
Stenciled Volumetric Ambient Occlusion

Felix Brüll René Kern Thorsten Grosch

TU Clausthal, Germany

Volumetric AO [LS10] (0.52 ms) Dual Depth + VAO (0.72 ms) Stochastic Depth + VAO (0.75 ms) Ray Tracing + VAO (0.70 ms)

Figure 1: The original VAO algorithm compared with our improved methods. Character model is Noelle from Genshin Impact [She21].

Abstract
Screen-space Ambient Occlusion (AO) is commonly used in games to calculate the exposure of each pixel to ambient lighting
with the help of a depth buffer. Due to its screen-space nature, it suffers from several artifacts if depth information is missing.
Stochastic-Depth AO [VSE21] was introduced to minimize the probability of missing depth information, however, rendering a
full stochastic depth map can be very expensive. We introduce a novel rendering pipeline for AO that divides the AO pass into
two phases, which allows us to create a stochastic depth map for only a subset of pixels, in order to decrease the rendering
time drastically. We also introduce a variant that replaces the stochastic depth map with ray tracing that has competitive
performance. Our AO variants are based on Volumetric AO [LS10], which produces similar effects compared to the commonly
used horizon-based AO [BSD08], but requires less texture samples to produce good results.

CCS Concepts
• Computing methodologies → Rasterization; Ray tracing; Visibility;

1. Introduction

Ambient Occlusion (AO) is an established technique to improve
our perception of 3D scenes by darkening corners and creases.
Screen-space techniques allow displaying AO within a few mil-
liseconds, even for completely dynamic scenes and high pixel res-
olutions. However, missing depth information behind the first hit
often leads to halo artifacts around depth discontinuities. Both
hardware-supported ray tracing and a stochastic depth map can
overcome this problem, but both are too expensive to compute for
all pixels in the image. We therefore propose a Stenciled Volumetric
Ambient Occlusion that quickly detects the small subset of pixels
which require further depth information and selectively trace rays

or compute stochastic depth values for them. The accompanying
video and Fig. 1 show an example with a moving character that has
a bright halo around itself, which can be removed with our tech-
niques with only a small overhead.

To simplify notation, we define the AO value inversely as:

AO =

{
1, if fully visible
0, if completely occluded

This way, all AO images are consistent with the equations.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Eurographics Symposium on Rendering (2022)
A. Ghosh and L.-Y. Wei (Editors)

DOI: 10.2312/sr.20221153 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-6353-127X
https://doi.org/10.2312/sr.20221153

F. Brüll, R. Kern & T. Grosch / SVAO

2. Related Work

Ambient Occlusion was invented by Zhukov et al. [ZIK98] and
used for production rendering by Landis [Lan02]. For dynamic
scenes, Bunnell [Bun05] used disks to approximate AO. Ambient
occlusion fields [KL05] can be used to precompute AO for rigid
transformations in a grid structure. Completely dynamic scenes are
possible with screen space methods [Mit07; FM08; SA07], where
occlusion is approximated from nearby pixel depth values. This
was further extended to directional occlusion and indirect bounces
in screen space [RGS09]. To overcome the missing depth informa-
tion, hybrid AO [RBA09] computes occlusion from a voxel rep-
resentation. Jimenez et. al. [JWPJ16] uses a spherical harmonics
representation along with spatio-temporal sampling to achieve high
quality real-time AO on console hardware. Ray tracing can be used
to compute occlusion in object space for extremely large, mostly
static scenes using spatial hashing [Gau20]. Recent work also uses
neural networks to compute AO directly from a geometry buffer
without shaders [NAM*17]. In the following section we explain
the AO methods that are most relevant for our work.

2.1. Horizon Based AO (HBAO)

Horizon Based AO (HBAO) [BSD08] samples the depth buffer 4
times in a single direction to find a horizon angle under which all
directions are occluded. This is repeated for 8 directions in screen
space resulting in 32 samples per pixel. Since the sample directions
are randomized, the result is very noisy and needs to be blurred by
a depth aware bilateral filter [ED04].

NVIDIA’s HBAO+ [TP16] has the following improvements:
• It uses a simpler AO approximation, similar to [MML12].
• It uses interleaved rendering to minimize cache thrashing [BJ13].
• It can take a second depth buffer as input, to reduce artifacts.

Multiple approaches exists to obtain the second depth buffer:
• Depth Peeling [Eve01; BS09] can obtain the next layer of depth,

which requires a second geometry pass. However, the next layer
of depth can be insufficient to prevent all artifacts that are shown
in Fig. 1. Note that the character model wears multiple layers of
cloth and the second layer of depth will often be another layer of
cloth, instead of the staircase.
• A minimum separation distance [MMNL16] for the second

layer can alleviate the aforementioned problem.
• A pixel-synchronized k-buffer [Sal13] can capture up to k layers

in a single geometry pass.
• The authors of HBAO+ introduce a fast approach to prevent the

artifacts in Fig. 1. The first depth buffer is rendered with all ge-
ometry but exluding the character models. The depth buffer is
then copied and all character models are rendered on top for the
second depth buffer. This way, two depth buffers can be obtained
with a single pass over all geometry.

Stochastic-Depth AO [VSE21] was introduced to capture multi-
ple randomized depth layers in a multisample texture which they
call stochastic depth map. A single layer of a stochastic depth map
is shown in Fig. 2. Since they use a multisample texture, it is possi-
ble to have 1, 2, 4, 8 or 16 depth samples per pixel. The stochastic
depth map is created in a second geometry pass, that outputs a ran-
dom coverage mask to stochastically discard some depth values.

