
Eurographics Symposium on Rendering (DL-only Track) (2021)
A. Bousseau and M. McGuire (Editors)

Fast Polygonal Splatting using Directional Kernel Difference

Y. Moroto 1 and T. Hachisuka2 and N. Umetani1

1 The University of Tokyo, Japan
2University of Waterloo, Canada

⊕

∇

∇

⊕

⊕

⊕

Input image

*

*

Polygonal PSF Vertical
difference

Decomposition Directional
difference

Differential
images

Add

Prefix
Sum

Result image

Split
∇

∇

∇

∇

*

Figure 1: It is extremely expensive to compute depth-of-field image filtering where the Point Spread Function (PSF), i.e., kernel, is similar
to that of actual camera lens, which typically takes polygonal shapes. For filtering with a flat polygonal kernel, we present a method that
achieves a constant computation time regardless of the size of the kernel. The edges of the vertically differenced kernels are further differenced
along the edge. The differenced kernel is highly sparse, which enables an efficient splatting. The blurred image is reconstructed by computing
the prefix sum (i.e., cumulative sum) in the edge direction followed by the vertical direction.

Abstract
Depth-of-field (DoF) filtering is an important image-processing task for producing blurred images similar to those obtained
with a large aperture camera lens. DoF filtering applies an image convolution with a spatially varying kernel and is thus
computationally expensive, even on modern computational hardware. In this paper, we introduce an approach for fast and
accurate DoF filtering for polygonal kernels, where the value is constant inside the kernel. Our approach is an extension of the
existing approach based on discrete differenced kernels. The performance gain here hinges upon the fact that kernels typically
become sparse (i.e., mostly zero) when taking the difference. We extended the existing approach to conventional axis-aligned
differences to non-axis-aligned differences. The key insight is that taking such differences along the directions of the edges
makes polygonal kernels significantly sparser than just taking the difference along the axis-aligned directions, as in existing
studies. Compared to a naive image convolution, we achieve an order of magnitude speedup, allowing a real-time application
of polygonal kernels even on high-resolution images.

CCS Concepts
• Computing methodologies → Image processing; Rasterization; Image-based rendering; Massively parallel algorithms;

1. Introduction

Lens blur is often used to create a sense of depth and is leveraged
by photographers to guide the viewer’s attention toward the area
in focus. Lens blur has gained increasing attention in recent years

owing to its esthetic appeal. Because lens blur typically requires a
large-aperture lens, which is not readily available in mobile device
cameras, the effect of lens blur is often achieved as a post process
using depth of field (DoF) image filtering. DoF filtering is gen-
erally costly, particularly when the kernel size is large. Thus, it is

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/sr.20211294 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-1251-970X
https://doi.org/10.2312/sr.20211294

Y. Moroto & N. Umetani & T. Hachisuka / Fast Polygonal Splatting using Directional Kernel Difference

often difficult to apply a real-time computational animation, such
as video games.

The DoF effect is typically achieved by filtering a pinhole im-
age using a spatially varying kernel, that is, a Point Spread Func-
tion (PSF). The PSF specifies how the energy arriving at each pixel
should be diffused over the image [LRT08]. The computational
cost is proportional to the product of the number of pixels in the
PSF (i.e., the size of the blur) and the number of pixels in the
image. Thus, the computational cost increases rapidly when high-
resolution images require extensive blurring. Acceleration is pos-
sible by hierarchically applying blur using an image pyramid to
avoid direct convolution with a large kernel [KS07]. However, this
approach is typically limited to extremely simple kernels, such as
a Gaussian or box kernel, which is often quite different from the
PSF of an actual camera lens. Because of the aperture blades, PSFs
usually take the shape of polygons, and thus a polygonal kernel is
often preferred to approximate the PSF [AMG∗18] of the lens blur.

In this paper, we present an efficient DoF filtering method for
polygonal kernels where the kernel is constant within a polygon
and zero outside the polygon. Although, strictly speaking, the PSF
of an actual camera lens is not entirely flat, many expensive lenses
aim to provide flat bokeh, and many image editing software pack-
ages (e.g., Adobe Photoshop) employ flat PSF shapes for achieving
a lens blur. Our basic approach involves filtering within the differ-
ence domain to increase the sparsity of the kernel. The final im-
age is reconstructed from the filtered image by summing the differ-
enced image by exploiting the associative and distributive proper-
ties of the filtering operation. Our approach achieves a better spar-
sity compared to the previous method by computing the differences
along the edges of the polygon. Unlike other approaches, the num-
ber of non-zero elements in our method remains the same regard-
less of the size of the kernel.

Theoretically, our filtering operation does not involve any ap-
proximation, producing exactly the same outputs as a brute-force
filtering method. This makes the filtering results coherent over the
image frames and is thus suitable for film and video game applica-
tions. However, our method only supports the kernel of a polygon
whose edges have slopes represented by simple integer ratios be-
tween their rise and run. Therefore, we also developed a technique
for rectifying the input polygon of the user into that supported by
our algorithm. Our rectification method is based on the dynamic
programming approach and is extremely efficient, requiring only a
few seconds of pre-computation to find the best approximation to
the input polygon.

We evaluated the performance of our method through vari-
ous comparisons with existing techniques and achieved orders-of-
magnitude faster image filtering, particularly when the kernel size
was large. We also demonstrated the results of image filtering using
complex polygonal kernel shapes.

2. Related Work

When rendering a three-dimensional scene, lens blur can be com-
puted by directly modeling the optical lens response through ray
tracing [CPC84, HA90, LES09, SSD∗09, LES10, JKL∗16, PJH16].

However, although accurate, this method is generally computation-
ally expensive for high-resolution images.

Rather than simulating light going through a lens, image-based
approaches apply filters to pinhole images [PC81,Rok93]. We refer
to this post-processing of the original image as “lens blur filtering.”
Such an image-based approach performs better than other meth-
ods and should therefore be preferred for interactive applications
such as video games [GK07,AMG∗18]. Our method simulates lens
blur through image filtering. Various approaches have been devel-
oped for the efficient computation of lens blur filtering. Hensley et
al. [HSC∗05] used a summed-area table [Cro84] to accelerate filter-
ing through the kernels, as defined by Heckbert [Hec86]. Pyramidal
image processing [KS07] can also be used to accelerate the filter-
ing; however, the filtering kernel (PSF) is limited to simple func-
tions, such as Gaussian functions. Lee et al. [LKC08] efficiently
computed the lens blur with occlusions using layered images. Sub-
sequently, they described an anisotropically filtered MIP mapping
technique that reduced the artifacts associated with lens blur fil-
tering [LKC09]. Imajo [Ima12] approximated a Gaussian function
with a spline curve to accelerate the computation. The methods
described above do not provide accurate results when the PSF is
polygonal. Hensley et al. [HSC∗05] reported precise results for
certain types of kernels, including box kernels, but not for polyg-
onal kernels. In addition, apart from the methods by Kosloff et
al. [KTB09] and Imajo [Ima12], the approaches mentioned above
compute the convolution of a pinhole image according to the PSF
and can thus be computationally expensive when the kernel size is
large.

