ACM Symposium on Solid Modeling and Applications (2004)
G. Elber, N. Patrikalakis, P. Brunet (Editors)

Topological and Geometric Beautification of Reverse Engineered
Geometric Models

F.C. Langbein', C.H. Gao'?, B.1. Mills'}, A. D. Marshall', R. R. Martin'

ISchool of Computer Science, Cardiff University, PO Box 916, Cardift, CF24 3XF, UK
2School of Manufacturing Science and Engineering, Sichuan University, Chengdu, China
3Institute of Information and Mathematical Sciences, Massey University, Auckland, Albany, NZ

Abstract

Boundary representation models reverse engineered from 3D range data suffer from various inaccuracies caused by noise in
the measured data and the model building software. Beautification aims to improve such models in a post-processing step solely
working with the boundary representation model. The improved model should exhibit topological and geometric regularities
representing the original, ideal design intent. This paper gives an overview of algorithms for a complete beautification system
suitable for improving the topology and the geometry of low to medium complexity reverse engineered models.

Categories and Subject Descriptors (according to ACM CCS): J.6 [Computer-Aided Engineering]: Computer-Aided Design

1. Introduction

Reverse engineering extracts sufficient information from physical
objects to reconstruct CAD models for a particular purpose like re-
design, reproduction or quality control. Ideally, for applications like
redesign, the reconstructed model should exhibit exactly the same
geometric properties present in the original, ideal design. Rather
than trying to create a description of the exact measured physical
object, suitable for creating an identical copy or for inspection pur-
poses, we are interested in reverse engineering the shape of an en-
gineering object such that the description represents the original
design intent. For this purpose we use a state-of-the-art reverse en-
gineering system which can create a boundary representation (B-
rep) model of the object’s natural surfaces from dense 3D range
data. However, due to inaccuracies in the measured data, approxi-
mation and numerical errors during the reconstruction process, and
possible wear of the scanned object, the model is approximate in
the sense that it only approximately exhibits intended regularities
such as symmetries. We present a system to automatically improve
such models in a post-processing step, which we call beautification.

[VMO2] gives an overview of reverse engineering systems. Here
we consider objects bounded only by planes, spheres, cylinders,
cones and tori. Such faces may be connected by fixed-radius rolling
ball blends. There are reliable surface fitting methods available for
these surfaces [BMV01] and many realistic engineering objects can
be described using only these surface types [MLM*0la]. In this
paper we ignore blends. Fixed-radius rolling ball blends can be
detected in the point data [KMVO00], but rather than inserting the
blends immediately, we treat them as edge and vertex attributes,
and construct the blends after beautification.

Alternative approaches exist based on simultaneous surface fit-
ting. Thompson et al. [TOG*99] consider feature-based reverse

engineering of mechanical parts. In their system a human identi-
fies features like pockets in the point set interactively. This infor-
mation is used to reconstruct the model by fitting parametric fea-
ture models instead of simple surfaces to the 3D point set, which
improves the accuracy of the generated models. It is also possi-
ble to fit multiple surfaces to 3D point sets under geometric con-
straints [BKV*02, WFR*02]. Thus, rather than fitting surfaces in-
dividually, they are fitted simultaneously using the constraints as
a set of conditions which the surface parameters have to fulfil in
addition to providing a good fit to the 3D point data.

Such approaches often require human interaction because low-
level information about an object’s surface represented as a point
set is not directly sufficient to make decisions about higher-level
design intent. We try to avoid the necessity for human interaction
by first extracting a higher-level B-rep model with analytic, natu-
ral surfaces. From this representation, further information about the
actual design intent can be derived automatically. By trying to im-
prove the B-rep model without further reference to the point data
we also significantly reduce the computing time.

In the following we give an overview of our complete beautifi-
cation system, and outline the main algorithms for topological and
geometric beautification. As experiments have shown, our system
is able to improve models of low to medium complexity.

