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Figure 1: Several complex scenes rendered with our BSDF model using 1,600 samples per pixel (spp). Note that every object
in these images is covered by a thin transparent layer with different roughness.

Abstract
We propose a practical reflectance model for rendering thin transparent layers with different sides varying in
roughness and levels of gloss. To capture the effect of subsurface reflection, previous methods rely on impor-
tance sampling for each light-surface interaction. This soon becomes a computationally demanding task since a
recursive sampling scheme is required to handle multiple internal reflections. In this paper, we first provide a com-
prehensive analysis of the relationship between the directional distribution of scattered light and the roughness of
each layer boundary using joint spherical warping. Based on the analysis, we generalize the traditional micro-
facet theory for layered materials and introduce the extended normal distribution function (ENDF) to accurately
model the behavior of subsurface reflection. With the ENDF, the number of sampling processes can be reduced to
only once for each bounce of subsurface reflection. We demonstrate that our BSDF model based on the ENDF is
easy to be implemented on top of Monte Carlo sampling based offline renderers and it incurs little computational
overhead. Moreover, it can be also efficiently used in real-time applications with the help of GPU acceleration.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

In the natural world, surfaces of many objects have a
laminar structure incorporating a thin transparent or semi-

transparent layer. Examples include glazed ceramics, waxed
floor, metallic car paint, and some biological structures like
skin or leaves. Simulating these materials in a physically cor-
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rect way requires accurately describing both surface reflec-
tion and subsurface reflection. For a thin transparent layer,
there is no significant absorption and scattering inside the
layer such that light scattering happens only at a boundary
with a discontinuity in the refractive index. In this situation,
subsurface reflection can be viewed as the net effect of mul-
tiple bounces of light interactions with the layer’s bound-
aries. To deal with full subsurface reflection, infinitely many
bounces of reflections and refractions at the layer’s bound-
aries should be taken into consideration, leading to a daunt-
ing task. Some BSDF models adopt a simple ideal diffuse
term to approximate subsurface reflection. However, such
approximation is not physically plausible for many materi-
als, and adjusting parameters to account for subtle variations
in subsurface reflection from different materials is forbid-
den [HK93]. In general, most practical BSDF models fail to
capture the physically correct effects of subsurface reflec-
tion [SSHL97, MHM∗13], except for solving a very com-
plex 1D radiative transfer equation with slow convergence
rate [HK93, PH00] or with additional precomputation time
and storage [Sta01, JdJM14].

In this paper, we propose an inexpensive and flexible BS-
DF model accounting for both surface reflection and sub-
surface reflection in the context of geometric optics. We
use microfacet theory as the foundation to derive our mod-
el since this theory is considered as a fundamental part
in physically-based, energy-conserving shading [MHM∗13].
In microfacet-based BSDF models, estimating the statistical
distribution of the microfacet’s orientation which is defined
as the normal distribution function (NDF), is a task of piv-
otal importance. Currently, microfacet theory is mainly used
to predict the appearance under single bounce surface re-
flection. In order to handle subsurface reflection induced by
multiple bounces of surface reflections and refractions, we
improve microfacet theory by introducing a new represen-
tation, the extended normal distribution function (ENDF),
to model visually perceived overall roughness of multiple
bounces of reflections. With the ENDF, subsurface reflec-
tion can be treated within the same working framework as
the single bounce surface reflection using microfacet theory.

One major contribution of this paper is a thorough study
of how each bounce of internal reflection influences the ob-
served surface reflectance, especially the perceived surface
roughness. Based on the insights gained from the study, we
describe an efficient method called joint spherical warping to
faithfully estimate the ENDFs for multiple bounces of sub-
surface reflections. Furthermore, the corresponding modifi-
cations of shadowing-masking term and Fresnel reflectance
are also analyzed. Finally, a practical BSDF model for lay-
ered materials is designed, which can be directly used in
existing rendering pipeline without lengthy precomputation.
We also show that this BSDF model can be efficiently uti-
lized in real-time applications with pre-filtered environment
maps.

2. Related Work

Microfacet-Based BSDF Models. Microfacet theory was
introduced to computer graphics by Cook and Torrance
[CT82] to quantify light reflection at rough surfaces. Exper-
imental validations against real-world measurements have
proven that BSDF models based on microfacet theory com-
pare favorably against other families of parametric BSDF
models [NDM05]. In microfacet-based BSDF models, the
microfacet orientations are statistically described by the nor-
mal distribution function [Fou92,APS00]. The original NDF
is a 2D function parameterized by the orientation of micro-
geometry normal, and it is further extended to a 4D func-
tion by including spatial variation (SVNDF) [WRG∗09].
Bidirectional visible normal distribution function (BVNDF)
[WDR11, IDN12] takes into account important shadowing
and masking effects over appearance by employing densely
sampled bidirectional visibility.

