
ACM Symposium on Solid Modeling and Applications (2004)
G. Elber, N. Patrikalakis, P. Brunet (Editors)

Contour Interpolation with Bounded Dihedral Angles†

Sergey Bereg‡ & Minghui Jiang§ & Binhai Zhu¶

Abstract
In this paper, we present the first nontrivial theoretical bound on the quality of the 3D solids generated by any contour interpo-
lation method. Given two arbitrary parallel contour slices with n vertices in 3D, let α be the smallest angle in the constrained
Delaunay triangulation of the corresponding 2D contour overlay, we present a contour interpolation method which recon-
structs a 3D solid with the minimum dihedral angle of at least α

8 . Our algorithm runs in O(n logn) time where n is the size of
the contour overlay.
We also present a heuristic algorithm that optimizes the dihedral angles of a mesh representing a surface in 3D.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and object repre-
sentations

1. Introduction

Polyhedral surface reconstruction from parallel slices of two-
dimensional contours is an important problem in medical sci-
ences, geographical information systems and computational biol-
ogy, etc. A method called contour interpolation is widely used
in practice, which takes parallel slices of two-dimensional con-
tours delineating the boundary of solid and empty regions and
constructs a 3D solid by adding some Steiner points properly
[BBX95, BCL96, GOS96, Kep75, OPC96].

The general idea of the contour interpolation is as follows. First,
the symmetric difference of contour overlay between two adjacent
slices, which is a group of interior-disjoint polygons with vertices
from both slices, is computed. (The polygons may have holes and
be nested). For example, the symmetric difference of two polygons
P1 and P2 from two adjacent slices in Fig. 1 consists of four poly-
gons Si, i = 1, . . . ,4. Second, the polygons are triangulated, possi-
bly with Steiner points (note that without using Steiner points it
might not be possible to reconstruct a 3D solid from 2D slices).
Finally, a height is assigned to each vertex of the triangulation: ver-
tices and Steiner points on polygon boundaries are assigned the
heights of their corresponding slices; internal Steiner points are as-
signed heights in between by a height interpolation scheme. After
the height interpolation, the triangulation is then lifted up (each
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vertex is lifted to its own height), thus reconstructing a patch of the
polyhedral surface in three-dimensional space.

There has been extensive research on contour interpolation us-
ing different kinds of heuristic algorithms, some of which handle
the general case without limiting the number and topology of con-
tours in the slices. In some recent works [BGLSS03, OPC96], po-
sitions and heights of Steiner points are determined by heuristics;
reconstructed surfaces appear smooth in experiments, but there is
no theoretical bounds on the quality of the reconstructed solid, e.g.,
the dihedral angles between neighbouring triangles. Our goal is
to improve the contour interpolation method to reconstruct poly-
hedral surfaces with bounded dihedral angles. Similar to previ-
ous works, our method also consists of a symmetric difference
computation step, a triangulation step and a height interpolation
step. As the symmetric difference computation step is the same as
[BGLSS03, OPC96], we assume that contour overlay is given as
input in our problem.

1.1. Related work

Surface reconstruction studied from contours has been studied by
many researchers since it finds applications in many areas. Fuchs
et al. [FKU77] consider the problem of minimizing the total surface
area occupied by the triangles. They translated the problem into a
problem on a toroidal directed graph: The problem is thus reduced
to the search for certain minimum cost cycles in this graph and a
fast algorithm for finding such cycles is developed.

The methods in [Boi88, Gei93] are based on Delaunay triangu-
lation constructed in every slice. Cheng and Dey [CD99] improved
the post-processing step and avoided the computation of three di-
mensional Delaunay tetrahedra.

The quality of mesh generation based on the dihedral angles is
concerned in the papers [BCER95, CDE∗00, MV00]. The differ-
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ence between their approaches and the present one is that they con-
sidered the simplicial mesh modeling a volume in the space (they
also consider higher dimensions) and we focus on surface recon-
struction. For example, in 3D their problem is for tetrahedra whose
dihedral angles are optimized (the sliver is an example of a tetrahe-
dron that can have arbitrarily small dihedral angles).

