
 

Reconstruction with 3D Geometric Bilateral Filter 

A. Miropolsky and A. Fischer 

Laboratory for Computer Graphics and CAD, Technion -Israel Institute of Technology, Haifa, Israel 

 

Abstract 
In recent years, reverse engineering (RE) techniques have been developed for surface reconstruction from 3D scanned data. Typical 
sampling data, however, usually is large scale and contains unorganized points, thus leading to some anomalies in the reconstructed 
object. To improve performance and reduce processing time, Hierarchical Space Decomposition (HSD) methods can be applied. 
These methods are based on reducing the sampled data by replacing a set of original points in each voxel by a representative point, 
which is later connected in a mesh structure. This operation is analogous to smoothing with a simple low- pass filter (LPF). 
Unfortunately, this principle also smoothes sharp geometrical features, an effect that is not desired. The high performance results of 
bilateral filtering for removing noise from 2D images while preserving details motivated us to extend this filtering and apply it to 3D 
scan points.  This paper introduces anisotropic 3D scan point filtering, which we have defined as 3D Geometric Bilateral Filtering 
(GBF). The proposed GBF method smoothes low curvature regions while preserving sharp geometric features, and it is robust, 
simple and fast. 
 
Categories: Hierarchical Space Decomposition, surface reconstruction, bilateral filtering. 
 
 
 

1. Introduction 

1.1. Motivation 

Typical scan data is very large scale and noisy, making the 
reconstruction process time consuming and inaccurate. In order to 
overcome these problems, the data must be reduced and denoised. 
The denoising process should be fast and should preserve sharp 
features. Methods described in the literature capable of denoising 
the sampled data have been applied only to the reconstructed 
mesh. Removing the noise from the sampled points directly and 
reducing the data while preserving the shape of the sampled 
surface, particularly its fine details, still remains a challenge. 
Explicit information regarding sharp features is usually missing 
from the cloud of points, thus presenting an obstacle.   Scanning 
technologies that provide additional information regarding the 
surface normal associated with every sampled point can be used 
in order to overcome the above problem. This paper describes a 
new method that utilizes normal and position information 
regarding the sampled points for reducing and denoising the data, 
while preserving features. A detailed description of the proposed 
method is given in the approach section. 

1.2. Problem statement 

This work addresses the problem of surface reconstruction from 
large-scale noisy sampled data. In order to overcome this 
problem, this paper proposes data and sampling noise reducing by 
applying edge-preserving filtering on scanned points. The desired 
result is an approximation of the surface points, while preserving 
critical features such as sharp edges and corners common in 
mechanical parts. The properties required from the edge-
preserving filter are as follows: 
 
� It should be fast. 
� It has to preserve high curvature features, such 

as sharp edges and corners. 
� It has to remove noise, providing a good 

estimation of underlying sampled surface. 

2. Overview 

Following is an overview of the state-of-the-art approaches for 
surface reconstruction and noise filtering methods. 

2.1. Surface reconstruction 

Computational geometry studies have focused on piecewise-linear 
interpolation of unorganized points. Most of the algorithms in this 
field [AB98][ACK01][Boi84][DGH01] define a reconstructed 
surface as a carefully chosen sub-set of Delaunay triangulation in 
R3. The data point interpolation approach provides high 
performance for noiseless data. If the noise is significant, 
however, approximating the surface is preferable to interpolating 
it through the data points. 

In the fields of computer graphics and computer aided 
geometric design, methods constrain the surface to traverse 
between the points, while the maximal error is bounded by the 
user. A well-known reconstruction algorithm of Hoppe [HDD*92] 
works effectively on real test cases and objects with arbitrary 
topology. However, the method uses the Marching Cubes 
algorithm [LC87], and the produced meshes suffer from nearly 
singular triangles and deficient approximation of sharp features. 
Curless [CL96] proposes a volumetric approach which exploits 
the fact that the cloud of points is a collection of laser range 
images. Unfortunately, this assumption restricts the applicability 
of the system to objects scanned by laser range devices. 
Azernikov [AF03] proposes a volumetric method that 
approximates the surface by filtering the set of original points 
with a low-pass filter. Thus, the process becomes more robust and 
stable with respect to sample noise. But this approach also leads 
to suppression of fine details and sharp features. 

A number of works use normal direction information to 
significantly improve surface approximation. Bernardini 
[BMR*99] proposed a Delaunay triangulation-based method 
called the ball-pivoting algorithm. This method interpolates the 
data points and this becomes a drawback when the data contains a 
significant amount of noise. Azernikov [AMF03] extended the 
above mentioned volumetric approach with respect to normal 
information. This extension enables the reconstruction of object 
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families, such as thin flat parts. However, this approach increases 
the noise sensitivity of the method with respect to noise in the 
normal domain. 

