

Finally, the surface is determined from curves A and B. The re-
sulting shape of S will depend on the structure of its B-spline spaces
and, of course, on the quality of the applied smoothing constraint,
see below. One possibility is to start with relatively simple surface
and insert new control points at appropriate positions if errors at
the constraints exceed defined limits. However it is not yet clear at
what positions the new control points should be inserted in order to
reduce the errors in the continuous curve constraints. The error for
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each constraint is measured by back-substitution of the pre-image
curve into S and evaluation of the difference among this exactly in-
cident curve and the curve present in the model. In the following
[ri (X,Y )| will denote this error for a specific constraint. At the last
stage of the construction plan, shown in figure 3(c), the surface is
determined (possibly in several iterations) as a solution of a con-
strained variational problem

min f(S) subjectto |ri(A,S)|=0A]r2(B,S)|=0 (1)

where f(S) is a smoothness constraint which regulates the overall
shape of the surface. Here, the objective function f(S) is selected
as described in section 2.

The so determined construction plan stays valid as long as the
user does not change the distribution of DOF (i.e. does not fix or
free an another element). A new plan needs to be evaluated if el-
ements are created and inserted into the model, or if existing ele-
ments are removed. This is illustrated in fig. 2(d). Another curve,
C, is introduced. New consistency conditions arise, if the user de-
cides to keep the shape of B: since B intersects with C in P5 and A
remains fixed, the number of Cs DOF is a-priori reduced by 3.

In summary we note: the model is represented by a constraint-
graph which is updated depending on user’s design actions. The
construction plan is determined after an element of the graph
(curve, surface, or point) has undergone a change of the state
(i.e., the user has marked an element as one of “fixed”, “free” or
“changed”). For analytic and planar surfaces algorithms to obtain
a construction plan from “steady state” constraint graph have been
proposed, see e.g. [BDKMO00, DMB98]. However, these algorithms
rely on the a-priori knowledge of how many degrees of freedom of
an object are consumed by a specific constraint. Since this is impos-
sible to predict in case of ill-posed linear problems (see section 4),
these methods have to be modified or completely re-evaluated; this
is subject to future work.

4. Surface interpolation from general curves

The central operation required in the above example is the con-
strained approximation of a surface given one or several curves.
In the following we will explain how to obtain a numerically sta-
ble and optically pleasing surface which minimizes errors at curve
constraints.

4.1. Demonstrating the ill-posedness

The equation system is set up as noted in section 2. Thus one curve
constraint (or a concatenation of several curve constraints for one
surface) result in an linear system of equations

H=AF @)

The matrix H contains the control points of constrained curves and
F denotes matrix of the unknown control points of the surface F.
Given one or several 3D curves we look for a surface F such that 2
is satisfied.

In order to demonstrate the problems one encounters when solv-
ing the system 2 consider figure 4: Let be given a bi-cubic B-
spline surface with one curve constraint and two sketched “re-
quest” curves. The surface has 8 x 10 control points, the domain
curve G is a cubic B-spline with 8 control points. The exact surface
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Figure 4: Demonstration of the ill-posedness for a single curve
constraint on a bi-cubic B-spline surface with 8 x 10 control points.
(a): Initial shape of surface, the original shape of the curve H
(dark). Two request curves are shown in bright color: a rapidly
varying curve and a smooth curve. (b): The unregularized solution.
Although the surface satisfies the constraint — the smooth bright
curve from figure (a) — from the shown control mesh we conclude
that this surface is useless.

curve H = F(G) has degree 12 and 102 control points. Clearly,
this highly overdetermined curve is not well suited for interactive
editing. In [Mic03] and [MKBO02] we have proposed to maintain a
level of detail representation between the sketched curve and the
exact curve: briefly, we compute “compatibility” matrices which
perform the necessary degree elevation and knot insertion on the
request curve yielding a linear system with compatible number of
rows on both sides.