Besides surface reflection, microfacet theory has been ex-
tended to simulate transmitting effects through rough sur-
faces. Stam [Sta01] derived a microfacet-based BTDF model
for transmissive materials with rough surfaces as part of his
layered model for the reflectance of skin. This model was
further extended by Walter et al. [WMLT07] with proper
normalization and importance sampling strategies. Our work
bears some similarity to that of Dai et al. [DWL∗09], which
proposed a dual-microfacet model to treat a special case of
thin slabs with spatially-varying roughness, omitting light
transport inside the objects. They estimate the overall NDF
with an empirical solution, while we provide an analytical
model with clear physical concepts. Furthermore, multiple
internal reflections are also correctly captured in our work.

For microfacet-based BSDF models, correct shadowing-
masking functions are essential for energy conservation
[MHM∗13, Hei14]. Several different analytical expressions
appear in the literature, such as the Smith functions [Smi67]
and the V-cavity masking function [CT82]. Heitz [Hei14]
provided a good survey on this topic and also discussed how
to derive shadowing-masking function according to a given
microfacet distribution. In our work, we also provide an ana-
lytical expression for the shadowing-masking function based
on the vMF distribution. Recently, a novel importance sam-
pling strategy for microfacet-based BSDFs is presented, con-
sidering the influence of shadowing-masking term [Hd14].

BSDF Models For Layered Materials. Layered materi-
als are widely adopted in computer graphics to describe the
complete surface and subsurface scattering. Although ren-
dering them can be computationally intensive, they offer a
great potential for producing physically convincing results.
Blinn [Bli82] was the first to generate the subsurface scat-
tering effect in computer graphics in the context of dust-
covered surfaces, based on a single-scattering assumption.
Hanrahan and Krueger [HK93] extended Blinn’s model and
developed a more accurate scattering model for layered sur-
faces in terms of 1D linear transport theory. The efficiency of
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Symbol Description
o outgoing light direction
i incident light direction
n macro-scale geometric normal
m microfacet normal

r / t scattered light direction
dωm an infinitesimal solid angle centered around m

F Fresnel reflectance
G shadowing-masking term
D normal distribution function
D̂ extended normal distribution function
χ+ Heaviside function
⟨,⟩ clamped dot product between two directions
∗ spherical convolution operator
η relative index of refraction (=ηmedium/ηair)

Table 1: Notation used in this paper.

this model was improved in [PH00] by deriving the scatter-
ing equations in an integral form. Apart from their accuracy,
these solutions are prohibitively slow to converge.

To lower the computational complexity, a wide variety
of approximate methods are available in the CG literature.
Some inexpensive methods are designed for specific types
of layer materials with moderate accuracy. For highly scat-
tering and optically thick materials, a dipole or multipole
diffusion approximation can be used to capture multiple
scattered reflections [JMLH01,DJ05,PdMJ14]. For simulat-
ing absorption and scattering of tiny pigments inside a pla-
nar sheet, the Kubelka-Munk model [DH96, Pre02, GP14]
works quite well if all incident and scattered light is as-
sumed to be perfectly diffuse. To generate fast and accu-
rate estimates of light distributions in multiple slabs, the
adding-doubling method [EKM01, JdJM14] is highly rec-
ommended. Our work is inspired by that of Weidlich and
Wilkie [WW07], which proposed a flexible family of layered
BRDFs combining several microfacet-based surface layers.
Since their work is based on the assumption that all sec-
ondary rays scattered from one layer interface are supposed
to be collimated and meet at a single point on the next lay-
er interface, the effect of one-bounce subsurface reflection
seems to be glossier than it should be. Moreover, multiple
bounces of internal reflections are not correctly handled. Our
work circumvents these limitations simultaneously, and also
offers additional benefits which will be discussed in the fol-
lowing sections.

3. Microfacet Theory

To motivate our approach, we start with a brief introduction
of microfacet theory. In computer graphics, microfacet the-
ory assumes that any rough surface can be modeled as a col-
lection of randomly oriented microfacets whose statistical
distribution can be described by a normal distribution func-

tion D(m), and each microfacet (with surface normal m) acts
as a perfect specular reflector or refractor. A general BSDF
model based on microfacet theory is derived in [WMLT07],
which consists a BRDF model (see notation in Table 1):

fr(o, i) = Mr(o, i)D(m) (1)

Mr(o, i) =
F(i,m)G(o, i)
4 |o ·n| |i ·n| (2)

and a BTDF model:

ft(o, i) = Mt(o, i)D(m) (3)

Mt(o, i;η) =
|o ·m| |i ·m|η2(1−F(i,m))G(o, i)

|o ·n| |i ·n|(o ·m+ηi ·m)2 (4)

Here the remaining terms Mr(o, i) and Mt(o, i;η) contain
the shadowing-masking term G(o, i) and the Fresnel term
F(i,m), as well as proper normalization. It has been verified
that both Mr(o, i) and Mt(o, i;η) are smooth, and have rela-
tively little effect on the shape of BSDF [NDM05,WMLT07,
WRG∗09].

When adopting a microfacet-based BSDF model in
physically-based rendering, there are several choices to be
made.