When all pixels are uniformly blurred through a simple convo-
lution against the fixed kernel, we can leverage the fast Fourier
transform (FFT) for a fast filtering computation. Both the input im-
age and kernel are transformed into the frequency domain, and the
product is then computed. The filtered image is also then computed
by applying an inverse Fourier transform. The FFT-based method
is efficient because the kernel complexity does not affect the com-
putational time.

Kernel splatting is typically a bottleneck in DoF filtering, and the
more non-zero elements present in the kernel, the longer the com-
putation time required to split the kernel. Therefore, significant ef-
fort has been made to reduce the number of non-zero elements to be
splatted, particularly when the kernel radius is large. Our method
leverages the property in which a flat PSF, i.e., a kernel with con-
stant values, becomes sparse when the difference is taken.

Leimkühler et al. [LSR18] recently accelerated image filtering
by exploiting the sparsity of the kernel when Laplacian is com-
puted. Although this method closely approximates kernels whose
values smoothly change, it is difficult to obtain a significant spar-
sification without an approximation error for flat polygonal ker-
nels where the value discontinuously changes around the edge. The
Laplacians of such polygonal kernels create large positive and neg-
ative values along the edge of the kernel, whereas our approach
produces non-zero elements only at the corners of the polygon. In
addition, for a reconstruction of differentiated images, our method
requires a prefix sum (i.e., a cumulative sum), which is fast and
accurate. By contrast, the method of [LSR18] requires solving the

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

100

Y. Moroto & N. Umetani & T. Hachisuka / Fast Polygonal Splatting using Directional Kernel Difference

Poisson’s equation, which is extremely expensive unless approxi-
mated using the convolution pyramid method [FFL11].

White et al. [WBB11] computed the lens blur effect using
a hexagonal kernel. However, the application of this technique
to other polygons is challenging, and the computational time is
proportional to the kernel radius. The computational cost of our
method is independent of the kernel size, and large blurs can be
achieved. In addition, Kosloff et al. [KTB09] developed a DoF fil-
ter for box-shaped kernels with a constant per-pixel computational
time. This represents a special case of the proposed method. This
method is similar in that it computes the differencing; however, our
method is different in that we take the differences in skewed direc-
tions other than the horizontal and vertical directions.

Even more similar to our approach, Harrington [Har03] ap-
plied summed-area tables to directions not aligned with the axis
to achieve hexagonal and octagonal blur. Because this approach
uses summed-area tables, it applies a summation (computing the
summed-area table) and the difference (fetching the table). Theo-
retically, our approach is similar to this approach. However, the ma-
jor difference is the order of summation and difference, i.e., we first
filter using different kernels and then integrate the resulting image.
This allows us to achieve a scatter blur, which is more similar to the
actual blur mechanism, whereas their method is a gather blur. In the
case of DoF filtering where the kernel size varies, the gathering is
not physically correct and produces strong artifacts around the sil-
houettes where the kernel size discontinuously changes. Although
DoF with gathering is easy to compute in parallel, it typically re-
quires masks or costly post-filtering, such as bilateral filters around
silhouettes. By contrast, scattering can compute the DoF filtering
to accurately without the special treatment around such silhouettes.

Piponi [Pip12] introduced a fast and exact convolution method
using a Z-transform, which is also independent of the kernel ra-
dius. However, this method only supports a gather-type DoF and
convex polygons, and our approach can also handle concave poly-
gons. Furthermore, in the case of hexagons, their method requires
28 samples per pixel, whereas our method requires only eight sam-
ples per pixel. For more complex polygons with many edges, the
cost of their method is polynomial, whereas that of our method is
linear.

A number of studies employ deep learning or generative ad-
versarial networks to achieve the DoF effect by training the net-
work with numerous photos taken with a camera [NAM∗17,IPT20,
QQL∗21, CKCL20]. Some studies achieved filtering at an interac-
tive speed for still images when the kernel was small. However,
they are still too slow for real-time filtering required for games and
video editing when the kernel is large. Alternatively, other meth-
ods filter input images based on estimated disparity maps or masks
[BASH15, WGJ∗18, LXJ∗18, PSKA19, LLL∗20, LPX∗20]. These
approaches are orthogonal to our technique because our method
can be used to accelerate their filtering.

3. Overview

Kernel rectification. Our method computes the filtering of the in-
put image Iin with a kernel K, which is a rectangle-shaped binary
array. The kernel is polygonal, that is, given a polygon, the kernel

takes a value of 1 inside the polygon and a zero otherwise. Our
method requires each edge of the polygon to have a slope with the
rise and run of small integers (e.g., 1:1, 2:1, or 1:0). For fast im-
age filtering, it is also desirable for the polygon to have a minimum
number of edges. Hence, in Section 4, we present a technique for
efficiently rectifying the user-specified shape P̄ into a polygon P
that satisfies our requirements.

The rectified polygonP is scaled to the specified pixel radius and
then rasterized into a two-dimensional array K for the following
splatting computation. In the case of DoF filtering, the radius of the
kernel is different for each pixel depending on its depth.

Kernel splatting. First, we compute the difference in the vertical
direction. The differenced image takes non-zero values only above
and below the non-vertical edge of the polygon. Subsequently, our
method groups the pixels that belong to the edge of the same direc-
tion and again computes the difference along the direction of the
edge. As a result, our method keeps the number of non-zero ele-
ments to a constant number, even if the size of the kernel increases.
Finally, we compute the final filtered image by splatting to each di-
rection buffer using this difference kernel and computing the prefix
sum in the edge directions and finally in the vertical direction (see
Section 5).

Note that in our implementation, we first take the vertical dif-
ferences; however, this can be in other directions (e.g., horizontal
differences). If the polygon of the kernel has a specific dominant
direction, we can reduce the number of non-zero elements by dif-
ferencing in that direction. However, for simplicity, our method can
be described as taking the vertical differences first.