Figure 2: Depth map (left) vs. stochastic depth map (right)

2.2. Volumetric AO (VAO)

The first screen space AO [Mit07] by Crytek is closely related
to volumetric AO: Point samples inside a sphere are used to es-
timate the unoccupied volume. Volumetric Ambient Occlusion
[SKUT*09; BPB17] and Volumetric Obscurance [LS10] refined
this idea by taking line samples instead of point samples to esti-
mate the volume (see Sec. 3.2). Statistical Volumetric Obscurance
[HSEE15] further refines the idea of area samples that were men-
tioned in [LS10] by using summed area tables to evaluate the inte-
gral with a single sample.

3. Our AO Algorithms

Our goal is to combine a fast screen space AO with ray tracing for
ambiguous depth samples. We choose VAO as the underlying AO
algorithm, because it can work with as few as 8 samples, whereas
HBAO needs 32 samples per pixel. This is important because the
number of rays will depend on the number of samples per pixel.

Our contributions are:

• An optimized sample generation for 8 samples per pixel that
can capture small and large scale details (Sec. 3.1).
• A modified thickness model that allows us to cull depth samples

more aggressively (Sec. 3.3).
• Ray Traced VAO: A variation of VAO that utilizes ray tracing

for ambiguous depth samples (Sec. 3.6) and an optimized two
phase pipeline (Sec. 3.8).
• Stochastic Depth VAO: A variation of VAO that makes use of

stochastic depth maps (Sec. 3.7) and an optimized two phase
pipeline that creates the map for selected pixels only (Sec. 3.9).

In this chapter we will explain the baseline VAO algorithm first,
which will be similar to Volumetric Obscurance [LS10]. Next, we
explain how to use ray tracing or a stochastic depth map to im-
prove the visual quality of VAO. Finally, we explain our optimized
stenciled approaches.

The full source code is available on https://github.com/
kopaka1822/Falcor/tree/ambient_occlusion.

3.1. Sample Generation

We decided to generate N = 8 samples per pixel because we intend
to store one bit visibility information per sample and eight samples
fit nicely into a single byte. The goal is to generate samples on a
unit disc to evaluate the occupied volume of a unit sphere. Unfor-
tunately, sample generation via poisson disc sampling [SKUT*09;

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

30

https://github.com/kopaka1822/Falcor/tree/ambient_occlusion
https://github.com/kopaka1822/Falcor/tree/ambient_occlusion

F. Brüll, R. Kern & T. Grosch / SVAO

(a) Samples

Δz2
h(s1)

e

S2
S1

D1

D2

P

(b) Sphere Sampling

P

ns

S1 S2
S3

occluded invalid

valid

Δz2
e

D1

D2

(c) Hemisphere Sampling

Figure 3: VAO (hemi-)sphere sampling. The samples are dis-
tributed on the tangent plane perpendicular to the eye vector e. The
latter can produce ray samples, that lie entirely below the hemi-
sphere (S3).

LS10] produces an unfavorable distribution for N = 8 where 7/8
samples are placed with similar radii around the center of the disc.

Therefore, we use a quasi-Monte Carlo method to evaluate the
occupied volume. First let us take a look on how to analytically
compute the volume V of a unit sphere by integrating the height of
a sample in 2D polar coordinates h(r,ϕ) over a unit disc:

V =
∫ 1

0

∫ 2π

0
h(r,ϕ) rdϕ dr =

4
3

π (1)

h(r,ϕ) = 2
√

1− r2 (2)

Later, we replace h(r,ϕ) with the actual unoccupied height based on
the depth samples. We reformulate this for Monte Carlo integration:

V ≈ 1
N

N

∑
i=1

h(ri,ϕi)

pdf (ri,ϕi)
(3)

The optimal probability density pdf would be proportional to h.
Based on this, we generate N = 8 samples on the unit disc after
using inversion sampling for the radius (see appendix Sec. 7.1):

ϕi = 2π
i
8
+ξ (4)

ri =

√
1−ψ

2/3
i (5)

We use the base 2 Van der Corput sequence [van35] from 8 to 15
which gives us 8 uniformly distributed random numbers for ψi:
1

16 ,
9
16 ,

5
16 ,

13
16 ,

3
16 ,

11
16 ,

7
16 ,

15
16 . ξ is a random variable that is choosen

for each pixel in a 4x4 pixel block to trade banding artifacts for
noise. This results in the blue sampling points depicted in Fig. 3a.

3.2. Sample Evaluation

For simplicity we only describe how to sample a unit sphere.
Fig. 3b depicts how we obtain line samples: We orient the sampling
disc perpendicular to the eye-vector e centered around the world-
space position P. After placing a sample si on the sampling disc,
we project its world space position Si to screen space, to obtain a
depth sample from the depth buffer. Next, we calculate the world

A
O

=
0

AO=1

AO=1

inside

 const.
area

falloff

outside

τ

(a) Definition

AO=0.5 AO=0 AO=0.5 AO=1

detected
surface

1

τ

1+τ

(b) Interpretation

Figure 4: (a) shows the different areas of our halo prevention
model: Inside the sphere, AO will gradually decrease when a sur-
face gets closer to the sphere boundary. In the constant area, AO
will remain zero. In front of the constant area, AO will gradually
increase back to 1. The size of the falloff area is identical to the size
of the area inside. The size of the constant area is determined by the
user-defined thickness τ. (b) shows the interpretation of this defini-
tion for a single depth sample (top): The AO value corresponds to
the part of the column which is inside the hemisphere (bottom).

space position of the depth sample Di. With this we approximate
the distance between the sphere entry point and the depth sample:

∆zi =
h(si)

2
−dot(Di−P,e) (6)

The normalized Monte Carlo integral for AO is then:

AO =
1
8

8

∑
i=1

ai, ai =
∆zi

h(si)
(7)

ai is the AO value of a single sample and AO is the solution of the
Monte Carlo integral. We would like to note, that the calculation
of ∆zi is an approximation of the true value for an orthographic
camera.

In our work we use hemisphere sampling as in [LS10]: We only
calculate ∆zi inside the hemisphere which is defined by the surface
normal ns (see Fig. 3c). We multiply AO by two, because half of
the sphere is ignored. Note, that this can result in invalid samples
that lie completely below the hemisphere. For these we set ai = 0
instead of evaluating the depth.