The above discussion shows that appropriate sample noise 
reduction plays an important role in surface reconstruction. Noise 
filtering techniques are summarized in the following section. 

2.2. Noise filtering 

Noise filtering is part of ongoing research in image processing 
and computer vision. The state-of-the-art approaches in this field 
have focused on methods for edge-preserving noise removal. 
Tomasi [TM98] introduced a non-iterative scheme for edge-
preserving smoothing, called bilateral filtering. The idea 
underlying this method is to refer to similarity in the range 
domain of an image in the way that traditional filters refer to 
closeness in the spatial domain. 

Denoising methods for 3D scan data are naturally based on 
image denoising approaches. Most efforts have been toward 
reducing noise after the mesh has been created. Taubin [Tau00] 
introduced signal processing on surfaces by defining the 
Laplacian operator on meshes. Fleishman [FDC03] proposed the 
bilateral-mesh-denoising method. The problem of these denoising 
algorithms is that they still require preprocessing such as mesh 
generation. Moreover they are strictly dependent on connectivity 
information provided by the mesh, where the mesh generation 
process itself suffers from noise.  

In order to overcome this problem we have developed a new 
3D method based on bilateral filtering, which is applied directly 
on the scanned points. The next section gives a detailed 
description of the method. 

3. The approach  

This paper conforms to the surface reconstruction method 
proposed by Azernikov [AMF03]. The approach utilizes the 
Hierarchical Space Decomposition Model (HSDM), based on 
Octree data structure, where the set of scan points in each voxel is 
replaced by approximated representative surface point, which is 
then connected in a mesh structure. Operations applied to a set of 
points in each voxel are analogous to smoothing operations with 
low-pass filter (LPF). The assumption is that in low curvature 
regions surface point coordinate values change slowly, and 
neighbor points are likely to have similar coordinates. Therefore, 
it is appropriate to simply average them together. The noise points 
are mutually less correlated than are the signal ones, so noise is 
extracted while the signal is preserved.  However, the assumption 
of slow spatial variations fails at the edges, which are 
consequently blurred by low-pass filtering. Thus, 3D edge-
preserving filtering is required in order to prevent averaging 
across high curvature regions or edges, while still smoothing the 
areas with low curvature. 

This paper introduces a 3D Geometric Bilateral Filter (GBF) 
method for edge-preserving data reduction and denoising. The 
method is based on normals information. It calculates a voxel 
value as a weighted average of the scanned points encapsulated in 
the voxel, while the weights are defined as a function of both 
spatial location and normal value of the points. Figure 1 illustrates 
the complete GBF reconstruction process. 

Unlike previously described denoising methods applied on the 
reconstructed mesh, the proposed method enables noise reduction 
directly from sampled points during surface reconstruction, thus 
facilitating the process. Moreover, GBF enables proper data 
reduction, thus significantly improving the execution time of the 
entire reconstruction algorithm. The advantages of the proposed 
method can be summarized as follows: 

� Reduces sampling noise. 
� Preserves sharp features. 
� Reduces data, leading to fast reconstruction. 
� Is simple to implement. 

In the following discussion, Sections 4.1-4.2 describe the 
technique for implementing the 3D Geometric Bilateral Filter. In 
Section 5, the feasibility of the method is demonstrated on 
complex objects, and Section 6 discusses the properties of the 
proposed filtering method. Section 7 provides a summary and 
conclusions. 

 
 Cloud of Points 
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Figure 1: Reconstruction process with GBF method. 

4. Implementation 

4.1. 3D Geometric Bilateral filter 

The GBF method follows the 2D bilateral filtering technique in 
image processing. However the problem is different in the case of 
a 3D image. The desired value we seek is the spatial location of 
surface point s and not the surface normal at this point, which is 
analogous to the intensity value in image processing.  