4. Kernel Rectification

Our method requires the kernel to be represented by a polygon P
whose edges have slopes with simple integer ratios between their
rise and run (e.g., 2:1 or 1:0). This requirement is naturally satis-
fied when the kernel is simple regular polygons such as octagon. To
handle more complicated polygons, we present a technique to rec-
tify input polygon to satisfy this requirement. As the computational

(1,0)
(1,1)(1,-1) (0,1)

output edge
directions

input
polygon

Figure 2: For each vertex of the input polygon (red circle), we place
the candidate edges touching the vertex from outside (bold black
line) chosen from the specified set of edge directions. We then list
pairs of candidate edges (green circles) that cross outside the input
polygon. Each enclosed area between the pair of crossing edges
and the input polygon is associated with the pair (green region).

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

101

Y. Moroto & N. Umetani & T. Hachisuka / Fast Polygonal Splatting using Directional Kernel Difference

cost increases in proportion to the number of edges, it is necessary
to express polygons with as few edges as possible.

This section presents a method for finding the polygon to sat-
isfy the requirements using Dynamic Programming (DP) approach
which has two steps: building a weighted graph and traversing it.
We denote D as the set of possible directions of the output edge
where its members are the tuples of two small integers for the rise
and run of the slope, e.g.,D= {(−1,+1),(+1,0), . . .}. Aside from
the input polygon P̄ , our method takes D and the maximum num-
ber of the output edge N as inputs.

Error metric. There are various metrics for measuring the differ-
ence between two polygons (e.g., Hausdorff distance or Jaccard
distance). Our method finds the polygon with the smallest area that
encloses the input polygon P̄ . This metric allows us to find the
polygon with desired edge property in an efficient and determinis-
tic way approximating the input polygon with the minimum error.
See Figure 6 for the examples of the output for various polygonal
inputs.

Graph construction. All the edges of the output polygon P must
touch the vertices of the input polygon P̄ , otherwise, the area dif-
ference can be further reduced by moving the edges inward. Hence,
for every vertex of the input polygon, we first list all the potential
output edges that touch the vertex from outside and their directions
are included in D (see Figure 2). We then check whether two can-
didate output edges that belong to the different vertices of P̄ cross
outside the P̄ . We record all such pairs of edges together with the
area enclosed by the edges and the P̄ . These pairs of edges can be
seen as the edges of a weighted graph whose nodes are the vertices
of the input polygon P̄ .

Graph traversal. With the graph built, we search for the output
polygon of minimum cost by traversing the graph. Stating from a
vertex of the input polygon (i.e., node of the graph), we traverse the
graph to come back to that vertex with one counter-clockwise rota-
tion around the input polygon. Given the counter-clockwise travers-
ing orientation, the graph can be seen as a Directed Acyclic Graph,

split

(a)

(b)

(c)

(d)

d=(-1, 1) d=(1, 1) d=(1, 0)

Figure 3: Kernel differencing. First, we compute the difference
in the input kernel (a) in the vertical direction, which produces
non-zero elements around non-vertical edges (b). These edges are
grouped according to their direction (c). Then, by differencing
along the edges, we obtain sparse differenced kernels (d).

therefore we topologically sort the graph and traversing nodes in
sorted order to find the minimum cost. We find the output polygon
with minimum cost by repeating this traversing procedure setting
all the vertices of the input polygon as the starting vertex.

5. Splatting Kernel Using Directional Differencing

Section 4 describes a method for rectifying an input polygon into a
polygon that can be handled by our method. To filter an image, we
first rasterize the kernel into pixels K and then compute the splat-
ting against the input image K∗ Iin. This section describes how this
convolution can be accelerated by computing the differenced kernel
(Section 5.1) in the pre-computation and computing the splatting
against the differenced kernel and summing the differenced filtered
image (Section 5.2).

5.1. Directionally Differenced Kernel

Given the rasterized kernel K of radius r∈N, the vertical difference
of the kernel is a convolution of the kernel with the differencing
kernel in the vertical direction.

K′ =∇(0,1) ∗K, (1)

where∇d denotes the differencing kernel in the direction of d. This
vertical differencing of the kernel is equivalent to an element-wise
computation as follows:

K′(i, j) = K(i, j)−K(i, j−1), where− r ≤ i, j ≤+r+1, (2)

where its component takes either −1 or +1 on the non-vertical
edges (see Figure 3(b)).

Next, we decompose the vertically differenced kernel K′ into a
set of kernels K′d in the same direction

K′ = ∑
d∈D

K′d , (3)

where D is the set of directions in the decomposed vertically dif-
ferenced kernel (see Figure 3(c)).

Finally, we compute the difference of the decomposed kernel
K′d in the direction of the edge. Let us denote the direction d =
(xd ,yd) ∈ D; the directional difference of the decomposed kernel
can then be written as

K′′d =∇d ∗K′d , (4)

whose element-wise computation can be expressed as

K′′d (i, j) = K′d(i, j)−K′d(i− xd , j− yd). (5)

Because the component of the decomposed kernel K′d is constant
along the edge, the difference in the edge direction leaves only
a few non-zero elements per edge around its endpoints (see Fig-
ure 3(d)). Note that the number of non-zero elements in K′′d is con-
stant regardless of the blur radius r. This provides a significant ad-
vantage over the naïve implementation of kernel splatting, which
has a number of non-zero elements in O(r2).

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

102

Y. Moroto & N. Umetani & T. Hachisuka / Fast Polygonal Splatting using Directional Kernel Difference

input image

prefix sum (edge direction)

splatting with kernels

prefix sum
(vertical direction)

sum
output image

(a)

(b)

(c)

(d) (e)

Figure 4: Runtime image filtering. The input image (a) is splatted
with sparse differencing kernels (b). For each splatted image, we
computed the prefix sum in the direction of the edge (c). These im-
ages sum to an image (d). Finally, by computing the prefix sum in
the vertical direction, we obtain the output image (e).

5.2. Runtime Image Filtering

This section describes the runtime image filtering procedure. Please
refer to Figure 4 for the overall procedure for an octagonal flat ker-
nel. An input image Iin is filtered by applying a kernel to produce
the output image Iout .

The prefix sum is an operation that adds up the value of the array
in a specific direction. We denote the prefix sum in the direction
of d as Sumd(·) (see Appendix A for more detail). A differenced
image can be reconstructed using this prefix sum as

K = Sumd(∇d ∗K) (6)

In Figure 5, we illustrate the relationship between the directional
difference∇d and prefix sum Sumd . Using this notation, our filter-
ing approach can be derived as follows:

Iout = K∗ Iin = Sum(0,1)

(
∇(0,1) ∗K∗ Iin

)
(7)

= Sum(0,1)

(
∑

d∈D
K′d ∗ Iin

)
(8)

= Sum(0,1)

(
∑

d∈D
Sumd

(
K′′d ∗ Iin

))
. (9)

Note that we use the associative and distributive properties of the
convolution operation.