Choosing D. We first decide on a distribution function
that is used to fit the NDF D(m). Several probability distri-
butions exist for modeling the normal data on the unit sphere
such as von Mises-Fisher (vMF), Fisher-Bingham, Kent dis-
tributions [MJ00]. We opt to use the vMF distribution for
its simplicity and analytical tractability in deriving several
formulas related to the NDF, especially the joint spherical
warping approximation described in the following sections.
Actually, a vMF can be regarded as a normalized spherical
Gaussian on S2. A trivariate vMF representation in 3D Eu-
clidean space is parameterized by mean µµµ and concentration
κ and has density function:

M(x;µµµ,κ) =C3(κ)e
κµµµ·x (5)

in which C3(κ) = κ
4π sinh κ . Obviously, this distribution is uni-

modal, and a multi-modal extension is the mixture of vMF
distributions (movMF).

To make the vMF distribution valid for representing the
NDF, a normalization factor is required to ensure that

∫
Ω(n ·

m)D(m)dωm = 1, in which n is the macro-scale geometric
normal. This constraint equation yields:

D(m) =
M(m;µµµm,κm)

A3(κm)(n ·µµµm)
(6)

where function A3(κm) = cothκm − 1
κm

returns the mean re-
sultant length of a vMF with concentration parameter κm.
If bump mapping is not used, we can assume µµµm = n =
(0,0,1)T in the tangent space of n, such that n · µµµm = 1.
Moreover, A3(κm) approaches 1 very fast as κm increas-
es. For instance, A3(100) ≈ 0.99. Therefore, it turns out
that in many cases D(m) ≈ M(m;µµµm,κm). In the follow-
ing, for the sake of simplicity, we will use the original form
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of the vMF distribution to represent the NDFs. However, it
is preferable to apply a normalization factor 1/A3(κm) for
small κm (< 100).

Choosing G. The shadowing-masking function G(o, i)
(∈ [0,1]) describes the fraction of the microfacet which is
visible either in the incident light direction i (shadowing
term, G1(i,m)) or in the viewing direction o (masking term,
G1(o,m)). Correct masking term G1(o,m) (or shadowing
term G1(i,m)) should be derived mathematically from the
NDF D(m) since they are not independent [MHM∗13]. We
follow the derivation in [Hei14] to compute G1(o,m) from
the NDF D(m) via

G1(o,m) = χ+(o ·m)
o ·n∫

Ω⟨o,m⟩D(m)dωm

= χ+(o ·m)
A3(κm)(n ·µµµm)(o ·n)∫

Ω⟨o,m⟩M(m;µµµm,κm)dωm

(7)

in which a heaviside function is used to discard back-facing
microfacets. Unfortunately, the integral at the denominator
has no closed-form expression because of the nonlinearity
of the clamped dot product. Based on the observation that
the masking term is affected by both the concentration pa-
rameter κm and the cosine of viewing angle o · µµµm, we find
the following approximation to this integral:∫

Ω
⟨o,m⟩M(m;µµµm,κm)dωm ≈ acos(barccos(o ·µµµm)) (8)

in which a = 1
4 (A3(κm) + 1)2 and b = A3(κm)

1
3 . Experi-

mental validation in Fig. 2 reveals that our approximation
matches the ground truth quite well for any roughness. In
addition, from the plots we can see that G1(o,m) is almost
constant except for very rough surface (e.g., κm = 1). The
final shadowing-masking function G(o, i) can be obtained
via G(o, i) = G1(o,m)G1(i,m), if the shadowing term and
masking term are assumed to be uncorrelated [Hei14].
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Figure 2: The validation of our approximation to the mask-
ing term G1(o,m) based on Equation 8. Note that the ap-
proximated results (dashed red curves) are very close to the
ground truth results (blue curves) for any rough surface.

Choosing F . The Fresnel term F(i,m) is relatively easy
to choose. Following [CT82], it is given by

F(i,m) =
(g− c)2

2(g+ c)2

(
1+

(c(g+ c)−1)2

(c(g− c)+1)2

)
(9)

where g2 = η2 + c2 −1 and c = |i ·m|.

4. Extended Normal Distribution Function

It is important to note that the original microfacet BSDF
model discussed in the previous section is based on the as-
sumption that for a given screen pixel the source of incident
light (here we regard the viewing direction as the incident
direction based on the principle of reversibility) is at a great
distance from the surface point to be shaded. This means
all the incident light rays inside a pixel footprint are nearly
parallel to one another, which is sketched in Fig. 3. For light
scattering from a single surface, this assumption is valid, and
it is the foundation for a well-known fact in microfacet the-
ory which states that only microfacets with normals lying
within solid angle dωm can reflect light into the solid angle
dωr = 4|o ·m|dωm as shown in Fig. 4(a).

However, this assumption is violated when dealing with
subsurface reflection for layered materials, as illustrated in
Fig. 3. Although the incident light beam can be assumed to
be collimated for the first surface, the reflected or refract-
ed light beams incident upon the second surface become
smoothly distributed due to the surface bumpiness. As a con-
sequence, the redirected light from the second surface seems
to have a broader range compared with its intrinsic light
scattering behavior (see Fig. 4(b)). In other words, the di-
rectional distribution of incident light beam will affect the
perception of surface roughness, i.e., D(m). Inspired by this
observation, we seek to find an extended normal distribution
function (ENDF) to represent this altered surface roughness
such that subsurface reflection can be treated in the same
way as the original microfacet BSDF.