Now we turn to solving the inverse problem in eq. 2. The system
exhibits the typical features of an ill-posed problem:
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e The condition number is high. The condition of a linear equa-
tion system is expressed as amount of change in the normed so-
lution ||F|| in dependence of the changes in parameters H, see
[TB97]Part 111, for example. Figure 4(b) demonstrates that: even
a small deformation of the constrained curve, in this case, shown
as the smoother bright curve in figure 4(a), causes randomly oc-
curring “wiggles” in the control mesh of the surface which is
shown in 4(b).

e The rank of the system is a “”’noisy” number. The first property
does not necessarily imply that a linear system is ill-posed. The
characteristic property of an ill-posed problem is that there is
no obvious choice for the rank of the system matrix. For exam-
ple: when applying pivoted Gaussian elimination one will not
encounter a pivot which is particularly smaller than the pivots in
previous elimination steps. The values of pivots gradually decay
to a small number; hence, there is no obvious criterion when to
stop the elimination.

The ill-posedness of the linear system AF = H is caused by nearly
linearly dependent rows (and columns) in A; in other words, the
chosen linear model, here obtained from the composition of the
tensor-product B-splines spaces of F and the domain curve G, is
not able to safely determine the influence of the surface curve H on
the control point of F.

4.2. The L-curve regularization

The superior tool for analysis of ill-posed problems is the Singular
Value Decomposition (SVD). The SVD of system matrix A has
the format A = UZV". The matrices U,V are orthonormal and £
is a diagonal matrix such that ; > gj1... > 0 where m x n is the
size of A. For well-conditioned non-singular problems all “singular
values” oj are non-zero and the condition number K = 01 /Gpmin(mn)
is small. In case of well-conditioned singular problem, there is a
particular k such that oy > oy,1 and o; = 0 for i > k+ 1. The
“truncation” parameter k corresponds to the rank of the singular
problem. Consider the following portioning of the SVD matrices:

Ug=[u1...u]; Zx=diag(oy...0k); Vik=[V1...V]

Accordingly, introduce the matrix V., which consists of all
(m — k) remaining columns of V. The matrix Ay = UkaVI rep-
resents the closest rank k approximation of the original matrix A,
see, e.g. [GvL89] for further details. Thus, instead of solving the
original ill-posed problem we solve A Fy = H by computing

Fe = Vi "UgH ®)

for some selected “truncation parameter” k. Note that Fy has no
component in the null-space of A; the generalized solution space
(for cases k < min(m,n)) is obtained by adding a translation factor
from As null-space

F = Fx+Fn = Fx+ Viqaf 4)

where f is a (m — k)-size vector of free parameters. Setting f =
VLlFO (Fo denotes coefficients of a previously known surface)
and inserting f into above equation one obtains a solution which:

1. exactly solves AyFx =H
2. minimizes the residual p = ||AFx — H|| and
3. minimizes the normed difference n = ||Fx — Fo||

This procedure is called Truncation of the SVD (TSVD) and it is
the common choice whenever a singularity is expected in a linear
system, see [PTVF92]chapter 15, for example.

The difficulty with an ill-posed problem is that the singular val-
ues of an ill-posed problem decay gradually to zero without a sig-
nificant jump in magnitude at a specific oyx. Hence, determining the
“numerical rank” k is more involved. The basic idea of regular-
ization is to locate a “nearby” rank deficient but well-conditioned
problem which approximates the original problem with sufficient
accuracy. The choice of the truncation parameter k is apparently
not arbitrary, since one seeks a solution Fy which minimizes the
residual and the norm of the solution. Too small k will cause large
error in py and too large k will increase ny, since computing Z;l
in eqg. 3 involves divisions by small numbers.

It was observed by several researchers that if the values py and
Nk are plotted in logarithmic scale for several ks a curve with char-
acteristic “L-shape” results. We point to Hansen’s paper [Han01]
for historical overview and further background of “L-curves”. Ob-
viously, the “optimal” k will be such that the error in constraints
(horizontal “leg” of the L-curve) is as small as possible and the
solution is not yet influenced by nearly singular equations which
is reflected by increasing norm of the solution vector (vertical leg
of the L-curve). It is shown in [Han01] that this property is satis-
fied for truncation parameter which corresponds to (or is close to)
the sharp corner of the L-curve. There is a more precise statement
about the L-shape of the resulting curve the “Picard condition”, see,
e.g. [Han98]. Simply stated, for an ill-posed problem H = AF the
modified “left-hand side” H -+ AH must be “smooth enough to sur-
vive the inversion to F”. Otherwise, the L-curve possesses several
distinct corners; it moves from one to the next in a “cascade”-like
manner. Hence, we cannot expect that a meaningful solution can be
computed for arbitrary curve requests; for example, returning to the
surface from fig. 4(a), it is very unlikely that a reasonable surface
(with that dimension and structure of the B-spline space) which in-
terpolates the rapidly varying curve will exist. Following Hansen’s
advice in [Han90] in such cases we select the corner with smallest
n. The effect of this choice is immediately forwarded to the user
of our interactive system: the surface does not vary as strong as
the sketched curve — the fast variation of the sketched curve is sup-
pressed. This is a signal to the user that the required changes are not
possible on given surface and in presence of specified constraints.