2. Beautification

Beautification has to address defects in the topology as well as ad-
justing the geometry. E.g., if we reverse engineer a four-sided pyra-
mid, we expect all four sloping faces to meet at a single vertex at
the top. Equally important is that the sloping faces are arranged
symmetrically to form a regular pyramid. We address both types

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

256 F. C. Langbein, C. H. Gao, B. 1. Mills, A. D. Marshall, R. R. Martin / Topological and Geometric Beautification for Reverse Engineering

of problem. We assume that the input model is valid, although it
may not have a closed shell if there are gaps in the point set. Note
that we aim to change the model by a relatively small amount—just
enough to impose approximate geometric and topological regular
ties on the model which are present within a small tolerance.

Firstly, we detect fopological defects and decide how to adjust
the topology to remedy them. Doing so results in a list of geomet-
ric elements and geometric constraints describing the geometric re-
lations between the elements as required by the topology. If the
constraint system is solvable, at least one object with the speci-
fied topology exists. Note that usually there are many more, and
we must still further specify the geometry. For this we seek po-
tential approximate geometric regularities in the second step. Typ-
ically, a large number are found, not all of which need be mutually
consistent. Thus, a consistent subset of these regularities, likely to
represent the original design intent and describe the complete im-
proved model, is selected. During selection, we have to maintain
the solvability of the constraint system describing the model while
also selecting likely regularities. Finally, the constraint system is
solved and a new model is rebuilt. Thus, overall our beautification
system executes the following main steps in sequence:

I. Detecting topological defects: small faces, sliver faces, short
edges, gaps in the model, etc. are identified.

II. Adjusting the topology: isolated small faces and short edges
are replaced by a single vertex and surrounding topology is ad-
justed to meet it; existing faces are extended to cover gaps left by
missing data by removing the edges and loops bounding gaps;
etc. The realisability of these changes is tested by verifying the
solvability of a constraint system.

III. Detecting approximate geometric regularities: symmetric ar-
rangements of faces, other regular arrangements, etc. which are
approximately present in the geometry are detected. Exact con-
ditions for approximate regularities are used rather than arbi-
trary tolerances. The methods aim to detect sufficient regulari-
ties to determine the improved model.

IV. Selecting geometric regularities: a consistent set of geometric
regularities likely to describe the model’s design is selected. To
do this, regularities are expressed by constraints. Methods are
used to determine the solvability of constraint systems, and the
likelihood of a regularity being part of the ideal design.

V. Rebuilding an improved model: an improved model is rebuilt
from the solution to the constraint system. (Checks must be
made for remaining topological defects; these must either be
repaired immediately or the process restarted at step II.)

Using this approach, the topological changes desired may not be
geometrically realisable. While we check for realisability using a
constraint system, we cannot include general constraints, e.g. re-
quiring two surfaces to intersect, without further specifying the re-
lation, as this requires the use of inequality constraints. Thus, when
adjusting the geometry, which includes finding exact relations be-
tween intersecting surfaces, we may detect that the topology cannot
be realised. In this case we can either try to repair the model dur-
ing rebuilding, e.g. fill holes with additional faces, or return to the
topological beautification phase and choose an alternative topology.

For typical reverse engineered objects, topological defects are
localised in the sense that interaction between multiple topological
defects is limited to local faces rather than the global structure. This
allows us to repair topological defects of different types in a well-

iSSfrag replacements

(a) Gaps (b) Pinched faces

MDD >~

(c) Chains of small faces (d) Chains of short edges

Figure 1: Some Problems for Topological Beautification

defined sequence, and limits the possible inconsistencies between
topological and geometric adjustments.

3. Topological Beautification

We first detect and repair topological defects of the types listed be-
low. They do not represent a list of all possible topological defects,
only problems which are likely to arise during reverse engineering
of models. Note that we start with a valid model (although it may
be incomplete, i.e. it may have no closed shell) and these defects
merely represent undesirable topology rather than incorrect topol-
ogy. In our approach the problems are repaired in the order listed
below—for details see [GLM*03a].

1. Removing gaps in a single face: A loop of half-edges may ex-
ist in the interior of a face, with nothing on the other side of
the loop. Such cases may arise, e.g., where the scanner did not
collect any data from within a deep concavity. The loop of half-
edges should be removed, extending the face.

2. Removing gaps crossing an edge: A loop of half-edges may
span two faces, with nothing on the other side of the loop. The
edge between the faces is divided into two pieces by the gap.
The gap should be removed by extending the faces and inserting
a new edge section.