Figure 5: Relationship between directional differencing and its re-
construction based on a prefix sum. The top row shows edges with
slopes having a ratio of run to rise of (1 : 1), and the bottom row
shows an edge with a ratio of (3 : 2). In the case of a (1 : 1) ra-
tio, there are two non-zero elements per edge, and in the case of
(3 : 2), there are six non-zero elements per edge. The image can be
reconstructed using the directional prefix sum. A simple slope ratio
is preferable because it results in fewer non-zero elements.

We describe our filtering operation in detail (9). First, the image
is split with the directionally differenced decomposed kernel I′′d =
K′′d ∗ Iin. Next, for each direction, we computed the prefix sum of
the image

I′d(m,n) = I′d(m− xd ,n− yd)+ I′′d (m,n). (10)

Note that this is the inverse operation corresponding to the opera-
tion of the directional difference in (5). We then compute the sum of
the directionally summed image I′ = ∑d∈D I′d , which corresponds
to the decomposition of the kernel in (3). Finally, we compute the
prefix sum of the summed image to obtain the final filtered output
image.

Iout(m,n) = Iout(m,n−1)+ I′(m,n), (11)

which corresponds to the vertical difference in (2).

Computing the prefix sums in parallel is straightforward. The
prefix sum of a two-dimensional array can be computed in parallel
in each column, because each column is independent. In the case
of CPU parallelization, the number of columns is generally much
larger than the number of threads, and thus we can simply split the
column tasks among all threads. In the case of a GPU, the number
of threads may be larger than the number of columns, and thus a
single column may need to be processed by dozens of threads in
parallel. There is a popular technique for computing the prefix sum
on a GPU [HSO07]. In our implementation on Nvidia CUDA, a
sufficient speedup was achieved using one warp per column, be-
cause 32 threads in the same warp can exchange values without
synchronization by applying a shuffle instruction.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

103

Y. Moroto & N. Umetani & T. Hachisuka / Fast Polygonal Splatting using Directional Kernel Difference

6. Results

In this section, we first evaluate our kernel rectification method
(Section 6.1) and then compare the differenced kernels (Sec-
tion 6.2), as well as the computational efficiency and accuracy of
our methods against those of the existing approaches. Note that all
measured filtering times include time for both the splatting and re-
construction using prefix sum.

In this study, we evaluated the performance using an Intel ®Core
i9-9900X 3.5 GHz CPU, an Nvidia GeForce RTX 2080 Ti GPU,
64 GB of memory (DDR4-2400 Quad Channel), and Windows
Server 2019 standard (version 1809) operating system.

T1=1750ms
N=4

T1=2148ms
N=5

T1=2375ms
N=6

T1=2586ms
N=8

T1=3225ms
N=20

T1=2799ms
N=12

(a) Ellipse (Vin=612, T0=127ms)

T1=345ms
N=8

T1=400ms
N=12

T1=483ms
N=14

T1=581ms
N=20

(b) Small Heart (Vin=209, T0=8ms)

T1=3376ms
N=8

T1=4464ms
N=12

T1=4346ms
N=14

T1=5857ms
N=20

(c) Large Heart (Vin=930, T0=289ms)

T1=857ms
N=10

T1=1227ms
N=15

T1=1407ms
N=24

T1=3455ms
N=10

(d) Clover (Vin=370, T0=42ms) and Pentagram (Vin=1072, T0=340ms)

Figure 6: Examples of a rectified polygon (blue) for various in-
put polygons (red) computed for various maximum numbers of
output polygon edges N and the set of edge directions D =
{(1,0),(0,1),(1,1),(1,−1),(1,2),(1,−2),(2,1),(2,−1)}. We de-
note the number of vertices in the input polygon as Vin, graph con-
struction time as T0, and graph traversal time as T1.

6.1. Rectification of Polygonal Kernels

In Section 4, we present a method for modifying the input polygon
such that it satisfies the constraint on the edge direction. Figure 6
shows examples of the rectified output polygons for various input
polygons, including concave polygons for the various maximum
numbers of the output polygon edges N. For all input polygons,
we observed that the approximation of the input kernel steadily im-
proves as the number of output edges N increases.

On rare occasions, our rectification algorithm breaks the sym-
metry of the input polygon. For example, the mirror symmetry is
broken in the large heart example in Figure 6(c) with N = 14, and
the rotational symmetry is broken in the Pentagram example in Fig-
ure 6(d). This is due to the error metric based solely on the area dif-
ference between the input and output polygons. Developing error
metrics that handle other criteria (e.g., symmetry) is left for future
study.

We measure the computational time for the two stages of our
method: building a graph T0 and its traversal T1 (see Figure 6) for
various polygonal inputs. In constructing the graph, most of the
time is consumed in checking the intersection between the edge
candidate and the input polygon, which takes longer when the num-
ber of vertices in the input polygon becomes larger. In the case of
small and simple inputs, the graph is typically constructed within
a few tens of milliseconds (see the small heart example in Fig-
ure 6(b)).

Our graph traversal method is based on the DP algorithm and
has complexity in O(V 2

in |D| N). Figure 6 lists the traversal times
for various inputs as T1. Even if the input polygon consists of more
than 1000 vertices, our traversal algorithm finds the output polygon
with a minimum error of a few seconds. Note that our DP-based
algorithm finds the solution by listing all possible polygons with
edges smaller than N. Hence, the polygon of the minimum error
with edges smaller than N can be found without additional cost
when finding a polygon of N edges.

6.2. Kernel Differencing for Commonly Used Polygons

Table 1 compares how kernels of commonly used polygons
(hexagons, octagons, dodecagons, and hexadecagons) are differ-
enced in three different approaches: our approach, differencing

Table 1: Number of non-zero elements in different kernel shapes
and radiuses of kernels for three different approaches: a Laplace
operator on the kernel [LSR18], horizontal and then vertical dif-
ferencing (i.e., ∇x∇y) based on [KTB09], and our proposed ap-
proach.