For the surface example in fig. 4 we obtain the L-curve shown
in figure 5: The optimal truncation parameter corresponds to the
“sharp” concave corner emphasized by an arrow; a closer look at
this region (shown in a magnified scale in the right upper corner of
the figure) reveals that the “corner” consists of a cluster of rapidly
varying values (pg,nk). This leads to an idea to approximate the
discrete points of the L-curve by a sufficiently smooth B-spline
curve L(t) and to locate a parameter value ty where the curve ex-
hibits largest negative curvature, see [Han01]. We have applied a
more effective procedure: we start with a piecewise linear approx-
imation of the p, n point set, increase the polynomial degree to
cubic and apply a slightly modified version of Lyche-Marken al-
gorithm [LM87] to remove as many knots as possible. We build a
statistics on errors caused by removal of a knot and increase the
threshold which regulates the Lyche-Marken recursion until the
statistics contains only errors such that | log(€max) — 10g(Emin)| < 1.
This heuristics relies on the observation that the L-curve has one
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Figure 5: The L-curve with the magnified ““corner” region for con-
straint shown in fig. 4.

Figure 6: The surface corresponding to the corner of the L-curve
from fig. 5. The “aliasing™ of the surface is emphasized by staircase
shaped lines.

(optimal case), or several, distinct regions of large curvature and is
“smooth” elsewhere. Also, this method copes better with the irreg-
ular parameterization of the discrete L-curve data. At the output,
we obtain a curve which has one (in the optimal case) or several
9 discontinuities in the knot vector. The curve points correspond-
ing to these discontinuities are (or are close to) the corner of the
L-curve.

(© The Eurographics Association 2004.

4.3. The “surface aliasing” effect

The solution surface corresponding to the L-curve corner at k =38
is shown in fig. 6: observe, that the surface deforms along the curve
in a “staircase” like manner. We call this the “surface aliasing ef-
fect”, rf. [MBO0O] for its similarity with aliasing as known in com-
puter graphics. A attempt to map a non-horizontal or non-vertical
line on a discrete mesh of pixels is comparable to mapping a non
iso-parametric line to the rectangular mesh of control points. The
truncation parameter k =38 means that the solution is stable when
38 out of 80 control points are determined. The remaining control
points were determined according to side constraint miny||F — Fo|.
This is apparently not sufficient: the transition among the depen-
dent and independent control points is too abrupt. Such surface,
although in algebraic sense correct (the example in fig. 6 renders
the residual of approximately 1073, cf. to figure 5) will surely not
be accepted by the designer. One has to consider a kind of “anti-
aliasing”.

4.4. L-curve regularization with side-constraint

In [MBO00] we have proposed to locally re-parameterize the origi-
nal surface F by a new surface F’ such that the constrained curve
H becomes an iso-parametric line in the domain of F’. All manip-
ulations of H are transfered to F’ which completely avoids aliasing
and ill-conditioning of the problem, see the abovementioned paper
for further details. Although the reparametrization is an effective
method to remove most of the numerical problems, it is inconve-
nient: it can be carried out only for one curve constraint inside of a
(curved) rectangular region on F. This is not always possible, e.g.,
if there are several interfering curve constraints. Furthermore, the
underlying surface must remain “fixed” in order to avoid aliasing
in F along the edge curves between F and F'.

Note that we have (m — k) free parameters f and the solution
space (eq. 4) obtained from the TSVD at our disposal. Thus, we
may use these free parameters for stating additional constraints
which help against the “aliasing” effect and improve the shape
of the surface without destroying the already minimal residual of
the TSVD solution. Well-suited for this purpose are the quadratic
surface functionals frequently used in variational surface design,
see [GS97], for example. It suffices to say that the most frequently
used functionals are quadratic forms F'LF in control points of
the surface and, hence, possess one well-defined minimum at the
solution of LF = 0. The matrices L can be computed efficiently
by symbolical or numerical methods see [VBH92] or [Mic03]. In
the following we will consider a linear combination of matrices
L=y aiL; for 3, aj = 1, where L;, denote the normal equa-
tions of area, thin-plate energy and variation of curvature minimiz-
ing functionals fori=1,2,3.