Figure 3: Because of rough reflection (left) or rough refrac-
tion (right) from the first surface, the light beam incident
upon the second surface is no longer collimated even if the
original light beam is.

(a) collimated light beam (b) generalized light beam

Figure 4: The vectors and infinitesimal solid angles involved
in our derivation of the ENDF in this section.
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To tackle this problem, we present a study which inves-
tigates the relationships between directional distribution of
incident light (D(o)), microfacet normal distribution (D(m))
and directional distribution of re-scattered light (D(r) or
D(t)) using joint spherical warping strategy, and includes an
examination of how incident light beams with various distri-
butions affect the shape of the ENDFs.

4.1. Spherical Warping

Warping Functions. First of all, we regard perfect specu-
lar reflection and refraction as two warping functions, which
can be mathematically summarised as:

Φ(x;m) = 2(m ·x)m−x (10)

Ψ(x;m,η) =
(

m·x
η −

√
1− 1−(m·x)2

η2

)
m− x

η (11)

Given a normalized direction, say o, these two warping func-
tions return the reflected direction r=Φ(o;m), and refracted
direction t = Ψ(o;m,η), respectively.

With these two functions, spherical warping strategy can
be used to obtain the expression for the NDF in terms of
scattered lighting vector r or t, i.e., D(r) or D(t).

The Case of Reflection. For collimated incident beam
with a normalized direction o (Fig. 4(a)), determining D(r)
is quite straightforward if the Jacobian determinant of the
transform between m and r with respect to Φ (i.e.,

∥∥∥ ∂m
∂r

∥∥∥
Φ

)

is available. Since D(m)dωm = D(r)dωr, it is easy to verify

that D(r) =
∥∥∥ ∂m

∂r

∥∥∥
Φ

D(m), in which
∥∥∥ ∂m

∂r

∥∥∥
Φ
= lim

dωr→0
dωm
dωr

=

1
4|o·m| .

Recall that our NDF (D(m)) is fitted with the vMF dis-
tribution, but the directional distribution of D(r) does not
necessarily agree with a vMF distribution. Inspired by the
work of [WRG∗09], we provide a vMF approximation to
D(r) that well matches the exact expression. Mathematical-
ly, the mean direction µµµr and the concentration parameter κr
for D(r) are approximated as:

µµµr = Φ(o;µµµm)

κr =

∥∥∥∥∂m
∂r

∥∥∥∥
Φ

κm =
κm

4|o ·µµµm|
(12)

The Case of Refraction. The same strategy can be ap-
plied to the case of refraction by replacing Φ with Ψ and

replacing
∥∥∥ ∂m

∂r

∥∥∥
Φ

with
∥∥∥ ∂m

∂t

∥∥∥
Ψ
= lim

dωt→0
dωm
dωt

=
η2|t·m|

(o·m+ηt·m)2

[WMLT07]. Then the mean direction µµµt and the concentra-
tion parameter κt for D(t) are approximated as:

µµµt = Ψ(o;µµµm,η)

κt =

∥∥∥∥∂m
∂t

∥∥∥∥
Ψ

κm =
η2|µµµt ·µµµm|

(o ·µµµm +ηµµµt ·µµµm)2 κm
(13)

Validation. The accuracy of our approximation to both

D(r) and D(t) using vMF distributions is provided in Fig.
5. Here the blue curves show the exact results of D(r) (Fig.
5(a)) and D(t) (Fig. 5(b)) with respect to four incidence an-
gles (θo = 0, π

6 ,
π
4 ,

π
3 ), while the dashed red curves show cor-

responding single lobe vMF approximation. It is clear that
in many cases the approximated results are very close to the
ground truth results, while error increases as θo approach-
es π

2 . However, the error is subtle for the case of refrac-
tion, as is evident in Fig. 5(b). For the case of reflection, the
shadowing-masking term G(o, i) will partly reduce the error
at grazing angles since G(o, i) becomes unignorable as κm
decreases. Other powerful models, such as mixture of vMF
distributions or anisotropic distributions, can be employed to
further reduce this error.
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(b) D(t)

Figure 5: 2D plots of the ground truth results of D(r) and
D(t) compared to the single lobe vMF approximated results.
Here κm = 100 and η = 1.5.

4.2. Joint Spherical Warping

For the case of generalized light beam (Fig. 4(b)), simple
spherical warping fails to correctly estimate D(r) and D(t),
since both the directional distributions of o and m will affect
their shapes. To address this issue, we propose joint spherical
warping to obtain the expression of D(r) or D(t) given D(o)
and D(m).