Laplacian ∇x∇y Ours

radius 25 100 25 100 25 100
Hexagon 408 1608 204 804 8
Octagon 292 1140 116 468 12
Dodecagon 300 1196 108 412 28
Hexadecagon 292 1140 116 468 36

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

104

Y. Moroto & N. Umetani & T. Hachisuka / Fast Polygonal Splatting using Directional Kernel Difference

Octagon Dodecagon HexadecagonHexagon

∇x
∇y

O

ur
s

La
pl

ac
ia

n

Figure 7: Comparison of the layout of non-zero elements among
the three different approaches: the Laplacian approach (top row),
the approach taking the horizontal difference followed by the ver-
tical difference (middle row), and our proposed approach (bottom
row). The arrows in our approach indicate the direction of the edge
group. Our method generates non-zero elements only at the corners
of the polygon, making the number of non-zero elements constant
regardless of the pixel radius. Other approaches result in many
non-zero elements on the edges, where the number of non-zero ele-
ments increases in proportion to the radius of the kernel.

with a Laplace operator [LSR18], and the approach used to com-
pute the difference horizontally and then vertically based on the
methods of Kosloff et al. [KTB09]. Note that a flat regular hexago-
nal kernel is different from the PSF of an actual camera; however, it
is often employed in video editing software (e.g., Adobe After Ef-
fects) and video games [WBB11]. Although our method cannot di-
rectly handle circular kernel shapes, dodecagonal and hexadecago-
nal kernels can be used in practice as a good approximation of cir-
cles for video production and games. When approximating a circle
with a polygon, the corners of the approximated polygon become
more noticeable as the radius increases. This is visible in the out-
put image when there are a few bright pixels in a dark input image
(see Figure 10). However, in most cases, the corners of the approx-
imated polygon do not stand out very much owing to the presence
of blur.

As Figure 7 shows, the Laplacian approach [LSR18] and the
approach developed by Kosloff et al. [KTB09] result in many non-
zero elements on the edges of the polygon. However, our method
produces non-zero elements only around the corners of the poly-
gon. As seen in table 1, the Laplacian approach [LSR18] and the
approach by Kosloff et al. [KTB09], which takes a horizontal and
then a vertical difference, leave hundreds to thousands of non-zero
elements for the large kernel, and the number of non-zero elements
then increases proportionally to the radius. By contrast, our method
requires only several tens of non-zero elements, which is an order
of magnitude less than the other approaches, and the number of
non-zero elements remains constant when the radius increases.

 1

 10

 100

 1000

0x106 2x106 4x106 6x106 8x106 10x106 12x106 14x106

Ti
m

e
 [

m
s]

Image Size [px2]

IPP FFT (Hexagon)
Our (Hexadecagon)
Our (Hexagon)

Figure 8: Comparison of our method against the method based
on the fast Fourier transform for the computation of uniform blur
on a CPU. The computation time is measured for different sizes of
square input images, where the radius of the blur kernel is fixed
(60 px). We measured the average running time of the defocus blur
computation for ten runs, excluding the minimum and maximum
cases for each image size.

6.3. Comparison against Fast Fourier Transform on CPU

Figure 8 compares the performance of our algorithm against the
Fast Fourier Transform (FFT) method for filtering images of vari-
ous sizes, where all pixels of the input image accept the same splat-
ting kernels (e.g., uniform blur across the whole image). The exper-
iment was performed on a 32-bit floating-point gray-scale square
image and the radius of the kernel is fixed to 60 px. For the fil-
tering method using an FFT, we compute the FFT for the kernel
as a pre-computation, and this computation is not included in the
time measurement. We used the FFT implementation in Intel’s In-
tegrated Performance Primitives library, which has a highly opti-
mized vectorized FFT implementation for our hardware setup. Both
implementations use the SIMD instructions, and we execute both
on a single thread on the CPU. Note that the graph for FFT does
not continuously change because we padded the input image to a
power of 2, allowing it to be handled by the FFT. In general, our

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

0x106 2x106 4x106 6x106 8x106 10x106 12x106 14x106

Ti
m

e
 [

m
s]

Image Size [px2]

Our (Hexadecagon)
Our (Dodecagon)
Our (Octagon)
Our (Hexagon)

Figure 9: Computation time of our method for kernel shapes of
hexagon, octagon, dodecagon, and hexadecagon with respect to the
different sizes of a square input. The radius of the kernel was fixed
at 60 px.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

105

Y. Moroto & N. Umetani & T. Hachisuka / Fast Polygonal Splatting using Directional Kernel Difference

Hexagon Octagon Dodecagon HexadecagonHexadecagon whole image Input Heart12 Clover15

Figure 10: Image generated through our blurring method. The radius of the kernels was constant across the input image. The bright spot in
the input image reveals the shape of the kernel in the output image. The blurred images with dodecagonal and hexadecagonal kernels show
that they can be used as approximations to the circular kernel. Heart12 is a heart shape with 12 vertices, and Clover15 is a clover shape
with 15 vertices. Even with such rough approximations, the synthesized images look natural as the splatting blurs the shapes of the kernel.

method achieves a running speed of 37- to 7.2-times faster than an
FFT for images for a hexagonal kernel, and 10-to 2.5-times faster
for a hexadecagonal kernel. Both FFT and our approach have com-
putational complexities independent of the kernel size. Our method
also runs faster for large images and bokeh because the complexity
of FFT is approximately O(n logn), whereas that of our method is
O(n), where n is the number of pixels in the image.

6.4. Filtering with Various Polygonal Kernels on CPU

Figure 9 shows a plot of the running times of a uniform blur compu-
tation with different kernel shapes (hexagon, octagon, dodecagon,
and hexadecagon). As the plot suggests, the running time of our
method is proportional to the total number of pixels in the input
image regardless of the shape of the kernel. Moreover, the running
time is roughly proportional to the number of non-zero elements
in the differenced kernel (e.g., the image filtering with a hexago-
nal kernel takes approximately 2.5-times longer than that of a hex-
adecagonal kernel, where the hexagon has 8 non-zero elements and
the hexadecagon has 36 non-zero elements).

Figure 10 shows the blurring results for kernels computed
from various polygons including the concave polygons (heart and
clover). Notice that the hexagon in the image slightly deviates from
the regular hexagon because our method is inherently unable to
handle the edges of the slope with an irrational rise and run ratio. A
perfectly regular hexagon can be easily achieved by splatting with
a vertically scaled input image to adjust the aspect ratio.