If the SVD of A is available, an efficient numerical method
to solve such constrained approximation problem is the so-called,
Modified TSVD (MTSVD) [HSS92]. It allows to define more gen-
eral side constraints. Instead of ||F — Fp|| one minimizes ||L(F —
Fo)|| for some regularization matrix L. In our case the selection of
L is as described above. We know that the linear combination of
the surface functionals is minimal at

L(F—Fg) =0

with the previously known solution Fq before the deformation.
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Substituting eq. 4 for F in above equation yields
L(Fx+Vkaf—Fp) = 0
LViiaf = L(Fo—Fy) ©)

Solving eq. 5 for f and substituting back to eq. 4 we obtain a “cor-
rected” MTSVD solution Fi_ ,c which in addition to properties 1-2
from §4.2 minimizes the expression ||L(Fx — Fo)||.

In [HSS92], Hansen proposes to compute the values of px =
|AFL «« — HJ| and ny = ||FL k|| for each k and locate the corner of
the “weighted” L-curve as in the case of TSVD. Consider, that there
may be several hundred up to several thousand truncation param-
eters, thus, we must be able to obtain the penalty term f fast. The
linear system in eq. 5 can be solved in a particularly efficient way
by pre-computing the worst case QR-decomposition of LV 1, i.e.,
for the smallest k ever used and update it for the current k accord-
ingly, see [HSS92] and [GvL89]812.6 for details. Thus obtaining
the proper “correction” term f for each k is a computationally cheap
procedure. Note that the pre-condition for this procedure is that the
matrix LV, 11 must be non-singular. Otherwise, the trick of up-
dating the QR-decomposition does not work and the eg. 5 must be
solved for each k from scratch. Fortunately, if L is the linear combi-
nation of matrices as described above, the matrix LVy_, .1 tends to
be non-singular for a; > 0, reasonable parameterization of the B-
spline surface F and kmin larger than three, see [Die96] or [Die98],
for example. Theoretically, matrices gained from quadratic surface
functionals always posses a trivial solution: the objective function
equals zero if all control points are zero. One has to assure that
at least three or more linearly independent constraints exist. Our
experience shows that, in practice, even more linearly independent
constraints may be necessary — we assume that this is due to the nu-
merical errors which are contained in the regularization matrices.

We have found that the optimal truncation parameter obtained by
MTSVD methods rarely differs from k obtained by TSVD; more-
over, since the system matrix in eq. 5 is not particularly well condi-
tioned (the typical condition numbers obtained in our experiments
were between 103-10%), the discrete L-curve points are consider-
ably more “scattered”. Hence, we recommend to compute k by the
TSVD method and solve for f in eq. 5 only once. Figure 7 shows
three different modifications of the same surface and the same con-
straint as in figure 4 after the MTSVD correction was applied. No
aliasing can be observed, the error in the residual is less than 1073,
The example in figure 8 shows the computed result of the dome
shaped example from figure 2 with two curve constraints.

5. Conclusions and future work

In this paper we presented part of our free-form sketching sys-
tem intended to provide the designers with more intuitive ways in
designing free-form shapes. In particular, combining the concept
of free-hand sketching with constraint-based surface sculpting, we
hope to achieve reasonable compromises between real-world de-
sign tools (e.g. pencil and paper) and virtual computer tools. With
regard to surface interpolation as proposed in section 4 we summa-
rize the problems and subjects to future work as follows:

Efficiency

In previous work we have put much effort into speed up of setting
up the equation system using “unevaluated” polynomial composi-

tion. The result is that for examples presented throughout this pa-
pers, setting up the equations takes only a fraction of second. The
subject of future work will be to improve the efficiency of solv-
ing the equation system: Although the SVD provides a perfect in-
sight into an ill-conditioned system obtaining the SVD for a general
matrix is a computationally expensive procedure. The amount of
work required by currently known symbolic algorithms (the Golub-
Kahan method [GvL89]Sec. 5.4 and 8.3) to perform the full SVD
is approximately O(m? + n%). Note that the SVD needs to be com-
puted only once in a “life-time” of a system of linear constraints:
computing a surface after a curve modification from available SVD
is fast and delivers a new surface shape in real time. Nevertheless,
for large data sets computing the SVD may cause quite unpleasant
delay-times during the design work: for moderate sizes of A, such
as used in above examples, i.e. few hundred columns and rows the
LAPACK functions “gesvd” or “gesdd” require about 1-3 seconds
on an 750 MHz PC. This is acceptable; however, consider that the
model may consist of several surfaces and many curve constraint.
Also, the run-time grows rapidly for larger examples: for surfaces
with about 500 control points and more than thousand constraint
equations the SVD already requires prohibitive 15-20 seconds. Un-
fortunately, the alternatives to SVD are by far not that straightfor-
ward and reliable. Other, cheaper to compute, rank-revealing fac-
torization is the so-called Rank-revealing QR-factorization (RR-
QR) as proposed by Chan and Hansen in [CH90]. In order to
apply this method, at least approximate guess on the location of
the optimal truncation parameter is required. Otherwise, the ef-
fort becomes comparable to computing the SVD. A very promising
method seems to be the Sparse Multifrontal Rank Revealing QR
Factorization described by Pierce and Lewis in [PL97]. However
the application to our problem has to be further examined.

We also intend to investigate the usage of so-called iterative
methods for large and sparse linear systems of equations. The ma-
trices occurring in our application are sparse with predictable struc-
ture which can not be utilized by the symbolic SVD algorithms.
The gain on efficiency when using iterative solvers is considerable.
Moreover, the so-called “Krylov subspace” methods exhibit similar
behavior as the SVD: they tend to filter out the stable components
of the solution first. Thus, the discrete L-curve method can be ap-
plied to obtain the optimal truncation parameter. On the other hand,
for ill-posed problems, the convergence of most iterative methods
is poor: methods such as the famous “Conjugate Gradient” or “GM-
RES” are guaranteed to converge for non-singular equations only.
We have run few tests with these methods and in the cases when
they converged obtaining the solution took only fraction of the time
required for SVD. The problems to be solved are to define the right
“pre-conditioning” method which is suited for this type of equation
systems, see e.g. [GvL89]Chap. 10 for further details on this topic.

The smoothing constraints

The “smoothed” MTSVD solution tends to generate “too stiff” sur-
faces whenever there are not sufficiently many constraint which re-
strict the shape of the surface. Considering the previously known
surface Fo when we solve for the penalty term f in eq. 5 prevents
the surface from collapsing into a narrow strip somewhere around
the curve constraint. However, for certain curves, the surface func-
tionals used in this work and the MTSVD method generate almost

(© The Eurographics Association 2004.
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Figure 7: Bi-cubic surface obtained by the L-curve regularization
with side-constraint. The modifications of the surface proceed from
top to bottom, the “next” sketched curve is shown in darker color.
Adding the side constraint which acts as a “‘smoothing term” to
the L-curve solution removes the aliasing artifacts and delivers an
optically and geometrically smooth surface.

“ruled” surfaces and may smooth out desired features of the origi-
nal surface. This is rarely the shape a designer would expect. One
possibility is to use so-called “data-dependent” functionals intro-
duced by Greiner in [Gre94]. They take the shape of a reference sur-
face (assumed to be known) into account more strongly than eg. 5
does. The surface sculpting is an iterative process, thus, a surface
from previous design step is always available and should be used

(© The Eurographics Association 2004.

Figure 8: The example shows the design of a “dome” surface with
two curve constraints. The closed loop remains “fixed”, the other
curve is modified by subsequent pen-strokes. The bi-cubic surface
with 10 x 10 control points was trimmed outside of the fixed loop.

as such reference. If working in “interpolation mode”, see §3.1, a
reference surface can be computed from sketched curves as a raw
least squares fit to a bi-linear surface, for example. Another possi-
bility, simpler to implement, is to use incomplete QR-factorization
when solving eq. 5: this allows to regulate the amount of smoothing
by considering only a “lower energy” factor f. The disadvantage is
that the QR-factorization has to be carried out with pivoting and
hence, has to be computed from scratch for each new shape of the
constrained curve.
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