3.3. Halo Prevention

So far, we did not handle occluded rays, as shown in Fig. 3c, which
would result in negative ∆zi values. Assuming full occlusion for
occluded rays will result in black halos around objects [SKUT*09;
LS10]. Ignoring surfaces in front of the hemisphere has noticeable
artifacts: When a surface moves into the hemisphere the AO value
will jump from 1 to 0 instantly. To avoid this, we use a linear falloff
function as in [HSEE15] that smoothly fades out the ambient value
over distance. We modify this by introducing a constant area before
we use the linear falloff, as shown in Fig. 4. This mimics the thick-
ness model from [LS10] and also speeds up the rendering process
later: we only consider rays as occluded, when a surface appears

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

31

F. Brüll, R. Kern & T. Grosch / SVAO

τ = 0 τ = 0.5 τ = 1.0

Figure 5: Increasing the thickness τ leads to stronger darkening
and can emphasize small, thin objects, like the leaves.

before the constant area. Rays with a surface inside the constant
area will be considered valid as well.

The height of the constant area depends on the unit sphere height
of the sample position h(s) and a thickness value τ:

const. area = 1+ τ− h(s)
2

. (8)

We set τ∈ [0,1] manually for each scene, the impact of the thick-
ness is visualized in Fig. 5.

3.4. Postprocessing

Since we randomize each sample angle ϕi in a 4x4 pixel block,
our AO is noisy. This noise can be removed with a bilateral filter of
radius 4. We use the same separated depth aware bilateral blur filter
as HBAO+ [TP16].

3.5. Volumetric Ambient Occlusion (VAO)

The baseline VAO method is executed in a single full screen pass
that takes a linearized depth buffer and face normals as input. Eight
samples are generated as explained in Sec. 3.1 and ai is computed
based on Eq. 7 if a depth sample is inside the hemisphere. If a
depth sample is below the hemisphere, we set ai = 1, otherwise,
we use the halo model from Sec. 3.3. Finally, we filter the result as
discussed in Sec. 3.4.

3.6. Ray Traced VAO (RT-VAO)

Every time the baseline VAO produces an occluded ray (Fig. 3c)
for a single sample, a better partial AO value ai could be obtained
by using ray tracing after the point of occlusion: Based on our halo
model from from Sec. 3.3, the AO value is smaller than 1 if we have
intersections between the start of the falloff area and the end of our
sampling hemisphere. Therefore, we only need to look for intersec-
tions in this area. We compute the AO value ai j for all surfaces j
inside this area and set the final AO value to ai = min{ai1, · · · ,ai j}.
This guarantees smooth changes of the AO value as intersections
enter and leave the halo area. Fig. 6 shows a simple example for a
pixel with 4 depth values.

inside
 const.
 area falloff

τ eP

Si

ai1=1
ai2=0.5

ai3=0
ai4=0.7

Di1Di2Di3Di4

depth buffer
sample

start of ray

Figure 6: Multiple depth samples Di1 to Di4 and their correspond-
ing AO values ai1 to ai4 of sample position Si. The initial depth
sample Di1 is in front of the falloff area and its corresponding AO
value is ai1 = 1. Since this sample is also in front of the constant
area, it will be classified as occluded (too far away from Si). With
ray tracing we can obtain the valid intersections Di2 to Di4 and
compute their AO values ai2 to ai4. The final AO value is then set
to: ai = min(ai1,ai2,ai3,ai4) = ai3.

(a) Our VAO (b) Bitmask (c) SD Mask

Figure 7: Visualization of our VAO (a) in the bistro scene [Lum17].
Notice the pole on the lower left: In the bitmask (b), the pixels
around the pole are marked because their depth values are behind
the pole and their sample disks are partially occluded by the pole.
In the stochastic depth mask (c), the pole itself is marked, because
additional depth samples are required for this area.

We implemented this in a single full screen pass by using Di-
rectX ray queries (RQ-VAO) and also in a dedicated ray tracing
pass with TraceRay() (RT-VAO).

3.7. Stochastic Depth VAO (SD-VAO)

Since ray tracing hardware is not available for all consumers, we
worked on an alternate approach that uses a stochastic depth map
[VSE21]. This achieves similar results in comparable time.

Similar to the previous approach, we evaluate all samples of a
stochastic depth map if and only if a sample is considered occluded.
Again, we compute the AO value ai j for all stochastic depth sam-
ples j and set: ai = min{ai1, · · · ,ai j}.

3.8. Ray Traced Stenciled VAO (RT-SVAO)

We observed that the ray query version RQ-VAO performed con-
siderably worse than the dedicated ray tracing pass RT-VAO. We
concluded that this is due to the high thread divergence that occurs,

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

32

F. Brüll, R. Kern & T. Grosch / SVAO

depth

sd-map

bitmask

AO

normal

depth

sd-mapsd-mask

Stochastic Depth Mapsd-mask

bitmask

AOdepth

normal

GBuffer

normal

depth

Phase 2

Phase 1

Figure 8: The pipeline of our SD-SVAO (without bilateral-filter).
Each module has the required inputs on the left side and the result-
ing outputs on the right.

when only few samples need to be raytraced. In this case, the shader
needs to wait for all workgroup threads to finish ray tracing, before
it can continue when using ray queries.

The dedicated ray tracing pipeline already works around this
problem by regrouping threads on the fly. However, we improved
the performance even further by making use of domain knowledge.
Motivated by [LKA13] we split our AO kernel in two phases to
minimize thread divergence:

In the first phase we only evaluate the depth buffer in a full
screen pass. In addition to the AO value, we output an 8-bit bitmask
for each pixel: Whenever we encounter an occluded sample, we
set its contribution to zero and set the i-th bit in our bitmask. An
example of the resulting bitmask is shown in Fig. 7b.