3. Removing gaps spanning multiple faces: A loop of half-edges
may span multiple faces, with nothing on the other side of the
loop. If the surrounding edges intersect approximately in one,
two, or more vertices, the gap is respectively replaced by a ver-
tex or an edge, or a new face is inserted to close the gap.

4. Adjusting pinched faces: If a face narrows to a very thin part it
is pinched (see Figure 1(b)). The thinning is removed by joining
the edges close to each other by a vertex or an edge sequence.
This may split a face into two faces.

5. Removing chains of small faces: Two faces should intersect in
an edge, but instead a chain of small faces may separate them.
This chain should be replaced by an edge (see Figure 1(c), where
the first step is to reduce a face chain to an edge chain).

6. Removing sliver faces: Two faces should meet in an edge, but
instead a long very thin (s/iver) face may separate them. The
sliver face should be replaced by an edge. We only consider iso-
lated sliver faces which can be replaced by a single edge.

7. Removing chains of short edges: Several consecutive short
edges may need to be replaced by a single long edge (see Fig-
ure 1(d)). This problem may result, inter alia, from repairing
some of the other problems listed.

8. Merging adjacent faces with the same geometry: Two adja-
cent faces may share the same geometry across a contiguous
edge sequence. Edges and vertices as appropriate are removed,

F. C. Langbein, C. H. Gao, B. 1. Mills, A. D. Marshall, R. R. Martin / Topological and Geometric Beautification for Reverse Engineering 257

and the faces merged.

9. Removing isolated small faces: Several edges should meet in
a single vertex, but instead they meet at several distinct vertices,
joined by multiple short edges surrounding a small face. The
small face should be replaced by a vertex.

10. Merging edges: Once faces have been merged, related edges
should also be merged. As each edge should be the complete,
connected intersection of two adjacent faces, we merge each
edge pair connected by a vertex which is attached to no more
than two edges.

11. Removing isolated short edges: If several edges should meet at
a single vertex, but instead they meet at several distinct vertices,
joined by one or more short edges, these short edges should be
replaced by a single vertex.

Topological beautification may involve the local addition or re-
moval of faces, edges and vertices, and other updates to nearby
topology to ensure that a correct, valid model results. We only add
and remove elements and change the boundary relations. The ge-
ometry is found from the original geometry using only simple com-
putations (e.g. computing an average position). For example, edges
may need to be disconnected from an existing vertex, and con-
nected to a new vertex. In addition, constraints must be generated
and imposed on the geometry attached to the topological elements
to ensure that in the final model, the geometry and topology are
consistent (e.g. a vertex has to lie on an edge it bounds).

In a raw reverse engineered model, multiple topological defects
of multiple types will usually coexist. To efficiently resolve these
problems we need to detect and modify the defects in the right or-
der. E.g. removing a gap spanning multiple faces may produce a
sliver face, but removing a sliver face can never produce a gap.
Given the particular ordering above, certain defects are known not
be present at each stage, having been repaired earlier. Thus, certain
potential complex interactions between multiple defect types can
be ignored.

All the defects listed depend on a notion of “small”, e.g. we in-
tend to remove only “small” spurious faces as determined by a tol-
erance. This tolerance can be detected automatically by a consistent
clustering method (see Section 4). It could also be provided by the
user based on the magnitude of errors expected in the model. When
choosing a tolerance, we should be careful that small but significant
parts of the model are not deleted—the tolerance should clearly dis-
tinguish between the size of any small face or short edge which is
to be deleted and any part of the model which is to be retained. For
simplicity, we assume here that a single global tolerance value is
used. However, if, for example, different regions of the object were
scanned at different resolutions, a more sophisticated approach us-
ing an adaptive tolerance might be needed.

Topological beautification has some similarities to, but also some
differences from, CAD model healing [PCO3]. Healing also aims to
adjust (and repair) topology, but for an input model with more gen-
eral topological defects. Thus, healing may have to cope with phys-
ically impossible geometry, incorrectly oriented surfaces, faces
with no defined geometry, self-intersecting edges, faces whose
boundary is not a closed loop, and incomplete topology even
though all individual faces are present. Such problems of validity
are not expected to occur in beautification.