Heart12 is an approximation of a heart with 12 vertices, and
Clover15 is an approximation of a clover with 15 vertices, which
are polygon kernels obtained using our method of Section 4, and
the actual shapes can be seen in Figure 6. The computation time of
Heart12 was almost the same as that of a dodecagon, and that of
Clover15 was almost the same as that of a hexadecagon; therefore,
the graphs in Figure 9 are omitted.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1x106 2x106 3x106 4x106 5x106 6x106 7x106 8x106

Ti
m

e
 [

m
s]

Image Size [px2]

Brute Force (Octagon)
Laplacian (Octagon)
∇x∇y (Octagon)
Our (Hexadecagon)
Our (Dodecagon)
Our (Octagon)

Figure 11: Comparison of GPU DoF filtering time among four dif-
ferent methods: our approach, horizontal and then vertical differ-
encing based on the method developed by Kosloff et al. [KTB09]
(i.e., ∇x∇y), a Laplacian-based approach [LSR18], and the brute
force method. The maximum radius of the DoF is fixed at 60 px,
and the image size is increased to 3840 × 2160.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

106

Y. Moroto & N. Umetani & T. Hachisuka / Fast Polygonal Splatting using Directional Kernel Difference

6.5. Computational Speed of DoF Filtering on a GPU

Our filtering method is architecture-independent. All computations
described in Sections 6.3 and 6.4 are processed on a CPU; how-
ever, our method can be computed on massively parallel processors
such as a GPU. Figure 11 compares the total computation time for
DoF filtering completed on the GPU with four different methods:
the brute force method, Laplacian kernel splatting method [LSR18]
(i.e., Laplacian method), the method taking a horizontal and then
vertical difference based on the approach by Kosloff et al. [KTB09]
(i.e., horizontal/vertical differencing method), and our approach.
Here, the radius of the octagonal kernel is different across the input
image depending on the depth (maximum kernel radius of 60 px).
Similar to the result of constant blur computation on the CPU in
Section 6.4, our method achieved the fastest computation speed
among the four methods because of the small number of non-zero
elements compared to other approaches (see Section 6.2). The re-
sults of DoF filtering are shown in Figure 12.

The differences in speed were clearer when the computation time
was plotted for the kernel radius. Figure 13 compares the computa-
tion time when the maximum kernel radius is increased to 200 px
for DoF filtering against a constant image size (1920×1080). This
plot supports our estimation of the computational complexity for
the kernel radius r, i.e., whereas the brute force method is O(r2),
and the Laplacian method, horizontal/vertical differencing method
isO(r), our method isO(1), which is almost constant with respect
to the kernel radius.

6.6. Accuracy of DoF Filtering on GPU

Finally, in Figure 14, we compare the computational accuracy of
our method against the Laplacian kernel splatting method [LSR18].

Input
O

utput

In focus Front bokeh Back bokeh

Highlight In focusFront & back
bokeh

Input
O

utput

Figure 12: Image with DoF filter using our method. Because there
is no approximation error, the output is exactly the same as that of
the brute force method.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

Ti
m

e
 [

m
s]

DoF max radius [px]

Brute Force (Octagon)
Laplacian (Octagon)
∇x∇y (Octagon)
Our (Hexadecagon)
Our (Dodecagon)
Our (Octagon)

Figure 13: Computation time when the size of the image is fixed to
1920×1080 and the maximum DoF radius is increased to 200 px.
The brute force has a computation time of O(nr2); the Laplacian,
O(nr); and our method, O(n), where n is the number of pixels and
r is the kernel radius.

We applied a DoF filter with a maximum radius of 60 px on a float
square image with a side length of 4 to 4096 px and compared the
results with the brute-force approach. The error of our method is
only approximately 10−7, which is equivalent to the accuracy of
a 32-bit float. By contrast, the Laplacian method has an average
error of 3% and a maximum error of approximately 10%, which
originates from the approximated reconstruction technique using
the convolutional pyramid method [FFL11], which is essential for
a fast computation using the Laplacian approach.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 500 1000 1500 2000 2500 3000 3500 4000
Image Size [px]

Laplacian (max)
Laplacian (ave)
Our (max)

Figure 14: Error of DoF filtering on a floating-point image within
the range of [0,1] with a maximum blur radius of 60 px. The error
is measured against the ground truth, which is computed using the
brute force method at a high pixel depth.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

107

Y. Moroto & N. Umetani & T. Hachisuka / Fast Polygonal Splatting using Directional Kernel Difference

7. Limitations and Future Work

A major limitation of our method is that it can only handle polygons
with edges whose slopes are represented by simple integer ratios.
Furthermore, the values of the kernel must be constant within the
polygons. As the PSFs of real cameras are not constant kernels, our
method cannot be used to simulate a photorealistic DoF. However,
in practice, the use of constant polygonal kernels as PSFs is very
popular among video games and film production; our method can
be used in such applications.

Our rectification algorithm efficiently converts kernel shapes that
our method does not directly support (e.g., curved shapes) into the
one supported. However, the optimization metric and the solver of
the rectification can be improved to facilitate real-time conversion.
Supporting non-constant kernels remains important future work.
This can be potentially achieved by approximating non-constant
kernels as the combination of constant polygonal kernels.

Similar to other difference-based methods, our method also does
not directly support the DoF filtering with occlusion, this is difficult
because the depth changes discontinuously at the occlusion bound-
ary. A technique that supports occlusion with differenced kernels is
left as another target of future research.

8. Conclusion

We present a technique to compute the DoF of images using flat
polygonal kernels. Unlike other methods, the speed of our method
is not affected by the size of the kernel. Therefore, our method en-
joys a much faster speed than the existing ones when kernel size
is large. Furthermore, our filtering method is accurate and does not
involve any approximation once the kernel is rectified. This was
achieved by splatting in the gradient domain, where the gradient is
computed by directional kernel differencing.

We improved the order of computational complexity for filtering.
For example, a DoF filter with a maximum kernel radius of 200 px
processing 1080 px square images was 13 times faster than the
concurrent method and was orders of magnitude faster than older
methods. We also developed an efficient rectification algorithm to
convert kernels that cannot be handled directly by our method (e.g,
those containing curved segments), into ones that can be dealt with
minimum error. Our method and algorithm can efficiently produce
high-definition filtered images in real-time and can be very useful
in the production of videos and games.

Acknowledgements

I would like to thank Dr. Daisuke Takahashi and Dr. Aranha Claus
de Castro for their helpful discussions. The 3D models used in the
teaser and some of the tests were provided by Optie, who is an
active video artist. I also would like to thank him very much. We
also thank the anonymous reviewers for valuable feedback that has
improved our manuscript.