In the second phase we only do ray tracing for the pixels, where
at least one bit of the bitmask is set. These are the pixels, where at
least one sample was occluded.

We implemented the second phase with ray queries (RQ-SVAO)
and with the dedicated ray tracing pass (RT-SVAO).

3.9. Stochastic Depth Stenciled VAO (SD-SVAO)

Since the generation of a stochastic depth map is expensive, we
decided to create a stochastic depth map only for selected pixels.
For this, we adjusted the previously explained two phase pipeline
as follows (see Fig. 8):

In the first phase we only evaluate the depth buffer. We output
the same AO values and bitmask as before. Additionally, we use a
write-only random access texture to mark pixels where additional
depth values are needed due to occluded samples. We refer to this
texture as stochastic depth mask, which is shown in Fig. 7c: When-
ever we encounter an occluded sample, we additionally write a 1
into the stochastic depth mask at the screen space position of our
sample Si (which differs from our own screen space position).

Next we create a Stochastic Depth Map only for pixels where
the stochastic depth mask is nonzero. For this we copy the val-
ues from the stochastic depth mask into the stencil buffer of our
stochastic depth map (D24_S8 format) and enable the early stencil
test for rendering to save bandwidth.

In the full screen pass of the second phase we use the bitmask to

time total (inc. single)
single depth 0.34 0.34

depth peeling 0.37 0.71
k-buffer (k=2) 3.51 3.51

SD2 0.68 1.02
SD4 0.75 1.09
SD8 1.2 1.54

Stenciled-SD2 0.39 0.73
Stenciled-SD4 0.42 0.76
Stenciled-SD8 0.55 0.89

Table 1: Rendering time in ms of various depth buffer techniques
in the bistro [Lum17].

mask out inactive invocations. Here, we evaluate the samples from
the generated stochastic depth as in Sec. 3.7.

4. Results

For a fair timing comparison we implemented all techniques from
the previous section in Falcor [KCK*22]. All renderings were
done on the NVIDIA RTX 2080 Ti. We also implemented HBAO+
[TP16] from section Sec. 2.1 with interleaved rendering.

Additionally we use HBAO+SD, which is the implementation of
stochastic depth AO [VSE21]. However, as opposed to the original
paper, we implemented interleaved rendering for the primary depth
map to achieve a more competitive performance.

In Sec. 4.1 we will give an overview about the cost of obtaining
multiple depth buffers in various ways. In Sec. 4.2 we will look at
the rendering performance of our algorithms. In Sec. 4.3 we will
demonstrate the visual benefits between the techniques.

4.1. Secondary Depth Buffer

Tab. 1 shows that depth peeling [BS09] a single layer of depth is
only slightly more expensive than a normal depth rendering pass.
Creating a stochastic depth map with two layers (SD2) is twice as
expensive. Notably, our stenciled versions of the stochastic depth
map are only slightly more expensive than an actual depth peeling
pass. In this work we use a stochastic depth map with 4 samples
per pixel (SD4) and D24_S8 format.

The pixel synchronized k-buffer [Sal13] performs considerably
worse than all other techniques, even though it requires only a sin-
gle pass over the geometry. We suspect that the serialization of the
pixel shader due to the pixel synchronization is the reason.

4.2. AO Performance

We consider AO to be part of a bigger rendering pipeline and there-
fore expect the linearized depth buffer and face normals to be avail-
able without additional cost. We include the times for the acquisi-
tion of the stochastic depth map, the AO computation itself and the
time for postprocessing blur in our benchmarks.

Fig. 9 shows the used scenes with their respective bitmasks.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

33

F. Brüll, R. Kern & T. Grosch / SVAO

SD map AO Total Speedup
VAO 0.22 0.44

SD-VAO 0.35 0.29 0.86
SD-SVAO 0.18 0.23+0.1 0.73 1.17
RT-VAO 0.9 1.12

RQ-SVAO 0.22+0.48 0.92 1.22
HBAO+ 0.38 0.6

HBAO+SD 0.35 1.0 1.57
Times in ms for Crytek Sponza [McG17]. Blur is 0.22 ms.

VAO 0.22 0.44
SD-VAO 0.85 0.31 1.38

SD-SVAO 0.76 0.24+0.13 1.35 1.02
RT-VAO 1.36 1.58

RQ-SVAO 0.24+0.7 1.16 1.36
HBAO+ 0.38 0.6

HBAO+SD 0.35 1.19 2.26
Times in ms for Zero Day [Win19]. Blur is 0.22 ms.
VAO 0.21 0.46

SD-VAO 1.74 0.32 2.31
SD-SVAO 1.45 0.21+0.15 2.06 1.12
RT-VAO 3.74 3.99

RT-SVAO 0.23+3.26 3.74 1.07
HBAO+ 0.39 0.64

HBAO+SD 1.74 1.39 3.38
Times in ms for Emerald Sqr. [NHB17]. Blur is 0.25 ms.

VAO 0.22 0.44
SD-VAO 1.83 0.24 2.29

SD-SVAO 1.58 0.23+0.10 2.13 1.08
RT-VAO 2.08 2.30

RT-SVAO 0.21+1.93 2.36 0.97
HBAO+ 0.31 0.53

HBAO+SD 1.83 0.77 2.82
Times in ms for Hairy Desert. Blur is 0.22 ms.

Table 2: Rendering times for 1920x1080 with 64 pixel guard band.
The AO times for SVAO are split into first phase + second phase.