The Case of Reflection. Recall that r = 2(m · o)m− o,
and this equation can be regarded as a binary function that
maps two random directions o and m into a random direction
r. We will use the method of transformation to find the direc-
tional distribution of r. To do so, we define another function
s = o, and the Jacobian of the transformation is

J(r,s) =

∣∣∣∣∣ ∂m
∂r

∂m
∂s

∂o
∂r

∂o
∂s

∣∣∣∣∣=
∥∥∥∥∂m

∂r

∥∥∥∥
Φ

(14)

since o and m are independent ( ∂m
∂s = 0). Then the joint dis-

tribution of r and s is given by

D(r,s) = D(m,o)J(r,s) =
∥∥∥∥∂m

∂r

∥∥∥∥
Φ

D(m)D(o) (15)

We can then find the marginal distribution of r by integrating
over s (= o) as follows:

D(r) =
∫

Ω
D(r,s)dωs =

∫
Ω

∥∥∥∥∂m
∂r

∥∥∥∥
Φ

D(m)D(o)dωo (16)
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This equation is the exact form of joint spherical warping,
and it is easy to verify that spherical warping is actually a
special case of joint spherical warping in which D(o) col-
lapses to a delta function.

If both D(m) and D(o) follow vMF distributions, we are
able to find another vMF distribution that fits D(r). Here we
resort to the moment preserving method, and we begin with
the derivation of the first-order moment of D(r):∫

rD(r)dωr =
∫

r
(∫ ∥∥∥∥∂m

∂r

∥∥∥∥
Φ

D(m)D(o)dωo

)
dωr

≈
∫ (∫

rM
(

r;Φ(o;µµµm),

∥∥∥∥∂m
∂r

∥∥∥∥
Φ

κm

)
dωr

)
D(o)dωo

=
∫

A3

(∥∥∥∥∂m
∂r

∥∥∥∥
Φ

κm

)
Φ(o;µµµm)

∥∥∥∥∂o
∂r

∥∥∥∥
Φ

D(o)dωr

≈ A3

(∥∥∥∥∂m
∂r

∥∥∥∥
Φ

κm

)∫
rM

(
r;Φ(µµµo;µµµm),

∥∥∥∥∂o
∂r

∥∥∥∥
Φ

κo

)
dωr

= A3

(∥∥∥∥∂m
∂r

∥∥∥∥
Φ

κm

)
A3

(∥∥∥∥∂o
∂r

∥∥∥∥
Φ

κo

)
Φ(µµµo;µµµm)

(17)

Notice that two spherical warping approximations are
involved in this derivation. The first one (shown in
red) transforms D(m) into the space of r, and the
other one (shown in blue) transforms D(o) into the
space of r. To approximate D(r) as a vMF distribu-
tion, say D(r) = M(r, µ̂µµr, κ̂r), a strong candidate is the
one whose first-order moment (i.e., A3(κ̂r)µ̂µµr) matches

A3

(∥∥∥ ∂m
∂r

∥∥∥
Φ

κm
)

A3

(∥∥∥ ∂o
∂r

∥∥∥
Φ

κo
)

Φ(µµµo;µµµm). It turns out that
the mean direction and the concentration parameter should
be

µ̂µµr = Φ(µµµo;µµµm)

κ̂r = A−1
3

(
A3

(∥∥∥∥∂m
∂r

∥∥∥∥
Φ

κm

)
A3

(∥∥∥∥∂o
∂r

∥∥∥∥
Φ

κo

))
(18)

respectively. Here the Jacobian determinant
∥∥∥ ∂o

∂r

∥∥∥
Φ

is easy
to calculate, and the value happens to be 1. It is worth noting
that the results in Equation 18 are quite similar to the spher-
ical convolution results of two vMF distributions in [MJ00].
Hereafter we will use the notation of spherical convolution,
i.e., D(r) =

(∥∥∥ ∂m
∂r

∥∥∥
Φ

D(m)
)
∗
(∥∥∥ ∂o

∂r

∥∥∥
Φ

D(o)
)

, to represent

our calculation of D(r) according to Equation 17.

It is fairly straightforward to sample D(r) directly to esti-
mate the final radiance for each screen pixel, or we can step
further to find an ENDF D̂(m) such that generalized incident
light beam can be treated in the same way as traditional col-
limated light beam that importance samples D̂(m) and then

applies the adjustment for a change of variables
∥∥∥ ∂m

∂r

∥∥∥
Φ

. In
this paper, we will use the latter sampling scheme by default.
Since D̂(m) =

∥∥∥ ∂r
∂m

∥∥∥
Φ

D(r), we find the following vMF ap-

proximation to the ENDF:

D̂(m)≈M
(

m;µµµm,

∥∥∥∥ ∂r
∂m

∥∥∥∥
Φ

κ̂r

)
(19)

With such expression of the ENDF, the incident light beam
can be viewed as collimated (i.e., D(o)= δ(µµµo)), while keep-
ing the final shape of D(r) unchanged.