Detecting topological defects can in principle be done by a linear
scan of the faces and/or edges in the model by testing simple condi-

tions which depend on the defect type. Note that this only applies to
local topological defects, which are typical for reverse engineered
models. Defects relating to the global structure, e.g. chains of small
faces along all natural edges of the model, cannot be handled in
this way. Such cases arise due to inadequate range data, and must
be resolved by obtaining more accurate data. Local defects can be
handled by making local changes to the topological structure.

4. Geometric Beautification

After topological beautification we have to make the geometry
agree with the updated topology. Furthermore, we also wish to ad-
just the geometry so that the model exhibits exact intended geo-
metric regularities which may only be approximately present in the
raw model. We do this by imposing geometric constraints which
both enforce the required topological structure and the desired
geometry—the constraint system describes the complete, beauti-
fied model for rebuilding.

Our methodology for approximate geometric regularities is
based on an exact notion of approximate symmetry. As we aim to
detect many regularities, it is likely that they are not all mutually
consistent. Hence, we have to select a set of consistent regularities
which completely describes the likely design intent of the model.
In our current approach we add regularities in priority order to the
constraint system. A regularity is only selected and kept if the con-
straint system remains solvable.

Regularities are described in terms of symmetries of features. By
features we mean properties of B-rep elements (vertices, edges, and
faces, called cells in the following) which change in a similar way
to the element itself under isometric transformations. We consider
positional features such as vertex positions; directional features
such as plane normals; axis features such as cylinder axes; length
and angle features such as edge lengths and cone semi-angles. We
require that relations between features are preserved when trans-
formed by the same isometry. E.g. while isometries may change
the directions of individual axes, isometries do not change the an-
gle between directions.

Following Klein’s Erlanger Program, a geometric property of a
cell is any property which remains invariant under isometric trans-
formations. For a straight edge, its length is such a property. Con-
sider two orthogonal planes. The /2 angle between the plane nor-
mals does not change when we transform both planes by an isom-
etry. However, as we intend to detect such arrangements for all di-
rection features, we would have to generate features for each pair of
cells with suitable directions. Instead, we choose to define features
for individual cells. These are not invariant under isometries, but
they change in the same way as the cell does when transformed by
an isometry. Thus, relations between features are preserved, and we
can use such features to determine regular arrangements between
cells (e.g. symmetrically arranged directions where the angles be-
tween the directions are integer multiples of some angle m/n).

Table 1 lists the types of common regularities which we deter-
mine using feature symmetries. The regularities are mainly distin-
guished by the type of symmetry involved. Note that we also take
into account special values (e.g. a length exactly equal to an inte-
ger) not related directly to symmetries.

The simplest regularity type is formed by cells with identical fea-
tures, e.g. parallel directions—such features remain invariant under

258 F. C. Langbein, C. H. Gao, B. I. Mills, A. D. Marshall, R. R. Martin / Topological and Geometric Beautification for Reverse Engineering

Feature Type Regularity Symmetries
Direction Parallel directions Identity
Symmetries of directions Isometries
Rotational symmetries of direc- Rotations
tions like in regular prisms and
pyramids
Axis Aligned axes Identity
Parallel axes arranged equi-spaced ~ Translations
along lines and grids
Parallel axes arranged symmetri- Rotations
cally on cylinders
Axes intersecting in a point Identity
Position Equal positions Identity
Point set symmetries Isometries
Equi-spaced positions arranged on Translations
a line or a grid
Positions arranged symmetrically =~ Rotations
on a circle
Equal positions when projected on Identity
a special line or plane
Length / Equal scalar parameters Identity

Angle Special scalar parameter values
Simple integer relations

(special value)
(special value)

Table 1: Some Common Geometric Regularities

the identity transformation. More generally, a feature set which re-
mains invariant under all isometries or a sub-group of isometries
represents a regularity. Often, it is not the whole feature set which
remains invariant, so we have to find appropriate maximal subsets.
Thus, we distinguish between global and partial symmetries.