SD map AO Total Speedup
VAO 0.21 0.45

SD-VAO 0.83 0.29 1.36
SD-SVAO 0.43 0.21+0.10 0.98 1.39
RT-VAO 1.18 1.42

RT-SVAO 0.21+0.81 1.26 1.13
HBAO+ 0.3 0.64

HBAO+SD 0.83 1.0 2.17
1920x1080 with 64 pixel guard band. Blur is 0.24.
VAO 0.35 0.69

SD-VAO 1.30 0.45 2.09
SD-SVAO 0.56 0.40+0.14 1.44 1.45
RT-VAO 1.75 2.09

RQ-SVAO 0.38+1.18 1.90 1.10
2560x1440 with 96 pixel guard band. Blur is 0.34.
VAO 0.64 1.38

SD-VAO 2.50 0.88 4.12
SD-SVAO 1.02 0.70+0.26 2.72 1.51
RT-VAO 3.08 3.82

RQ-SVAO 0.64+2.06 3.44 1.11
3840x2160 with 128 pixel guard band. Blur is 0.74.

Table 3: Times for different resolutions in the bistro [Lum17]

Crytek Sponza [McG17] (262k triangles)

Zero Day [Win19] (1.3M triangles)

Emerald Square [NHB17] (2.7M triangles)

Hairy Desert; Hairball from [McG17] (2.9M triangles)

Bistro [Lum17] (2.8M triangles)

Figure 9: Overview of used scenes. From left to right: Ray Traced
VAO, Bitmask, Stochastic Depth Mask.

Tab. 2 includes the rendering times for HD resolution and Tab. 3
depicts the rendering times for resolutions from HD to 4k.

In all cases we were able to reduce the rendering time for the
stochastic depth map. Furthermore, our SD-SVAO is always faster
than the non-stenciled SD-VAO and the performance improvement
ranges from 2% to 51%. As expected, scenes with a lot of self oc-
clusion were more expensive to render.

It is also noticeable that VAO is a better fit for stochastic depth
maps in general when compared to the runtimes of HBAO, because
it uses less texture samples and therefore requires less bandwidth.

Our Ray Traced SVAO was also almost always faster than the
non-stenciled counterpart. Only the stress test scene of the hairball
proved to be difficult. In the remaining scenes, the performance
improvements range from 7% to 36%.

4.3. Image Quality

Fig. 1 already showed an example where the baseline VAO has
noticeable halos near depth discontinuities. These artifacts be-
come less recognizable after supplying a second depth buffer (dual
depth), but are still visible. Our RT-VAO completely removes the
bright halos, while our SD-VAO shows significant improvements
over the simple dual depth variant. In Fig. 10 and Fig. 11 we present
two more examples. Generally, the stochastic depth map is not a
perfect replacement for ray tracing, but it handles the difficult cases
much better than a single depth buffer. This is also confirmed by the
Mean Squared Error (MSE) below the two figures. The dual depth

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

34

F. Brüll, R. Kern & T. Grosch / SVAO

(a) single depth
VAO

MSE: 0.0049

(b) dual depth

MSE: 0.0023

(c) stochastic
SD-VAO

MSE: 0.0003

(d) ray traced
RT-VAO
reference

(e) different view angle with occluders (blue)

Figure 10: VAO renderings for a bookstore window in the bistro.
The top row shows VAO renderings, the middle row shows differ-
ence images to RT-VAO. The bottom row shows the scene from a
different angle: single and dual depth VAO can not properly com-
pute the area marked by the red arrow, because nearby samples are
blocked by up to three different occluders marked in blue.

(a) single depth
VAO

MSE: 0.0057

(b) dual depth

MSE: 0.0014

(c) stochastic
SD-VAO

MSE: 0.0003

(d) ray traced
RT-VAO
reference

Figure 11: Colored VAO renderings for a shop window of a bakery
store in the bistro. The top row shows VAO renderings, the bottom
row shows differences to RT-VAO. The red arrow marks an area
that is difficult for single and dual depth VAO due to the amount of
nearby occluders: The window frame, bread baskets and pastries.

variant handles cases with up to two occluders perfectly, however,
as soon as a third occluder is introduced one can observe white ha-
los or missing shadows. This effect is especially noticeable during
camera motion. Stochastic depth maps are better at handling such
cases since the relevant depth layer is generally captured in at least
some of the stochastic depth samples.

In the end, RT-VAO and SD-VAO reduce halos to a point where
they are no longer noticeable after adding diffuse shading as shown
in the supplemental video. However, both techniques require addi-
tional computations and should only be used if the time budget of
the specific application allows it, which is already the case for some
of the presented scenes. Also note that RT-VAO and RT-SVAO pro-
duces identical visual results just like SD-VAO and SD-SVAO do.

4.4. VAO vs. HBAO

In Fig. 12 and Fig. 13 we show renderings of our SD-VAO and
Vermeers HBAO+SD [VSE21]. Both techniques result in different
images, however, both manage to darken corners and creases in
their own way. With VAO the corners are sometimes darker, and
with HBAO the falloff is generally larger and appears softer. After
adding the diffuse color, the differences become even less notice-
able. Please note, that our optimized SD-SVAO renders the scene
more than twice as fast as HBAO+SD (see Tab. 3).

5. Limitations and Future Work

Compared to RT-VAO, SD-VAO partially underestimated the oc-
clusion since sometimes depth samples are missing. The authors
[VSE21] proposed a compensation for HBAO+ which increases the
contribution of stochastic samples to alleviate this artifacts. Unfor-
tunately, we could not come up with a similar countermeasure for
VAO that did not introduce more artifacts.

VAO++ [BPB17] presented some different optimizations which
are orthogonal to our work: They introduce a culling pre-pass,
which evaluate AO in a lower resolution texture first. Afterwards,
full screen AO is only evaluated for partially occluded pixels of the
low resolution AO. This would primarily benefit the first phase of
our VAO. Additionally, they use an adaptive sample count. Based
on the projected radius in screen space, they vary between 2 and
32 samples per pixels. Ultimately, this might also be beneficial for
the second phase of our VAO since less rays or stochastic depth
samples need to be evaluated for distant geometry.