A related research has been done for generating smooth surfaces
[CMN98, HSS03, SSBT01]. Klein et al. [KSS00] considered the
problem of reconstructing triangulated surfaces and its simplifica-
tion.

The paper is organized as follows. In Section 2, we present the
details of our algorithm and its analysis. In Section 3, we describe
a heuristic algorithm for improving the dihedral angles of a mesh.
In Section 4, we conclude the paper with some open problems.

2. Algorithm and Analysis

In this section, we present the technical details of the algorithms
and the proofs. Consider two adjacent slices of a solid body. Sup-
pose that the polygons in one slice are colored red and the polygons
of the other slice are blue. Let P be a polygon of the symmetric
difference, see for example Fig. 1. Not any Steiner triangulation
of P can be used for contour interpolation. We consider restricted
Steiner triangulations and formulate the following two-dimensional
problem for the triangulation step.

P1

P2

S1

S2

S3

S4

a) b)

Figure 1: a) Overlay of two polygons P1 and P2, b) Symmetric
difference.

STCC Problem Given P, a simple polygon possibly with holes,
with each boundary edge colored either red or blue, the problem
Steiner Triangulation with Color Constraints (STCC) is to find a
Steiner triangulation for polygon P satisfying the following con-
straints:

1. Steiner points can be added only in the interior of the polygon
and Steiner points are of green color.

2. Every internal edge (new created edge in the interior of the poly-
gon) has at least one green vertex.

3. If two triangles share an edge with two green vertices, then their
two unshared vertices cannot be both red or both blue.

We now describe an algorithm that solves the STCC problem and
produces triangulations with the additional property that no angle
is smaller than a constant. Our algorithm is incremental and any
edge not satisfying constraint 2 or 3 is called illegal. The algorithm
consists of two simple steps:

1. Run Chew’s constrained Delaunay algorithm [Che89] on P to
obtain a triangulation T1.

a) c)b)

Figure 2: Illustration for the STCC algorithm. Step 2b. The green
vertices are bold and new edges are dashed.

2. Modify T1 to meet color constraints (see Fig. 2):

a. For each illegal edge violating constraint 2, add a green
Steiner point at the midpoint of the edge.

b. For each triangle that has at least one illegal edge, do the
following:

i. If it has one illegal edge, add an edge to connect the
Steiner point at the midpoint of the illegal edge to the ver-
tex opposed to the illegal edge, see Fig. 2 a);

ii. If it has two illegal edges, first add an edge to connect the
two Steiner points, then triangulate the resulting trapezoid
arbitrarily, see Fig. 2 b);

iii. If it has three illegal edges, add three edges to connect the
three Steiner points into a triangle, see Fig. 2 c).

A
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C ′

D

a) b)

Figure 3: Illustration for the STCC algorithm. Step 2c. A and B are
the blue vertices and C is the red vertex. AB and AC are internal
edges and BC is the boundary edge. The green vertices are bold
and new edges are dashed.

c. For each illegal green edge violating the constraint 3, pick ei-
ther triangle sharing the illegal edge (say t), pick either edge
of the triangle t except the illegal green edge, and add a green
Steiner point at the midpoint of the edge (say e). Connect the
Steiner point to the opposite vertices in triangles sharing e.
Fig. 3 illustrates an example of this fixing: the triangle ABC
is divided into three triangles in Fig. 3 a), and the green edge
B′C′ is fixed by introducing the green vertex D.

Output T2, the triangulation after these modifications.

We first prove the following lemma related to our algorithm.
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Lemma 1 Given a triangle, if we connect the midpoint of one edge
to the vertex opposed to the edge, then the minimum angle of the
two sub-triangles is at least 1

4 of the minimum angle of the original
triangle.

A B

C

D

Figure 4: Illustration for the proof of Lemma 1.