Let F = {fi,...,fn} be a set of n mutually distinct features
which remains invariant under a group G of isometries. The isome-
tries are associated with permutations of the features. Each g € G
induces a permutation G of the labels 1,...,n: for g(fy) = f; we
get o(k) = 1. Note that if the features are not mutually different,
g induces more than one permutation. Hence, identity regularities
are a special case, and must be detected first. We can then replace
identical features by a single feature in order to detect non-trivial
symmetries as permutations. For instance, for n points py,...,pn
arranged in sequence symmetrically around a circle in E-, the per-
mutation 6 : / — (I+1) mod n is induced by a 27 /n rotation around
an appropriate point. By detecting all distance preserving permuta-
tions of the points we find these rotations.

For beautification, we require a concept of approximate geomet-
ric regularity. In the approximate case, features only match approx-
imately, which yields ambiguous situations where global informa-
tion is required to find a proper symmetry. We seek conditions such
that local information is sufficient. In the exact case, symmetries
relate to distance preserving permutations which can be detected
by checking whether features match locally. We define approxi-
mate symmetries such that this behaviour is retained for the features
in question. We detect approximately distance-preserving permuta-
tions at tolerance levels where a local match implies a global match
as defined exactly in the following paragraph.

Let s =¢ t iff |s —¢| < € for s, € F and let D(F) = {d(r;,ry) :
I,k e L} for L={1,...,n}. A permutation G is an approximate
symmetry of F at tolerance level €, if =¢ is an equivalence relation
on D(F), and |d(f, fi) — d(fsq), fok))| < € for all [,k € L. So
we can look locally for approximately matching distances between

features, while =¢ being an equivalence on D(F) ensures that we
get a global match with respect to the elements of F.

Based on this general approach, regularity detection starts by
clustering the features. The clusters have to be consistent in the
sense that all distances between elements of a cluster are smaller
than a tolerance and the distances to features in other clusters are
larger than this tolerance. This also identifies appropriate tolerances
automatically. We then seek approximately distance-preserving
permutations of the clusters. As the permutations correspond to
isometries we only have to check a small number of features: in 3D
Euclidean space mapping a tetrahedron onto another tetrahedron
completely determines an isometry. Thus, we only have to consider
four points to find an isometry and check whether the remaining
points are mapped onto each other by the isometry. For partial reg-
ularities, we also have to identify appropriate cluster subsets: con-
sidering all subsets is too expensive.

For more details on regularity detection see [Lan03]. Our
symmetry concept is described in [MLO3]. Various algo-
rithms for detecting partial and global regularities are given
in [GLM*03, LMM*01, LMM*01a, LMM*01b, MLM*01].

Regularity detection determines a large set of approximate reg-
ularities present in the raw model at various tolerance levels. Con-
straints can be used to impose these on the model. However, the
constraints are unlikely to be mutually consistent. As we do not use
a strict tolerance limit, we get some regularities which only exist at
rather large tolerances. Moreover, the detection methods seek mul-
tiple relations between the same features. Hence, we have to select
mutually consistent regularities, which are likely to represent the
original, ideal design intent.

We use a sequential selection method which tries to add regulari-
ties in order of a priority. This is suitable as a means for improving
low to medium complexity models. We build a constraint system
in sequence by adding constraints describing the regularities. As
we add each constraint, we check if the system remains solvable.
If not, the regularity it describes is rejected and all corresponding
constraints are removed from the constraint system. This way we
select in preference regularities with high priorities, while at most
considering each regularity once.

The priority of a regularity is computed by taking a weighted
average of: a measure of the numerical accuracy to which the reg-
ularity’s constraints are satisfied in the raw model, a figure of merit
expressing the quality or desirability of the regularity depending on
specific arrangements and constants involved, and a constant de-
scribing a minimum desirability for each regularity type. This aver-
age is weighted by a merit function which indicates how common
the regularity is (determined by surveying a range of engineering
components). A detailed description of the priority computation is
given in [Lan03, LMMO3]. We note that a more sophisticated deci-
sion process considering more complex relations between regulari-
ties and the model, globally, could improve regularity selection.