Increasing the number of samples beyond 8 is possible, but re-
quires more bandwidth. Since one bit per sample is required for our
visibility bitmask, sample counts up to 128 would be possible with
current hardware. Note that our bitmask is created with a render
target, instead of a stencil target, because our hardware does not
support writing arbitrary stencil values from the pixel shader. We
create the stencil target in a separate full screen pass, that writes a
1 for each pixel where the bitmask is nonzero, which is sufficient
for the stencil test. Therefore, the maximum size of 8 bits per pixel
for stencil formats is not a limitation.

It would be benefical to be able to limit the maximum number of
rays or stochastic depth samples per frame for a guaranteed frame

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

35

F. Brüll, R. Kern & T. Grosch / SVAO

Figure 12: SD-VAO (top) and HBAO+SD [VSE21] (bottom) in the Bistro [Lum17]

Figure 13: SD-VAO (top) and HBAO+SD [VSE21] (bottom) in the Bistro [Lum17]

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

36

F. Brüll, R. Kern & T. Grosch / SVAO

D1

camera 1

camera 2

(a) sketch (b) camera 1 (c) camera 2

Figure 14: VAO has problems when looking from grazing angles
like camera 2. Intersection D1 is not identified as occluder because
it is outside of the halo area. The same problem exists in HBAO.

rate in real-time applications. Alternatively, it would also be pos-
sible to evaluate the primary depth map in full resolution and to
perform the second phase of VAO in half- or quarter-resolution.
This should remove most aliasing artifacts, since the majority of
samples comes from the primary depth map.

The most significant problem of our VAO is depicted in Fig. 14:
Objects that are faced towards the camera can have half of their
sampling hemisphere below the ground in the worst case. If the
viewer looks at grazing angles, a sample below the ground is un-
likely to be detected as occluded, even when using the halo pre-
vention model. This is problematic for two reasons: First, corners
are shaded brighter than they should be. This effect can be alle-
viated by choosing a higher thickness τ. Second, such depth sam-
ples will be counted as occluded which forces an additional ray or
stochastic depth sample. This has a negative impact on the overall
performance and is the main problem of the Emerald Square scene:
Here, the grass blades in the park are placed perpendicular on the
ground which causes a huge area of the scene to be reevaluated.
Removing the grass would result in a major performance boost in
that scenario. Still, we would like to work on a more sophisticated
technique to handle such cases.

6. Conclusion

We proposed the combination of Volumetric Obscurance [LS10]
with stochastic depth maps [VSE21] and ray tracing to improve
the visual quality. In addition, we introduced a novel two phase
pipeline for AO to accelerate the execution of the presented meth-
ods. The actual performance improvements depend on the com-
plexity of the scene and range from 2% to 51% with one exception.
The stencil optimizations also appear to scale favorably with in-
creasing screen resolution. Furthermore, we modified the thickness
model with a configurable parameter τ to trade minor artifacts for
increased performance and also to alleviate artifacts in corners.

References
[BJ13] BAVOIL, LOUIS and JANSEN, JON. “Particle Shadows and

Cache-Efficient Post-Processing”. Game Developer Conference (2013).
https://developer.nvidia.com/gdc- 2013 Accessed:
2022-03-07 2.

[BPB17] BOKŠANSKÝ, JAKUB, POSPÍŠIL, ADAM, and BITTNER, JIŘÍ.
“VAO++: Practical Volumetric Ambient Occlusion for Games”. Euro-
graphics Symposium on Rendering - Experimental Ideas and Implemen-
tations. Ed. by ZWICKER, MATTHIAS and SANDER, PEDRO. The Euro-
graphics Association, 2017. DOI: 10.2312/sre.20171192 2, 7.

[BS09] BAVOIL, LOUIS and SAINZ, MIGUEL. “Multi-Layer Dual-
Resolution Screen-Space Ambient Occlusion”. SIGGRAPH 2009: Talks.
SIGGRAPH ’09. New Orleans, Louisiana: Association for Computing
Machinery, 2009. DOI: 10.1145/1597990.1598035 2, 5.

[BSD08] BAVOIL, LOUIS, SAINZ, MIGUEL, and DIMITROV, ROUSLAN.
“Image-space horizon-based ambient occlusion”. ShaderX7 Advanced
Rendering Techniques. July 2008. DOI: 10 . 1145 / 1401032 .
1401061 1, 2.

[Bun05] BUNNELL, MICHAEL. “Dynamic Ambient Occlusion and Indi-
rect Lighting”. GPU Gems 2. Ed. by PHARR, MATT. Addison-Wesley,
2005, 223–233 2.

[ED04] EISEMANN, ELMAR and DURAND, FRÉDO. “Flash Photography
Enhancement via Intrinsic Relighting”. ACM Transactions on Graphics
(Proceedings of Siggraph Conference) 23 (Aug. 2004). DOI: 10.1145/
1015706.1015778 2.

[Eve01] EVERITT, CASS. Interactive Order-Independent Transparency.
Oct. 2001. URL: https : / / pdfs . semanticscholar . org /
99b8/940b5a6dab8527198e966c0eb7e2a02ee28c.pdf 2.

[FM08] FILION, DOMINIC and MCNAUGHTON, ROBERT. “Effects &
techniques”. SIGGRAPH ’08. 2008 2.

[Gau20] GAUTRON, PASCAL. “Real-Time Ray-Traced Ambient Occlu-
sion of Complex Scenes Using Spatial Hashing”. ACM SIGGRAPH 2020
Talks. SIGGRAPH ’20. Virtual Event, USA: Association for Computing
Machinery, 2020. ISBN: 9781450379717. DOI: 10.1145/3388767.
3407375. URL: https : / / doi . org / 10 . 1145 / 3388767 .
3407375 2.