References

[AMG∗18] ABADIE G., MCAULEY S., GOLUBEV E., HILL S., LA-
GARDE S.: Advances in real-time rendering in games. In ACM

SIGGRAPH 2018 Courses (New York, NY, USA, 2018), SIGGRAPH
’18, Association for Computing Machinery. URL: https://doi.
org/10.1145/3214834.3264541, doi:10.1145/3214834.
3264541. 2

[BASH15] BARRON J. T., ADAMS A., SHIH Y., HERNANDEZ C.: Fast
bilateral-space stereo for synthetic defocus. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June
2015). 3

[CKCL20] CHOI M.-S., KIM J.-H., CHOI J.-H., LEE J.-S.: Efficient
bokeh effect rendering using generative adversarial network. In 2020
IEEE International Conference on Consumer Electronics - Asia (ICCE-
Asia) (2020), pp. 1–5. doi:10.1109/ICCE-Asia49877.2020.
9276807. 3

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed ray
tracing. SIGGRAPH Comput. Graph. 18, 3 (Jan. 1984), 137–145.
URL: https://doi.org/10.1145/964965.808590, doi:
10.1145/964965.808590. 2

[Cro84] CROW F. C.: Summed-area tables for texture mapping. In Pro-
ceedings of the 11th annual conference on Computer graphics and inter-
active techniques (1984), pp. 207–212. 2

[FFL11] FARBMAN Z., FATTAL R., LISCHINSKI D.: Convolu-
tion pyramids. ACM Trans. Graph. 30, 6 (Dec. 2011), 1–8.
URL: https://doi.org/10.1145/2070781.2024209, doi:
10.1145/2070781.2024209. 3, 9

[GK07] GÖRANSSON J., KARLSSON A.: Practical post-process depth of
field. GPU Gems 3, 583-606 (2007), 2. 2

[HA90] HAEBERLI P., AKELEY K.: The accumulation buffer: Hard-
ware support for high-quality rendering. SIGGRAPH Comput. Graph.
24, 4 (Sept. 1990), 309–318. URL: https://doi.org/10.1145/
97880.97913, doi:10.1145/97880.97913. 2

[Har03] HARRINGTON S. J.: Hexagonal and octagonal regions from
summed-area tables, Jan. 14 2003. US Patent 6,507,676. 3

[Hec86] HECKBERT P. S.: Filtering by repeated integration. ACM SIG-
GRAPH Computer Graphics 20, 4 (1986), 315–321. 2

[HSC∗05] HENSLEY J., SCHEUERMANN T., COOMBE G., SINGH M.,
LASTRA A.: Fast summed-area table generation and its applications.
Citeseer. 2

[HSO07] HARRIS M., SENGUPTA S., OWENS J. D.: Parallel prefix sum
(scan) with cuda. GPU gems 3, 39 (2007), 851–876. 5

[Ima12] IMAJO K.: Fast gaussian filtering algorithm using splines. In
Proceedings of the 21st International Conference on Pattern Recognition
(ICPR2012) (2012), pp. 489–492. 2

[IPT20] IGNATOV A., PATEL J., TIMOFTE R.: Rendering natural camera
bokeh effect with deep learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) Workshops
(June 2020). 3

[JKL∗16] JOO H., KWON S., LEE S., EISEMANN E., LEE S.:
Efficient ray tracing through aspheric lenses and imperfect bokeh
synthesis. Computer Graphics Forum 35, 4 (2016), 99–105. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/
cgf.12953, arXiv:https://onlinelibrary.wiley.com/
doi/pdf/10.1111/cgf.12953, doi:10.1111/cgf.12953.
2

[KS07] KRAUS M., STRENGERT M.: Depth-of-field rendering by
pyramidal image processing. Computer Graphics Forum 26, 3
(2007), 645–654. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/j.1467-8659.2007.01088.x,
arXiv:https://onlinelibrary.wiley.com/doi/
pdf/10.1111/j.1467-8659.2007.01088.x, doi:
10.1111/j.1467-8659.2007.01088.x. 2

[KTB09] KOSLOFF T. J., TAO M. W., BARSKY B. A.: Depth of field
postprocessing for layered scenes using constant-time rectangle spread-
ing. In Proceedings of Graphics Interface 2009 (CAN, 2009), GI ’09,
Canadian Information Processing Society, p. 39–46. 2, 3, 6, 7, 8, 9

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

108

https://doi.org/10.1145/3214834.3264541
https://doi.org/10.1145/3214834.3264541
https://doi.org/10.1145/3214834.3264541
https://doi.org/10.1145/3214834.3264541
https://doi.org/10.1109/ICCE-Asia49877.2020.9276807
https://doi.org/10.1109/ICCE-Asia49877.2020.9276807
https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/2070781.2024209
https://doi.org/10.1145/2070781.2024209
https://doi.org/10.1145/2070781.2024209
https://doi.org/10.1145/97880.97913
https://doi.org/10.1145/97880.97913
https://doi.org/10.1145/97880.97913
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12953
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12953
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12953
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12953
https://doi.org/10.1111/cgf.12953
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01088.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01088.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2007.01088.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2007.01088.x
https://doi.org/10.1111/j.1467-8659.2007.01088.x
https://doi.org/10.1111/j.1467-8659.2007.01088.x

Y. Moroto & N. Umetani & T. Hachisuka / Fast Polygonal Splatting using Directional Kernel Difference

[LES09] LEE S., EISEMANN E., SEIDEL H.-P.: Depth-of-field rendering
with multiview synthesis. ACM Trans. Graph. 28, 5 (Dec. 2009), 1–6.
URL: https://doi.org/10.1145/1618452.1618480, doi:
10.1145/1618452.1618480. 2

[LES10] LEE S., EISEMANN E., SEIDEL H.-P.: Real-time lens blur
effects and focus control. ACM Trans. Graph. 29, 4 (July 2010).
URL: https://doi.org/10.1145/1778765.1778802, doi:
10.1145/1778765.1778802. 2

[LKC08] LEE S., KIM G. J., CHOI S.: Real-time depth-of-field render-
ing using point splatting on per-pixel layers. Computer Graphics Forum
27, 7 (2008), 1955–1962. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1467-8659.2008.
01344.x, arXiv:https://onlinelibrary.wiley.
com/doi/pdf/10.1111/j.1467-8659.2008.01344.x,
doi:10.1111/j.1467-8659.2008.01344.x. 2

[LKC09] LEE S., KIM G. J., CHOI S.: Real-time depth-of-field render-
ing using anisotropically filtered mipmap interpolation. IEEE Transac-
tions on Visualization and Computer Graphics 15, 3 (2009), 453–464.
2

[LLL∗20] LUO C., LI Y., LIN K., CHEN G., LEE S.-J., CHOI J., YOO
Y. F., POLLEY M. O.: Wavelet synthesis net for disparity estimation to
synthesize dslr calibre bokeh effect on smartphones. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2020). 3

[LPX∗20] LUO X., PENG J., XIAN K., WU Z., CAO Z.: Bokeh render-
ing from defocus estimation. In Computer Vision – ECCV 2020 Work-
shops (Cham, 2020), Bartoli A., Fusiello A., (Eds.), Springer Interna-
tional Publishing, pp. 245–261. 3

[LRT08] LANMAN D., RASKAR R., TAUBIN G.: Modeling and synthe-
sis of aperture effects in cameras. In Proceedings of the Fourth Euro-
graphics Conference on Computational Aesthetics in Graphics, Visual-
ization and Imaging (Goslar, DEU, 2008), Computational Aesthetics’08,
Eurographics Association, p. 81–88. 2