Proof Given S, a set of triangles, we use min]S to denote the min-
imal angle of the triangles in S. For brevity, we use AB to denote
the length of segment AB.
In4ABC (see Fig. 4), point D is the midpoint of segment AB. With-
out loss of generality, we assume that AC ≥ BC. We separate our
analysis into two cases: (1) AB≥ BC; (2) AB < BC.
In case (1), AB≥BC. ∠BAC is the minimum angle of4ABC; either
∠BAC or ∠ACD is the minimum angle of 4ACD and 4BCD. If
∠BAC ≤ ∠ACD, then

min]{4ACD,4BCD}
min]{4ABC} =

∠BAC
∠BAC

= 1 >
1
4
.

Otherwise, we have

min]{4ACD,4BCD}
min]{4ABC} =

∠ACD
∠BAC

.

Let α = ∠ACD and β = ∠BAC. In 4ACD, we have

sinα

sinβ
=

AD
CD

≥ AD
BD+BC

≥ AD
BD+AB

=
1
3
.

Since β≤ 60◦, we have

sinβ

3
=

4cos β

4 (2cos2 β

4 −1)
3

sin
β

4

≥ 4cos15◦(2cos2 15◦−1)
3

sin
β

4
≥ sin

β

4
.

Therefore, sinα≥ sin β

3 ≥ sin β

4 , this implies that α≥ β

4 , which fur-
ther implies

min]{4ACD,4BCD}
min]{4ABC} =

α

β
≥ 1

4
.

In case (2), AB < BC. ∠ACB is the minimum angle of 4ABC;
∠ACD is the minimum angle of 4ACD and 4BCD. Since 4ACD
and 4BCD have the same area, we have

1
2

AC ·CD · sin∠ACD =
1
2

BC ·CD · sin∠BCD.

This implies

sin∠ACD
sin∠BCD

=
BC
AC

.

Let α = ∠ACD and β = ∠ACB. We have,

sinα

sin(β−α)
=

sin∠ACD
sin∠BCD

=
BC
AC

≥ BC
AB+BC

≥ BC
BC +BC

=
1
2
.

This implies that

sinα

sinβ
≥ sinα

sin(β−α)+ sinα
=

1
sin(β−α)

sin α
+1

≥ 1
3
.

Following similar argument as in case (1), we have

min]{4ACD,4BCD}
min]{4ABC} ≥ 1

4
.

The first good news is that our algorithm adds O(n) Steiner
points. We have the following theorem about our algorithm.

Theorem 2 Let α be the smallest angle in the constrained Delau-
nay triangulation T1 of P. Our algorithm produces a STCC with no
angle smaller than α

16 .

Proof By adding a green Steiner point at the midpoint of each ille-
gal edge violating constraint 2, the illegal edge is split into two legal
sub-edges; any new edge introduced by a green Steiner point has at
least one green vertex so it clearly satisfies constraint 2. With the
addition of green Steiner points in step 2(c) of the algorithm, each
illegal edge violating constraint 3 becomes legal because one of the
two triangles sharing the edge now has three green vertices. Any
new edge introduced by this Steiner point satisfies constraint 3: if
a new edge has two green vertices, then one of the two triangles
sharing the edge must have three green vertices. Therefore, our al-
gorithm solves the STCC problem.
In the first step of our algorithm, we use the constrained Delaunay
triangulation T1, which maximizes the smallest angle among all tri-
angulations of P. Let α be the minimum angle of the triangulation
T1. From Lemma 1, it is easy to see that the final triangulation T2
produced by our algorithm has no angle smaller than a constant
α

16 : after step (2)(b), the smallest angle is at least α

4 and after step
(2)(c), the smallest angle is at least α

16 in the worst case.

We now describe our improved contour interpolation algorithm
for surface reconstruction. The only difference between our algo-
rithm and other contour interpolation algorithms are the selection
and height assignment of Steiner points.

1. For each polygon compute the symmetric difference of a con-
tour overlay, formulate a corresponding STCC problem: edges
from upper layer are colored red; edges from lower layer are
colored blue.