[HSEE15] HENDRICKX, QUINTJIN, SCANDOLO, LEONARDO, EISE-
MANN, MARTIN, and EISEMANN, ELMAR. “Adaptively Layered Sta-
tistical Volumetric Obscurance”. Proceedings of the 7th Conference on
High-Performance Graphics. HPG ’15. Los Angeles, California: As-
sociation for Computing Machinery, 2015, 77–84. DOI: 10 . 1145 /
2790060.2790070 2, 3.

[JWPJ16] JIMENEZ, JORGE, WU, XIAN-CHUN, PESCE, ANGELO, and
JARABO, ADRIAN. “Practical Real-Time Strategies for Accurate Indi-
rect Occlusion”. SIGGRAPH 2016 Courses: Physically Based Shading
in Theory and Practice. 2016. URL: https://www.activision.
com/cdn/research/Practical_Real_Time_Strategies_
for_Accurate_Indirect_Occlusion_NEW%20VERSION_
COLOR.pdf 2.

[KCK*22] KALLWEIT, SIMON, CLARBERG, PETRIK, KOLB, CRAIG, et
al. The Falcor Rendering Framework. Jan. 2022. URL: https : / /
github.com/NVIDIAGameWorks/Falcor 5.

[KL05] KONTKANEN, JANNE and LAINE, SAMULI. “Ambient Occlusion
Fields”. Proceedings of the 2005 Symposium on Interactive 3D Graph-
ics and Games. I3D ’05. Washington, District of Columbia: Association
for Computing Machinery, 2005, 41–48. DOI: 10.1145/1053427.
1053434 2.

[Lan02] LANDIS, HAYDEN. “Production-Ready Global Illumination”.
SIGGRAPH Courses. 2002, 87–102 2.

[LKA13] LAINE, SAMULI, KARRAS, TERO, and AILA, TIMO. “Megaker-
nels Considered Harmful: Wavefront Path Tracing on GPUs”. Proceed-
ings of the 5th High-Performance Graphics Conference. HPG ’13. New
York, NY, USA: Association for Computing Machinery, 2013, 137–143.
DOI: 10.1145/2492045.2492060 5.

[LS10] LOOS, BRADFORD JAMES and SLOAN, PETER-PIKE. “Volumet-
ric Obscurance”. Proceedings of the 2010 ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games. I3D ’10. Washington, D.C.: As-
sociation for Computing Machinery, 2010, 151–156. DOI: 10.1145/
1730804.1730829 1–3, 9.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

37

https://developer.nvidia.com/gdc-2013
https://doi.org/10.2312/sre.20171192
https://doi.org/10.1145/1597990.1598035
https://doi.org/10.1145/1401032.1401061
https://doi.org/10.1145/1401032.1401061
https://doi.org/10.1145/1015706.1015778
https://doi.org/10.1145/1015706.1015778
https://pdfs.semanticscholar.org/99b8/940b5a6dab8527198e966c0eb7e2a02ee28c.pdf
https://pdfs.semanticscholar.org/99b8/940b5a6dab8527198e966c0eb7e2a02ee28c.pdf
https://doi.org/10.1145/3388767.3407375
https://doi.org/10.1145/3388767.3407375
https://doi.org/10.1145/3388767.3407375
https://doi.org/10.1145/3388767.3407375
https://doi.org/10.1145/2790060.2790070
https://doi.org/10.1145/2790060.2790070
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1145/1053427.1053434
https://doi.org/10.1145/1053427.1053434
https://doi.org/10.1145/2492045.2492060
https://doi.org/10.1145/1730804.1730829
https://doi.org/10.1145/1730804.1730829

F. Brüll, R. Kern & T. Grosch / SVAO

[Lum17] LUMBERYARD, AMAZON. Amazon Lumberyard Bistro, Open
Research Content Archive (ORCA). 2017. URL: http : / /
developer . nvidia . com / orca / amazon - lumberyard -
bistro 4–6, 8.

[McG17] MCGUIRE, MORGAN. Computer Graphics Archive. 2017. URL:
https://casual-effects.com/data 6.

[Mit07] MITTRING, MARTIN. “Finding next gen: CryEngine 2.” SIG-
GRAPH Courses. Ed. by MCMAINS, SARA and SLOAN, PETER-PIKE.
ACM, 2007, 97–121. URL: http : / / dblp . uni - trier .
de/db/conf/siggraph/siggraph2007courses.html#
Mittring07 2.

[MML12] MCGUIRE, MORGAN, MARA, MICHAEL, and LUEBKE,
DAVID. “Scalable Ambient Obscurance”. Proceedings of ACM SIG-
GRAPH / Eurographics High-Performance Graphics 2012 (HPG ’12)
(2012). High-Performance Graphics 2012. URL: https://casual-
effects.com/research/McGuire2012SAO/index.html 2.

[MMNL16] MARA, MICHAEL, MCGUIRE, MORGAN,
NOWROUZEZAHRAI, DEREK, and LUEBKE, DAVID. “Deep G-
Buffers for Stable Global Illumination Approximation”. Proceed-
ings of the High Performance Graphics 2016. HPG. 2016, 11.
URL: https : / / casual - effects . com / research /
Mara2016DeepGBuffer/index.html 2.

[NAM*17] NALBACH, OLIVER, ARABADZHIYSKA, ELENA, MEHTA,
DUSHYANT, et al. “Deep Shading: Convolutional Neural Networks for
Screen Space Shading”. Comput. Graph. Forum 36.4 (2017), 65–78.
DOI: 10.1111/cgf.13225. URL: https://doi.org/10.
1111/cgf.13225 2.

[NHB17] NICHOLAS HULL, KATE ANDERSON and BENTY, NIR.
NVIDIA Emerald Square, Open Research Content Archive (ORCA).
2017. URL: http://developer.nvidia.com/orca/nvidia-
emerald-square 6.

[RBA09] REINBOTHE, CHRISTOPH, BOUBEKEUR, TAMY, and ALEXA,
MARC. “Hybrid Ambient Occlusion”. EUROGRAPHICS 2009 Areas
Papers (2009) 2.