Validation of Reflection. Experimental results, which are
provided in Fig. 6, reveal that our approximation method us-
ing spherical convolution provides a nice fit to the ground
truth results (Equation 16). In this figure, we take three D(o)
and D(m) pairs as examples (see the first row of Fig. 6). It
is apparent from the 3D plots of D(r) in the second row of
Fig. 6 that the approximated results (D(r) conv.) are visual-
ly identical to the ground truth results (D(r) g.t.). To further
explain the accuracy of our approximation, we provide scan
line plot of the values on the equator plane of Example 2 in
Fig. 8(a). Clearly, the difference between D(r) conv. (dashed
red curve) and D(r) g.t. (blue curve) is subtle. Here we also
show the 2D plot of the ENDF D̂(m) (dashed black curve).
As we have seen, the ENDF has greater dispersion around
the mean direction compared with the original NDF (green
curve), which is consistent with our intuition.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 6: Three reflection examples of joint spherical warp-
ing. In the first row of each example, left is D(o) and right is
D(m); in the second row of each example, left is the ground
truth result (D(r) g.t.) and right is our approximated re-
sult using spherical convolution (D(r) conv.). Example 1:
µµµo ·µµµm = 1, κo = 50, κm = 200. Example 2: µµµo ·µµµm = 0.707,
κo = 100, κm = 100. Example 3: µµµo · µµµm = 0.5, κo = 200,
κm = 50.

The Case of Refraction. Similar reasoning allows the di-
rectional distribution of refracted light to be determined as:

D(t) =
∫

Ω

∥∥∥∥∂m
∂t

∥∥∥∥
Ψ

D(m)D(o)dωo (20)

Likewise, we can approximate D(t) with a single lobe vMF
distribution with parameters:

µ̂µµt = Ψ(µµµo;µµµm,η)

κ̂t = A−1
3

(
A3

(∥∥∥∥∂m
∂t

∥∥∥∥
Ψ

κm

)
A3

(∥∥∥∥∂o
∂t

∥∥∥∥
Ψ

κo

))
(21)

in which
∥∥∥ ∂m

∂t

∥∥∥
Ψ
=

η2|µµµt·µµµm|
(µµµo·µµµm+ηµµµt·µµµm)

2 and
∥∥∥ ∂o

∂t

∥∥∥
Ψ
=

η2|µµµt·µµµm|
|µµµo·µµµm|

.
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Then it follows that the ENDF for refraction can be approx-
imated as

D̂(m)≈M
(

m;µµµm,

∥∥∥∥ ∂t
∂m

∥∥∥∥
Ψ

κ̂t

)
(22)

Validation of Refraction. Similar validation of such ap-
proximation is illustrated in Fig. 7, and we use the same vMF
parameters for D(o) and D(m) as shown in Fig. 6. Again, ap-
proximated results using spherical convolution (D(t) conv.)
are visually indistinguishable from the accurate ones (D(t)
g.t.). 2D plots of Example 2 are shown in Fig. 8(b), as well
as the ENDF for refraction (dashed black curve).

(a) Example 1 (b) Example 2 (c) Example 3

Figure 7: Three refraction examples of joint spherical warp-
ing. The parameters of D(o) and D(m) are the same as in
Fig. 6 while η = 1.5. In each example, left is D(t) g.t. and
right is D(t) conv..
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Figure 8: Scan line plots of Example 2 for reflection (a) and
refraction (b), respectively. Here we also show the ENDFs
with dashed black curves.

4.3. A Case Study: Rough Refraction From Thin Slab

To prove the effectiveness of our joint spherical warping
strategy proposed in the previous subsection, we show its
application in rendering a thin transparent slab bounded by
two rough surfaces, as presented in [DWL∗09]. In that pa-
per, Dai et al. introduced a dual-microfacet model for captur-
ing refraction through flat slabs, and the overall NDF for the
BTDF is obtained using an iterative model fitting method.
Here we show that the overall NDF for a thin slab can be
derived analytically using joint spherical warping.

The geometry of this application is shown in Fig. 9. In
this figure, the slab has two rough surface boundaries, whose
NDFs are characterized by D(m1) and D(m2), respectively.
According to our approximated joint spherical warping strat-
egy, if both D(m1) and D(m2) follow vMF distributions, the

Figure 9: Geometry for rough refraction from a thin trans-
parent slab.

directional distribution of i can be well approximated by a
vMF distribution with the following parameters:

µ̂µµi = Ψ
(
−Ψ(o;µµµm1

,η);µµµm2
,

1
η

)
=−o

κ̂i = A−1
3

(
A3

(∥∥∥∥∂m1
∂i

∥∥∥∥
Ψ

κm1

)
A3

(∥∥∥∥∂m2
∂i

∥∥∥∥
Ψ

κm2

))
(23)

As before, we assume that µµµm1
= µµµm2

= n. Obviously, these
parameters are very similar to those in Equation 21, except
that the directional distribution of the incident light beam to
the bottom surface D(t) is further determined by the NDF
of the top surface D(m1). Here the Jacobian determinant∥∥∥ ∂m1

∂i

∥∥∥
Ψ

can be obtained via the following chain rule:∥∥∥∥∂m1
∂i

∥∥∥∥
Ψ
=

∥∥∥∥∂m1
∂t

∥∥∥∥
Ψ

∥∥∥∥∂t
∂i

∥∥∥∥
Ψ
= J(m1

Ψ−→ t Ψ−→ i) (24)

For brevity, we use the notation J(m1
Ψ−→ t Ψ−→ i) to de-

note the Jacobian determinant chain which gives the overall
Jacobian determinant for the transformation along the path

m1
Ψ−→ t Ψ−→ i.