[LSR18] LEIMKÜHLER T., SEIDEL H.-P., RITSCHEL T.: Lapla-
cian kernel splatting for efficient depth-of-field and motion blur syn-
thesis or reconstruction. ACM Trans. Graph. 37, 4 (July 2018).
URL: https://doi.org/10.1145/3197517.3201379, doi:
10.1145/3197517.3201379. 2, 6, 7, 8, 9

[LXJ∗18] LIJUN W., XIAOHUI S., JIANMING Z., OLIVER W., ZHE L.,
CHIH-YAO H., SARAH K., HUCHUAN L.: Deeplens: Shallow depth of
field from a single image. ACM Trans. Graph. (Proc. SIGGRAPH Asia)
37, 6 (2018), 6:1–6:11. 3

[NAM∗17] NALBACH O., ARABADZHIYSKA E., MEHTA D., SEIDEL
H.-P., RITSCHEL T.: Deep shading: Convolutional neural networks
for screen space shading. Comput. Graph. Forum 36, 4 (July 2017),
65–78. URL: https://doi.org/10.1111/cgf.13225, doi:
10.1111/cgf.13225. 3

[PC81] POTMESIL M., CHAKRAVARTY I.: A lens and aperture cam-
era model for synthetic image generation. SIGGRAPH Comput. Graph.
15, 3 (Aug. 1981), 297–305. URL: https://doi.org/10.1145/
965161.806818, doi:10.1145/965161.806818. 2

[Pip12] PIPONI D.: Fast and exact convolution with polygonal filters. 3

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically
Based Rendering: From Theory to Implementation. Elsevier Sci-
ence, 2016. URL: https://books.google.co.jp/books?id=
iNMVBQAAQBAJ. 2

[PSKA19] PUROHIT K., SUIN M., KANDULA P., AMBASAMUDRAM
R.: Depth-guided dense dynamic filtering network for bokeh effect ren-
dering. In 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW) (2019), pp. 3417–3426. doi:10.1109/ICCVW.
2019.00424. 3

[QQL∗21] QIAN M., QIAO C., LIN J., ZHENYU G., LI C., LENG C.,
CHENG J.: BGGAN: Bokeh-Glass Generative Adversarial Network for
Rendering Realistic Bokeh. 01 2021, pp. 229–244. doi:10.1007/
978-3-030-67070-2_14. 3

[Rok93] ROKITA P.: Fast generation of depth of field effects
in computer graphics. Computers & Graphics 17, 5 (1993),
593 – 595. URL: http://www.sciencedirect.com/
science/article/pii/0097849393900107, doi:https:
//doi.org/10.1016/0097-8493(93)90010-7. 2

[SSD∗09] SOLER C., SUBR K., DURAND F., HOLZSCHUCH N., SIL-
LION F.: Fourier depth of field. ACM Trans. Graph. 28, 2 (May 2009).
URL: https://doi.org/10.1145/1516522.1516529, doi:
10.1145/1516522.1516529. 2

[WBB11] WHITE J., BARRÉ-BRISEBOIS C.: More performance! five
rendering ideas from battlefield 3 and need for speed: The run. ACM
SIGGRAPH 2011: Advances in the realtime rendering course (2011). 3,
7

[WGJ∗18] WADHWA N., GARG R., JACOBS D. E., FELDMAN B. E.,
KANAZAWA N., CARROLL R., MOVSHOVITZ-ATTIAS Y., BARRON
J. T., PRITCH Y., LEVOY M.: Synthetic depth-of-field with a
single-camera mobile phone. ACM Trans. Graph. 37, 4 (July 2018).
URL: https://doi.org/10.1145/3197517.3201329, doi:
10.1145/3197517.3201329. 3

Appendix A: Directional Prefix Sum

This section explains directional prefix sum operator Sumd and (6)
in Section 5.2. When computing prefix sum in the direction of
(dx,dy)∈Z2 on an input two-dimensional array K′, the output two-
dimensional array K = Sum(dx,dy)(K

′) at the location (i, j) ∈ Z2 is
computed by summing up the value of K′ in the direction of (dx,dy)
skipping pixels

K(i, j) =
∞
∑
n=0

K′(i−ndx, j−ndy). (12)

Note that we define the value of the input array K′ as zero outside its
boundary. This prefix sum can be simply computed by cumulatively
adding the value from the boundary of the array

K(i, j) = K(i−dx, j−dy)+K′(i, j). (13)

In the meanwhile, when the array K is directionally differenced
as K′ =∇(dx,dy) ∗K, its element is computed as

K′(i, j) = K(i, j)−K(i−dx, j−dy). (14)

Using this relationship repetitively

K(i, j) = K′(i, j)+K(i−dx, j−dy) (15)

= K′(i, j)+K′(i−dx, j−dy)+K(i−2dx, j−2dy) (16)

=
∞
∑
n=0

K′(i−ndx, i−ndy), (17)

we have the the identity in (6) as

K = Sum(dz,dy)(∇(dx,dy) ∗K). (18)

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

109

https://doi.org/10.1145/1618452.1618480
https://doi.org/10.1145/1618452.1618480
https://doi.org/10.1145/1618452.1618480
https://doi.org/10.1145/1778765.1778802
https://doi.org/10.1145/1778765.1778802
https://doi.org/10.1145/1778765.1778802
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2008.01344.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2008.01344.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2008.01344.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2008.01344.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2008.01344.x
https://doi.org/10.1111/j.1467-8659.2008.01344.x
https://doi.org/10.1145/3197517.3201379
https://doi.org/10.1145/3197517.3201379
https://doi.org/10.1145/3197517.3201379
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1145/965161.806818
https://doi.org/10.1145/965161.806818
https://doi.org/10.1145/965161.806818
https://books.google.co.jp/books?id=iNMVBQAAQBAJ
https://books.google.co.jp/books?id=iNMVBQAAQBAJ
https://doi.org/10.1109/ICCVW.2019.00424
https://doi.org/10.1109/ICCVW.2019.00424
https://doi.org/10.1007/978-3-030-67070-2_14
https://doi.org/10.1007/978-3-030-67070-2_14
http://www.sciencedirect.com/science/article/pii/0097849393900107
http://www.sciencedirect.com/science/article/pii/0097849393900107
https://doi.org/https://doi.org/10.1016/0097-8493(93)90010-7
https://doi.org/https://doi.org/10.1016/0097-8493(93)90010-7
https://doi.org/10.1145/1516522.1516529
https://doi.org/10.1145/1516522.1516529
https://doi.org/10.1145/1516522.1516529
https://doi.org/10.1145/3197517.3201329
https://doi.org/10.1145/3197517.3201329
https://doi.org/10.1145/3197517.3201329