[RGS09] RITSCHEL, TOBIAS, GROSCH, THORSTEN, and SEIDEL,
HANS-PETER. “Approximating Dynamic Global Illumination in Image
Space”. Proceedings of the 2009 Symposium on Interactive 3D Graphics
and Games. I3D ’09. Boston, Massachusetts: Association for Computing
Machinery, 2009, 75–82. DOI: 10.1145/1507149.1507161 2.

[SA07] SHANMUGAM, PERUMAAL and ARIKAN, OKAN. “Hardware Ac-
celerated Ambient Occlusion Techniques on GPUs”. Proceedings of the
2007 Symposium on Interactive 3D Graphics and Games. I3D ’07. Seat-
tle, Washington: Association for Computing Machinery, 2007, 73–80.
DOI: 10.1145/1230100.1230113 2.

[Sal13] SALVI, MARCO. “Pixel synchronization: solving old graphics
problems with new data structures”. Advances in Real-time Rendering
(2013) 2, 5.

[She21] SHENDIYU. Noelle. The model copyright belongs to miHoYo.
2021. URL: https://www.aplaybox.com/details/model/
s620OQ2UgRu7 1.

[SKUT*09] SZIRMAY-KALOS, LÁSZLÓ, UMENHOFFER, TAMÁS, TÓTH,
BALÁZS, et al. “Volumetric Ambient Occlusion”. IEEE Computer
Graphics and Applications - CGA (Jan. 2009). DOI: 10.1109/MCG.
2009.106 2, 3.

[TP16] TATARINOV, ANDREI and PANTELEEV, ALEXEY. “Advanced
Ambient Occlusion Methods for Modern Games”. Game Developer
Conference. https://developer.download.nvidia.com/
gameworks/events/GDC2016/atatarinov_alpanteleev_
advanced_ao.pdf Accessed: 2022-03-07. 2016 2, 4, 5.

[van35] VAN DER CORPUT, J. G. “Verteilungsfunktionen. I”. German.
Proc. Akad. Wet. Amsterdam 38 (1935), 813–821. ISSN: 0370-0348 3.

[VSE21] VERMEER, JOP, SCANDOLO, LEONARDO, and EISEMANN, EL-
MAR. “Stochastic-Depth Ambient Occlusion”. Proceedings of the ACM
on Computer Graphics and Interactive Techniques. I3D ’21 4.1 (2021).
DOI: 10.1145/3451268 1, 2, 4, 5, 7–9.

[Win19] WINKELMANN, MIKE. Zero-Day, Open Research Content
Archive (ORCA). 2019. URL: https : / / developer . nvidia .
com/orca/beeple-zero-day 6.

[ZIK98] ZHUKOV, SERGEY, IONES, ANDREI, and KRONIN, GRIGORIJ.
“An Ambient Light Illumination Model.” Rendering Techniques. Ed. by
DRETTAKIS, GEORGE and MAX, NELSON L. Eurographics. Springer,
1998, 45–56. URL: http://dblp.uni-trier.de/db/conf/
rt/rt1998.html#ZhukovIK98 2.

7. Appendix

7.1. Inversion Sampling

The normalized pdf for the volume integral in Eq. 1 is:

pdf (r,ϕ) =
3

4π
h(r,ϕ) =

3
2π

√
1− r2 (9)

For this method, we determine how to choose a sample radius ri
based on a uniformly distributed random number ψi ∈ [0,1]:

ψi =
∫ ri

0

∫ 2π

0
pdf (r,ϕ) rdϕ dr (10)

This simplifies to:

ψi =
∫ ri

0
3
√

1− r2r dr (11)

ψi =
[
−(1− r2)3/2

]ri

0
(12)

ψi = 1− (1− r2
i)

3/2 (13)

Due to the uniform distribution, we can replace ψi by 1−ψi:

(1− r2
i)

3/2 = 1−ψi = ψi (14)

1− r2
i = ψ

2/3
i (15)

ri =

√
1−ψ

2/3
i (16)

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

38

http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://casual-effects.com/data
http://dblp.uni-trier.de/db/conf/siggraph/siggraph2007courses.html#Mittring07
http://dblp.uni-trier.de/db/conf/siggraph/siggraph2007courses.html#Mittring07
http://dblp.uni-trier.de/db/conf/siggraph/siggraph2007courses.html#Mittring07
https://casual-effects.com/research/McGuire2012SAO/index.html
https://casual-effects.com/research/McGuire2012SAO/index.html
https://casual-effects.com/research/Mara2016DeepGBuffer/index.html
https://casual-effects.com/research/Mara2016DeepGBuffer/index.html
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1111/cgf.13225
https://doi.org/10.1111/cgf.13225
http://developer.nvidia.com/orca/nvidia-emerald-square
http://developer.nvidia.com/orca/nvidia-emerald-square
https://doi.org/10.1145/1507149.1507161
https://doi.org/10.1145/1230100.1230113
https://www.aplaybox.com/details/model/s620OQ2UgRu7
https://www.aplaybox.com/details/model/s620OQ2UgRu7
https://doi.org/10.1109/MCG.2009.106
https://doi.org/10.1109/MCG.2009.106
https://developer.download.nvidia.com/gameworks/events/GDC2016/atatarinov_alpanteleev_advanced_ao.pdf
https://developer.download.nvidia.com/gameworks/events/GDC2016/atatarinov_alpanteleev_advanced_ao.pdf
https://developer.download.nvidia.com/gameworks/events/GDC2016/atatarinov_alpanteleev_advanced_ao.pdf
https://doi.org/10.1145/3451268
https://developer.nvidia.com/orca/beeple-zero-day
https://developer.nvidia.com/orca/beeple-zero-day
http://dblp.uni-trier.de/db/conf/rt/rt1998.html#ZhukovIK98
http://dblp.uni-trier.de/db/conf/rt/rt1998.html#ZhukovIK98