Validation. To validate the accuracy of the approximat-
ed directional distribution of i parameterized with µ̂µµi and κ̂i,
we conduct two experiments in Fig. 10 with a flat slab and
a curved slab, respectively. In both experiments, for each
viewing direction o, we generate samples of i according to
the vMF distribution given by Equation 23, and for each
sampled direction, we return the radiance of the intersec-
tion point directly without multiplying the remaining terms.
The ground truth results are synthesized by explicitly sam-
pling both D(m1) and D(m2) and applying appropriate ad-
justment.

As shown, for the flat slab model (2,304 triangles), even
a close examination reveals no discriminable differences be-
tween our approximated result and the ground truth result.
For the curved slab (6,400 triangles), there are large errors at
grazing viewing angles due to the anisotropic distortion in-
troduced by spherical warping, but those errors are still not
significant. Since our method only sample once compared
with the ground truth solution, the rendering time of our
method reduces by nearly half. If more rough surfaces are
stacked together, the rendering time of the ground truth so-
lution will grow linearly with the number of surface layers,
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while our method with appropriate ENDF will have nearly
constant time cost.

(a) g.t. (541 s) (b) approx. (242 s)
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Figure 10: Image quality comparison between the ground
truth (g.t.) and our method (approx.). Here we show two
types of glass slabs with the same NDF (κ = 102) on all
faces (without shadowing-masking and Fresnel effects).

5. Reflectance Model for Thin Layered Materials

So far, we have derived the ENDFs for both reflection and
refraction, and also have verified their accuracy against the
ground truth. In this section, we investigate how to obtain
physically plausible reflectance model for thin layered mate-
rials based on the extended normal distribution functions. In
what follows, we restrict our consideration to one thin trans-
parent layer composed of two smooth or rough boundaries.
We further assume the lower boundary of the layer is opaque
such that light is only reflected at this boundary. When a
light beam hits such a layer, it is both reflected and refract-
ed at the outer boundary depending on its surface properties.
Light refracted into the layer may undergo multiple internal
reflections before it finally exits the medium (see Fig. 11).

Figure 11: Light scattering geometry for a thin transparent
layer with two rough surface boundaries.

According to the principle of independently propagat-
ing of light, the total outgoing radiance L(o) is the super-
position of all bounces of reflections from incident light

L(i1),L(i2),L(i3), ..., respectively, applied with correspond-
ing BSDFs, i.e.,

L(o) =
∫

Ω
fr(o, i1)L(i1)⟨i1,n⟩dωi1︸ ︷︷ ︸

surface reflection

+

∫
Ω

fr(o, i2)L(i2)⟨i2,n⟩dωi2︸ ︷︷ ︸
one-bounce subsurface reflection

+
∫

Ω
fr(o, i3)L(i3)⟨i3,n⟩dωi3 + · · ·︸ ︷︷ ︸

multi-bounce subsurface reflection

(25)

The first integral on the right-hand side of Equation 25
gives the surface reflection, and it can be resolved by tra-
ditional microfacet-based BSDF models with actual NDF
D(m1). The remaining integrals model the subsurface re-
flection components induced by multiple internal reflections,
and these integrals can be well resolved by the ENDFs.

5.1. One-Bounce Subsurface Reflection

Figure 12: The NDF tree for the determination of the ENDF
for one-bounce subsurface reflection.

We first demonstrate how to obtain the ENDF for one-
bounce subsurface reflection. Recall that D(i2) can be ap-
proximated by the spherical convolution between D(m1) and
D(t2) with appropriate Jacobian determinant, while D(t2) is
further determined by D(m2) and D(t1). This procedure will
iterate several times, and finally forms a NDF tree as shown
in Fig. 12. Using the notation of the Jacobian determinant
chain, we can write D(i2) as

D(i2) = [J(m1
Ψ−→ i2)D(m1)]∗ [J(m2

Φ−→ t2
Ψ−→ i2)D(m2)]

∗ [J(m1
Ψ−→ t1

Φ−→ t2
Ψ−→ i2)D(m1)]

(26)

Now, given the expression of D(i2), it is straightforward to
get its corresponding ENDF D̂(m) by multiplying an inverse
Jacobian determinant as illustrated in Fig. 12. Akin to Equa-
tions 18 and 19, D(i2) and its corresponding ENDF D̂(m)
can be further approximated by vMF distributions according
to the spherical convolution rule.

Correctly solving the integral for one-bounce subsurface
reflection also requires proper handling of the remaining
terms in the microfacet-based BSDF, i.e., Mr and Mt in
Equations 1 and 3. As these remaining terms are rather
smooth compared with the NDF and the ENDF, they can
be pulled out of the integral safely. In our implementation,
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these remaining terms are simply estimated using the mean
directions of vMF distributions. For instance, m is replaced
with µµµm, i is replaced with µµµi, etc. Furthermore, the remain-
ing terms for each light-surface interaction should be mul-
tiplied together to give final result. To summarize, the reli-
able remaining term for one-bounce subsurface reflection is
Mt(o,µµµt1

)Mr(−µµµt1
,µµµt2

)Mt(−µµµt2
,µµµi2).