2. Solve the STCC problems, and obtain Steiner triangulation T2
with guaranteed lower bound on minimal angle.

3. For each vertex in the Steiner triangulation T2, assign height 1 if
it is red, height 0 if blue, and height 0.5 if green. Lift the trian-
gulation up and obtain a three-dimensional triangulated surface
T3.

We have the following theorem about our algorithm.

Theorem 3 Let α be the smallest angle in the constrained Delaunay
triangulation T1 of P. The triangulated three-dimensional surface T3
generated by our contour interpolation algorithm has a minimum
dihedral angle of α

8 .

Proof Let 4ABC and 4ABD be a pair of neighbouring triangles
sharing edge AB. We show that the dihedral angle around edge AB
is bounded by a constant. Because of constraint 2, either vertex A or
vertex B must be green. Without loss of generality, assume vertex
A is green. We now consider two cases.
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Case 1: vertex B is also green. Because of constraint 3, vertices C
and D cannot be both higher or both lower than edge AB; it is easy
to see that the dihedral angle around edge AB is at least 90◦.
Case 2: vertex B is red. (The other case, where vertex B is blue, is
symmetric.) Because of constraint 2, neither C nor D can be blue.
We consider the following subcases (symmetric subcases are omit-
ted).
Case 2a: A is green; B is red; C is green; D is green. The extreme
case happens when edge AB is perpendicular to the plane deter-
mined by 4CAD; the dihedral angle around edge AB is at least
∠CAD, which is at least twice the minimum angle in T2, which is
2× α

16 = α

8 .
Case 2b: A is green; B is red; C is red; D is red. This case is similar
to case 2a; the dihedral angle is at least ∠CBD, which is at least α

8 .
Case 2c: A is green; B is red; C is green; D is red. If we make
D green instead, the dihedral angle becomes smaller and this case
changes to case 2a; therefore, the dihedral angle here is also at least
α

8 .
In summary, the minimum dihedral angle between neighbour-
ing triangles in triangulated surface T3 is at least a constant,
min{90◦, α

8 }= α

8 .

Assume that P is already given and P has n vertices, it is easy to
see that our algorithm runs in O(n logn) time, which is dominated
by the step of computing the constrained Delaunay triangulation T1.
Notice that when the size of the input is in terms of that of the 2D
slices, then the overall complexity of the algorithm is dominated
by the computation of the contour overlay, which is quadratic in
the worst case. In real applications, such a quadratic bound is very
unlikely.

3. Heuristic Algorithm

The algorithm suggested in the previous section generates a mesh
with a guaranteed quality. In this Section we describe a heuristic
algorithm that is more practical although it does not guarantees a
bound on dihedral angles of the produced mesh. The heuristic al-
gorithm is more general and can be used for improving any mesh
(not necessarily generated by contour interpolation).

The idea of the algorithm is to attempt to flatten dihedral an-
gles small enough by inserting Steiner points. An example illus-
trated in Fig. 5 demonstrates the procedure. Suppose that the edge
pi p j defines a small dihedral angle α, the angle between two facets
pi p j pa and pi p j pb. We rotate the mesh so that the edge pi p j looks
as a ridge on the mesh assuming that we view it from z = +∞
(pi p j is depicted as bold in Fig. 5 a)). Suppose that the edges
pi pa, pi pb, p j pa and p j pb look as valley edges. Clearly, the inser-
tion a Steiner point pk slightly below the segment pi p j will gen-
erate four new edges pk pi, pk p j, pk pa and pk pb. The edges pk pi
and pk p j are the ridges and the edges pk pa and pk pb are the val-
leys. The dihedral angle between the facets pi pk pa and pi pk pb is
smaller than the angle α. Similarly the dihedral angle between the
facets p j pk pa and p j pk pb is smaller than α. This is true for any
choice of the point pk in the tetrahedron pi p j pa pb. The two new
dihedral angles defined by the edges pk pa and pk pb can be arbi-
trarily flat (close to 180◦) if pk is chosen close to pi p j.