5. Solvability of Constraint Systems

We require an efficient solvability test for constraint systems, as
solvability is tested many times during beautification. Interpreting
constraints in a topological context leads to a method similar to the
usual degrees-of-freedom analysis [HLS97] where the degrees of

F. C. Langbein, C. H. Gao, B. 1. Mills, A. D. Marshall, R. R. Martin / Topological and Geometric Beautification for Reverse Engineering 259

freedom become the topological dimensions of the involved spaces.
While it is desirable to ensure that we have a unique solution or at
most a discrete set of solutions, we only check whether at least one
solution exists, and for efficiency we do not compute a solution.
In particular we accept cases where there are infinitely many so-
lutions. We can seek some solution for the geometry of the final
model close to that of the raw model. The large number of regular-
ities we detect makes under-constrained systems very unlikely.

Our solvability test is explained in detail in [Lan03, LMMO3].
The basic idea is illustrated by the following example of distance
constraints between points. An unconstrained point in E? can be
anywhere in space, i.e. its parameter domain is R>. A distance con-
straint between two points vy, v, limits the allowed values the two
points can have. One way of enforcing this is to parameterise v{
by an arbitrary value in R3 and to require that v, is on a sphere of
fixed radius with centre vy. Thus, v, is described by a parameter
on the unit sphere S? in combination with the position of v{, and
so for v, we select a (lower-dimensional) sub-manifold of the pa-
rameter manifold]R3, which is essentially s2, (Obviously, the roles
of vi and v, can be exchanged.) When a 3D point is constrained
by two such distance constraints, it has to lie in the intersection
of two spheres. In general this intersection may be empty, a point,
a circle or a sphere—without solving equation systems we cannot
determine which. However, we may assume that usually we have
the generic case of two spheres intersecting in a circle.

Dimension reduction as above does not directly give the solvabil-
ity properties of a constraint system. For this we have to consider
the remaining dimensions of the spaces involved. They cannot be
reduced to less than 0. In fact, as we do not determine a global ori-
entation or position of the elements involved, we have to have at
least 6 dimensions left for each rigid sub-structure in the constraint
system. This can be verified by considering the dependencies be-
tween the geometric elements as induced by the constraints.

6. Model Rebuilding

The regularity selection process results in a constraint system de-
scribing the model’s geometry. As the final beautification step we
have to rebuild a beautified model from this constraint system.

Initially we find a solution to the constraint system using a nu-
merical solver (a robust quasi-Newton method minimising least-
squares error). Note that for beautification the geometric model
may not always be described completely by our constraints (but
it is highly likely as we detect many regularities), so a symbolic
approach is unsuitable. Furthermore, not all constraint systems can
be readily solved symbolically.

An improved model is rebuilt using the beautified topological
information derived from the raw model with the geometric feature
values obtained from the numerical solution. We create new faces
and re-intersect them to obtain the complete model. Sharp edges are
found using a standard surface-surface intersection algorithm. As
we only consider certain analytic surface types, smooth intersection
edges can be directly handled as special cases.

In our beautification system we make decisions about adjusting
the fopology before we adjust the geometry of the model. Because
the topology is enforced by special constraints, the resulting con-
straint system cannot be inconsistent unless it is necessary to con-
sider non-generic cases, which are unlikely for usual engineering

(a)
(©

(d)
Model (a) (b) (c) (d)
Total Reg. 25 152 287 144
Selected Reg. 14 33 45 23

Beautification Time 0.14s 4.64s 12.99s 2.33s
Rebuilding Time 28.52s 57.29s 263.89s 39.23s

Figure 2: Beautification Examples

objects. In order to avoid selecting invalid topologies, we already
check the topological constraints during topological beautification.
However, note that we cannot use general constraints requiring two
surfaces to simply intersect without specifying the desired relation.

A potential problem arising from separating topological and ge-
ometric beautification is that we do not consider whether the topo-
logical and geometric changes are consistent with respect to design
intent. Topologically, we may decide to remove a small face, but
this small face may be required in order to realise a complicated
geometric regularity. If we remove the face first, then we cannot re-
alise this regularity later. Such issues rarely arise in practice; com-
bining topological and geometric decisions is left as future work.