In order to initialize the process, the approximated position of 
point s is calculated by defining the centroid of the sampled points 
encapsulated in the voxel. For each sampled point in the voxel, its 
relative distance from the centroid is calculated. These distances 
are used to define the position closeness weights of the points. 
The centroid normal Ns is analogous to the intensity value Is in 
the 2D case.  For each sampled point, the difference of its normal 
relative to Ns is calculated, to be used later for defining the 
normal similarity weight of the point. The normal spectrum of the 
scan points is obtained by mapping all point normals to a Gauss 
sphere, and the centroid normal is then calculated as a simple 
average of this spectrum. The spatial stop function f( ) determines 
the point weight according to its closeness to the centroid in the 
spatial domain, and the edge-stopping function g( ) refers to the 
similarity between the point normal and the centroid normal in the 
vector domain. Thus, the output of the Geometric Bilateral Filter 
(GBF) for a voxel V can be defined as follows (equation (1)):  

1
[ ( , )] [ ( , )]

( )s p s p
p V

I f d p s g N N I
k s

�
�

� � ��  (1) 

where: p – index of scanned point, encapsulated in the voxel; s – 
index of the centroid; V – 3D voxel space; Is – spatial location of 
the representative point in the voxel; Ip – spatial location of 
sampled point p, encapsulated in the voxel; f( ) – spatial stop 
function; g( ) – edge-stopping function; Np – surface normal at 
point p; Ns – centroid normal; d(p,s) - the Euclidian distance 
between point p and centroid s; �(p,s) = <Np, Ns>-inner product of 
normal vectors describing the difference between normals of point 
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p and centroid s; k(s)—normalization factor given by equation 
(2): 

( ) [ ( , )] [ ( , )]p s
p V

k s f d p s g N N�
�

� ��  (2) 

Consider now the case of a scanned sharp edge, as shown in 
Figure 2. This case is very similar to the uncertainty problem 
described by Durand [DD02] as corresponding to pixels where 
there is not enough information in the neighborhood to decouple 
large-scale and small-scale intensity changes. In this case, we are 
unable to separate the points with large-scale and small-scale 
variations of normals. In Figure 2(a) all point normals are equally 
different from the centroid normal. As a result, all points get the 
same normal similarity weight, and the output of the GBF will be 
the same points centroid, which is analogous to the LPF. In this 
case, the previously proposed bilateral filtering technique 
described by equation (1) fails, and the sharp edge is finally 
smoothed. 

Our strategy for solving the uncertainty problem is as follows. 
First we propose to map the original points to a sphere with its 
center at the centroid. This mapping is accomplished by simple 
projection of the points to the sphere along the vector from a point 
to the centroid, as shown in Figure 2(b). Such mapping can be 
seen as an approximation of sharp edge/corner to smooth surface, 
where the Geometric Bilateral Filter should work well. The 
normals of the map points are defined as unit vectors from 
centroid to original points. Since they are located on the sphere, 
all the map points are equidistant from the centroid as the center 
of the sphere. Thus, all the map points receive the same spatial 
weight, which means that the spatial stop function no longer plays 
any important role and therefore can be ignored. The edge-
stopping function g( ), however, is still essential, but it now refers 
to mapped normals instead of original normals.  

The geometric bilateral filter is therefore reduced to the 
following equation: 

1
[ ( , )]

( )s p s p
p V

I g n N I
k s

�
�

� ��  (3) 

( ) [ ( , )]p s
p

k s g n N�
��

� �  (4) 

where np – normal at map point corresponding to original point p. 
Thus, the algorithm of the proposed method is based on the 
following steps:  
(1) Construct HSDM from a cloud of points. 
(2) Calculate the centroid s in each voxel as a simple average of 

the scanned points encapsulated in it.  
For each voxel:  
(3) Calculate the centroid normal N.  
(4) Calculate the mapped normal Nm for each scanned point. 

(5) Calculate the weight wi for each scanned point according to 
dissimilarity ���� of its mapped normal with respect to centroid 
normal. 

(6) Calculate the representative surface point RepPoint as a 
weighted average of scanned points. 

The following is the pseudo-code for applying a GBF to a 
single voxel: 

 
GBF (scannedPoints{qi}, centroid s) 
 N = centroid->Normal; 
 RepPoint = new Point3D; 
 for i = 1 to sizeOf( {qi} ) 
  mN = new Vector3D(s,  qi);  
  normalize(mN); 
  ���� = ScalarProduct(mN, N); 
  wi  = g(����); 
  RepPoint += wi * qi; 
  K += wi; 
 end; 
 return RepPoint/K; 
 
Although only the normal similarity function g( ) exists, the 

GBF filter remains bilateral due to new mapped normals that refer 
implicitly to the spatial location of original points. The new 
normals np are compared to the centroid normal Ns, so that the 
normal information is respected as well. 

4.2. 3D Geometric bilateral filter as a robust statistical 
estimator 

Durand [DD02] showed that the bilateral filter belongs to the 
group of robust statistical estimators. Thus, in our case the 
proposed 3D Geometric Bilateral Filter (GBF) can be seen as a 
robust statistical 1-step estimator that correctly estimates the 
underlying sampled surface. Based upon the discussion on 
desirable properties of edge-stopping function in [DD02], we can 
assume that the most robust results for GBF will yield Gaussian 
(equation (5)) and Tukey’s biweight (equation (6)) functions. 