The algorithm selects a set of edges to remove. Note that, if two
edges have a common vertex, then the removal of one edge changes
the dihedral angle defined by the other edge, see Fig. 5. Therefore

we select the edges so that they do not have a common vertex. The
algorithm has the following step.

1. For all edges e of the mesh, compute the dihedral angles
dih_angle(e).

2. Sort the edges e1,e2, . . . ,em in decreasing order of the dihedral
angles

dih_angle(e1)≤ dih_angle(e2)≤ ·· · ≤ dih_angle(em).

3. Esel = ∅. Initialize the set of selected edges.
Label each facet f as free, i.e. label( f ) = FREE.

4. For i = 1 to m do the following.

a. Let f1 and f2 be two facets incident to ei.
b. If label( f1) = FREE and label( f2) = FREE, then add ei to

Esel .

5. For each e ∈ Esel , find a Steiner point, remove ei and update the
mesh (add one vertex, four edges and four facets).

a) b)

pi

pj

pi

pk

pj

pa

pb

pa

pb

Figure 5: Insertion of a new vertex pk. The ridge edges are bold
and valley edges are dashed.

There can be various methods of choosing the Steiner point in
the step 5. One can use the following general approach. Let γ be
a parameter such that the new dihedral angles must be at least
γ. Let ei = (pi p j) and f1, f2, f3 and f4 be the faces incident to
the edges pa pi, pi pb, pb p j and p j pa, respectively. The constraint
dih_angle(pa pi)≤ γ means that pk must be in between two planes,
see Fig. 6. We also can express the constraint dih_angle(pa pk) ≤
γ algebraically and z-coordinate of pk = (x,y,z) (assuming that
the plane pa pi pk is horizontal) must be sandwiched between
two functions F ′

a(x,y) ≤ z ≤ F ′′
a (x,y). Similarly we can express

the constraints dih_angle(pl pk) ≤ γ, l ∈ {i,b, j} using functions
F ′

i ,F ′′
i ,F ′

b ,F ′′
b ,F ′

j ,F
′′
j . Solving these equations we can find a point

pk in the feasible domain if it is not empty.

a) b)

pi

pj

pa

pb

f1

f2

f3

f4

γ
f1

pk
γ

π1

π2

pi

pj

pb

c)

pa

pc

pd

pk

Figure 6: a) Faces f1, f2, f3 and f4. b) Planes π1 and π2, c) Steiner
point pk.
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We implemented a rather simpler algorithm for choosing the
Steiner point pk. Let pc be the mid-point of the segment pi p j and
pd be the mid-point of the segment pa pb, see Fig. 6 c). We place the
Steiner point pk on the segment pc pd . The first try is the mid-point
of pc pd and, if some dihedral angles of the edges pa pi, pi pb, pb p j
and p j pa are decreased, we check the points t ∗ pc + (1− t) ∗ pd
where t = i/10, i = 6,7,8,9. We tested the program on neuron data
together with contour interpolation, see Fig. 7 and Fig. 8. The Fig-
ure 9 illustrates the selection of the edges Esel in the step 4. The
heuristic algorithm increases the dihedral angles locally. The result
is that the average angle of 3095 edges is increased by 6.791177◦.

Figure 7: Contour interpolation for neuron.

4. Concluding Remarks

In this paper, we present the first non-trivial theoretical bound on
the quality of the 3D solids reconstructed by any contour interpo-
lation method. Our bound is still weak and does not seem to have
any practical implications. (When α is small, the fact that T3 has the
minimum dihedral angle of α

8 does not imply anything meaningful
in practice.) However, it is a good starting point for further research
in this direction. Several questions remain to be answered: (1) Is it
possible to prove any topological result regarding the reconstructed
solid using any contour interpolation method? (2) Is it possible to
prove any practical bound on certain geometric parameters (e.g.,
minimum dihedral angle, minimum surface triangle area, etc) of
the reconstructed solid using any contour interpolation method?

Figure 8: Closer look at the neuron surface.
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