7. Experiments and Discussion

The system presented here has been tested using a variety of low to
medium complexity reverse engineered models. Our experiments
show that it is able to improve raw models with respect to design
intent. As the raw models are approximate, there is always some
uncertainty about the actual design intent. Depending on the toler-
ance settings, specific parameter values and minor regularities are
not always reconstructed according to the original design. How-
ever, major regularities, like global symmetries, major orthogonal
systems, etc. representing the global structure of the model, are im-
posed exactly on the improved model.

Figure 2 shows some of our models used to test beautifi-
cation. It lists the numbers of regularities detected, how many
were selected for beautification, the times for detecting and
selecting constraints, and the times for solving the constraint
system and rebuilding the model. Further results are given
in [GLM*03a, Lan03, LMM*01, LMMO3].

Our methods are able to improve reverse engineered models, but
are limited by the ambiguities caused by the fact that we only have
approximate models. Major regularities of the model can be han-
dled quite robustly and are usually exactly enforced in the improved
model, but the minor regularities selected do not always represent

260

the intended design. Here, by major regularities we mean regulari-
ties which involve a large number of faces of the model and usually
relate to a highly symmetric arrangement (with respect to the fea-
tures). Minor regularities involve only a few faces in the model and
usually have less symmetry.

As we have an approximate model, we have to work with toler-
ance levels. If the tolerance level is small enough that the features
of interest are sufficiently distinct, we are able to identify them pre-
cisely. However, to beautify reverse engineered models, we usu-
ally have to work at tolerance levels where the features cannot be
clearly distinguished in such a way. We try to reduce the ambigu-
ities by looking for tolerance levels at which certain properties of
the features are present unambiguously in a local sense. But when
there are inconsistencies between these regularities, it is not always
possible to make a clear decision between them, as there are al-
ways cases of inconsistencies between regularities which are all
more-or-less equally desirable. This applies in particular to minor
regularities, e.g. multiple special angle values between two planar
faces. This is a fundamental property of approximate models, and
while our methods were designed to take this into account, such
ambiguities cannot be avoided.

Our system is able to detect approximate regularities for which
clear, unambiguous evidence is present in the raw model. It reports
the regularities at tolerance levels at which there is no ambiguous
interpretation of the data. Most intended regularities are detected in
the raw models. As no maximum tolerance value is used, and the
tolerance levels for the regularities are detected automatically, dif-
ferences in the tolerances of intended regularities can be handled.
However, this also results in a larger number of regularities which
have to be considered for selection. Trying to devise detection algo-
rithms which only detect intended approximate regularities appears
to be considerably harder. While we seek unambiguous evidence in
the raw model for the presence of a regularity, we cannot make a
decision about whether the regularity is intended without having
additional information about the model, such as other regularities,
consistency with respect to design intent, and solvability of the re-
lated constraint system.

8. Conclusion

We have presented an approach to beautification of reverse engi-
neered models as a post-processing step which can improve a raw
reverse engineered model using only that model as input. Our sys-
tem works reasonably well for low to medium complexity objects.
The topology is adjusted appropriately and major regularities are
detected and selected correctly. In future work we will address
more complex models. This will include decomposing models into
suitable sub-parts, expanding regularity detection, and improved
selection methods considering combinations of regularities.

Acknowledgements

This project was supported by UK EPSRC Grant GR/M78267
and NUF-NAL Grant 00638/G. We wish to thank T. Varady and
P. Benké of the Hungarian Academy of Sciences and CADMUS
Ltd. for providing reverse engineering software and helpful discus-
sions.

References

[BKV*02]

[BMVO1]

[GLM*03]

[GLM*03a]

[HLS97]

[KMVO00]

[Lan03]

[LMM*01]

[LMM*01a]

[LMM*01b]

[LMMO3]

[MLO3]

[MLM*01]

[MLM*01a]

[PCO3]

[TOG*99]

[VMO02]

[WFR*02]

F. C. Langbein, C. H. Gao, B. I. Mills, A. D. Marshall, R. R. Martin / Topological and Geometric Beautification for Reverse Engineering