2

22( ) r
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�  (5) 
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r

x
x
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otherwise

�
�


 � �

 	 �
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�

 (6) 

We used the Gaussian edge-stopping function for all our 
experiments. 

 
 

 
 

(a) (b) 
Figure 2: (a) The uncertainty problem; (b) The solution. 
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5. Examples 

We have demonstrated the feasibility of the proposed GBF 
method on several complex models. Figure 3 shows the synthetic 
model with added noise, Figure 4 refers to a scanned toy airplane 
an, Figure 5 and Figure 6 present respectively the Turbine Blade 
and Skeleton Hand models, which were downloaded from the 
Large Geometric Models Archive of Georgia Institute of 
Technology [LGMA]. The Hausdorff distance between the data 
points and the reconstructed mesh, normalized by a bounding 
cuboid size, was chosen as an error estimator. The error can be 
controlled by the voxel size requirement.  

Table 1 presents the performance of the proposed method on 
an Intel Pentium 4, 1.6GHz, 523Mb RAM. 

 
Object n d Max e 

[%] 
t [sec] 

Mechanical part 164425 6 1.5 14.3 
Airplane toy 117152 7 0.7 21.8 

Skeleton Hand 327323 7 0.7 23.3 
Turbine Blade 882954 7 0.7 172.8 

Table 1: Performances of the proposed method: 
n – number of sampled points, d – Octree depth,  

e – error, t – execution time 

6. Discussion 

In this section, some of the properties of the proposed 3D 
Geometric Bilateral Filtering (GBF) method are discussed.  

(1) The only parameter that has to be provided for GBF is the 
normal spread threshold ����r. This threshold is a scale parameter in 
the normal domain that defines the smoothing level. This 
parameter defines the robustness of the filter since it determines 
which points are considered outliers, thus filtering them away. 
The distribution of scanned points is quite different for each 
voxel. Therefore it is impossible to set a global value for the ����r 
parameter. Thus, it cannot be controlled by the user and should be 
adapted for every voxel. It can initially be defined arbitrarily and 
then be self-tuned according to the normalization factor k. We 
chose the normalization factor k to be close to one, and thus the 
appropriate threshold ����r is adjusted for each voxel to achieve the 
desired result. This reference value k = 1 performed consistently 
well for all our experiments. Although bilateral filtering is 
considered a non-iterative method, the proposed GBF filter may 
require two iterations for every voxel due to the adaptive nature of 
the ����r threshold.  

(2) It was mentioned above that the proposed technique is 
based on additional information regarding surface normals, thus 
restricting the method to a special kind of scan technology. 
However, this information is used only for calculation of the 
centroid normal. Once this normal can be approximated by other 
means, the proposed method can be applied without dependence 
upon the scanning technology.  

(3) It should be emphasized that the performance of the 
proposed filtering method is strictly dependent on the density of 
the scanning data. In general, a geometric feature can be reliably 
recovered if its size is much bigger than the scanning interval. 
This is a well-known requirement and fine quality features are 
usually scanned with high density. However, high density 
scanning causes redundant data in low curvature regions. Thus the 
proposed filtering method reduces redundant data while 
preserving the essential reconstruction information.  

7. Summary and Conclusion 

This paper has proposed a new fast 3D Geometric Filtering 
method for data reduction and noise removal that can be applied 
directly on scanned points during mesh reconstruction. The 
proposed filtering method utilizes surface normal information for 
preserving fine details of the sampled surface. The developed 
method uses the HSDM model, providing data reduction and a 
robust statistical estimation of the underlying sampled surface. 
The proposed method is simple, fast and accurate. The feasibility 
of the method is demonstrated on complex objects. 
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( a ) ( b ) 
Figure 3: Mechanical detail: ( a ) Reconstructed mesh with LPF method; ( b ) Reconstructed mesh with GBF method. 

 
 

( a ) ( b ) 
Figure 4: Toy airplane: ( a ) Cloud of scanned points; ( b ) Reconstructed mesh with GBF method. 

  
( a ) ( b ) 

Figure 5: Turbine Blade: Reconstructed mesh with GBF method ( a ) Back view; ( b ) Front view. 

  
( a ) ( b ) 

Figure 6: Skeleton Hand: Reconstructed mesh with GBF method  ( a )  Front view; ( b ) Back view. 
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