BENKO P., KOS G., VARADY T., ANDOR L., MAR-
TIN R.R.: Constrained fitting in reverse engineering.
Computer-Aided Geometric Design 19:3 (2002) 173-205. 1
BENKO P., MARTIN R.R., VARADY T.: Algorithms
for reverse engineering boundary representation models.
Computer-Aided Design 33:11 (2001) 839-851. 1

Gao C.H., LANGBEIN F.C., MARSHALL A.D., MAR-
TIN R. R.: Approximate congruence detection of model fea-
tures for reverse engineering. In Proc. Int. Conf. Shape Mod-
elling and Appl. (2003) 69-77. 4

GAao C.H., LANGBEIN F.C., MARSHALL A.D., MAR-
TIN R. R.: Local Topological Beautification of Reverse En-
gineered Models. Computer-Aided Design (2004) to appear.
2,5

SITHARAM M., HOFFMANN C., LOMONOSOV A.: Finding
dense subgraphs of constraint graphs. In Constraint Program-
ming (1997) 463-478. 4

KOs G., MARTIN R.R., VARADY T.: Methods to recover
constant radius rolling ball blends in reverse engineering.
Computer-Aided Geometric Design 17:2 (1999) 127-160. 1

LANGBEIN F.C.. Beautification of Reverse
Engineered Geometric Models. PhD thesis,
Dept. Computer Science, Cardiff University (2003).

http://www.langbein.org/research/BoRG/beautification.pdf.
4,5

LANGBEIN F.C., MILLS B.I., MARSHALL A.D., MAR-
TIN R. R.: Approximate geometric regularities. Int. J. Shape
Modeling 7:2 (2001) 129-162. 4,5

LANGBEIN F.C., MILLS B.I., MARSHALL A.D., MAR-
TIN R. R.: Finding approximate shape regularities in reverse
engineered solid models bounded by simple surfaces. In Proc.
6th ACM Symp. Solid Modelling and Appl. (2001) 206-215.
4

LANGBEIN F.C., MILLS B.I., MARSHALL A.D., MAR-
TIN R. R.: Recognizing geometric patterns for beautification
of reconstructed solid models. In Proc. Int. Conf. Shape Mod-
elling and Appl. (2001) 10-19. 4

LANGBEIN F.C., MARSHALL A.D., MARTIN R.R.:
Choosing consistent constraints for beautification of reverse
engineered geometric models. Computer-Aided Design 36:3
(2003) 261-278. 4,5

MILLS B.I., LANGBEIN F.C.: Determination of approxi-
mate symmetry in geometric models — an exact approach.
(2003) submitted. 4

MiLLs B.I., LANGBEIN F.C., MARSHALL A.D, MAR-
TIN R. R.: Approximate symmetry detection for reverse engi-
neering. In Proc. 6th ACM Symp. Solid Modelling and Appl.
(2001) 241-248. 4

MILLS B.I1., LANGBEIN F.C., MARSHALL A.D., MAR-
TIN R.R.: Estimate of frequencies of geometric regu-
larities for use in reverse engineering of simple me-
chanical components. Tech. Report GVG 2001-1, Ge-
ometry and Vision Group, Cardiff University (2001).
http://ralph.cs.cf.ac.uk/papers/Geometry/survey.pdf. 1
PARK J. C., CHUNG Y. C.: A tolerant approach to reconstruct
topology from unorganized trimmed surfaces. Computer-
Aided Design 35:9 (2003) 807-812. 3

THOMPSON W.B., OWEN J.C., DE ST. GERMAIN J.,
STARK S.R., HENDERSON T. C.: Feature-based reverse en-
gineering of mechanical parts. IEEE Trans. Robotics and Au-
tomation 15:1 (1999) 57-66. 1

VARADY T., MARTIN R. R.: Ch. 26: Reverse Engineering. In
Handbook of CAGD, Elsevier, 2002. 1

WERGHI N., FISHER R.B., ROBERTSON C., ASH-

F. C. Langbein, C. H. Gao, B. I. Mills, A. D. Marshall, R. R. Martin / Topological and Geometric Beautification for Reverse Engineering

BROOK A.: Shape reconstruction incorporating multiple non-
linear geometric constraints. Constraints 7:2 (2002) 117-149.
1