5.2. Multi-Bounce Subsurface Reflection

The analysis of one-bounce subsurface reflection can be ex-
tended to multiple bounces. Observing that multi-bounce
subsurface reflection contains repeated multiple internal re-
flection terms before light exits the layer, and this recursive
process, together with the rough boundaries of the layer,
tends to make the radiation distribution inside the medium
roughly diffuse.

In addition, with the increase of iteration number, the exi-
tant radiance degrades rapidly due to the existence of Fresnel
effects at the upper boundary. As clearly shown in Fig. 13,
the net Fresnel effect in two-bounce subsurface reflection is
very low compared with that in once-bounce case, and this
effect falls off rapidly as the number of bounce increases.
Therefore, it can be concluded that the case of once-bounce
contributes most in the final effect of subsurface reflection.

(a) one-bounce (b) two-bounce (c) three-bounce

Figure 13: Fresnel reflectance as a function of incident an-
gle (θo) and index of refraction (η).

5.3. Light Absorption

Our layered BSDF model, like Weidlich and Wilkie’s
[WW07], is able to handle light absorption inside the medi-
um. Conceivably, light absorption inside the layer will not
alter the ENDF of subsurface reflection, since absorption on-
ly reduce the intensity of each light ray. Therefore, for one-
bounce subsurface reflection we only have to modify the re-
maining term Mt(o,µµµt1

)Mr(−µµµt1
,µµµt2

)Mt(−µµµt2
,µµµi2) by mul-

tiplying a new absorption term:

A(d) = e
−σad

(
1

|µµµt1 ·n|+
1

|µµµt2 ·n|

)
(27)

where d is the depth of the medium layer, and σa is the ab-
sorption coefficient (m−1). Multi-bounce subsurface reflec-
tion can be treated in a similar way with repeated multiplying
absorption terms along the internal reflection path.

5.4. Importance Sampling

Importance sampling scheme for our BSDF model with
ENDF is straightforward. For surface reflection, we can use
the conventional sampling scheme designed for microfacet-
based BSDF, while for subsurface reflection, we draw sam-
ples from the probability density functions derived directly
from the ENDFs.

One strength of our BSDF model is that the sampling
process can be reduced to only once for each bounce of
subsurface reflection if its ENDF is already known, cir-
cumventing the need to explicitly sample the corresponding
NDF for each light-surface interaction (e.g., computing one-
bounce subsurface reflection requires three importance sam-
pling processes).

Furthermore, our ENDF representation has an addition-
al advantage in the challenging lighting condition where the
light source is very small (like point light). It has been wide-
ly acknowledged that traditional importance sampling is no-
toriously inefficient for specular-diffuse-specular light inter-
actions, since there is a extremely large chance that a path
fails to hit the light source. In dealing with layered materials,
such paths occur when the outmost boundary is nearly spec-
ular (i.e., κm1 is very large). In this case, subsurface reflec-
tion effects are very difficult to capture using recursive path
sampling scheme. However, with our BSDF model we can
simply connect the eye sub-path to a point sample chosen
from the light source to obtain correct subsurface reflection,
avoiding inefficient path sampling. An example of including
point light sources is provided in Fig. 1(c).

5.5. Real-Time Rendering

Another potential benefit of our BSDF model is its capability
of being used in the real-time rendering applications. One
such example can be found in real-time rendering with pre-
filtered environmental lighting.

As suggested by Kautz et al. [KVHS00], we first convolve
the environment map with vMF distributions of decreasing
concentration parameter, and then store the results into a
mip-map of 2D texture. During the rendering time, once we
respectively obtain the directional distributions of incident
light for surface reflection and subsurface reflection inside a
screen pixel, we index into the pre-convolved environment
map with mean direction served as texture coordinates and
concentration parameter served as mip-map level. The re-
turned value is further attenuated by appropriate remaining
terms, such as Fresnel coefficients and masking and shad-
owing effects. It should be noted that the environment map
pre-filtering can be performed on the fly as well, for exam-
ple using summed area table [HSC∗05], such that dynamic
environmental lighting is also supported.
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6. Comparisons and Results

We have implemented the proposed BSDF model in C++ and
integrated it into a Monte Carlo path tracing based rendering
system, and we have also implemented a GPU version us-
ing OpenGL and GLSL to enable real-time rendering. All
results are produced on a PC configured with an Intel Core
Q8300 CPU, 8G RAM and an NVIDIA GeForce GTS 250
graphics card, using a final output resolution of 512× 512.
Unless mentioned otherwise, the relative index of refraction
η is set to 1.5, since it is a good approximation for medium
in practical use. The sampling rate of path tracing is 1,600
spp except where explicitly noted.

Visual Quality Comparisons. We first verify the cor-
rectness of our method, and make comparisons with previ-
ous solutions. In Fig. 14, we show a rough plane rendered
with the traditional microfacet BSDF model of Walter et
al. [WMLT07] and the approach presented in this paper, as
well as the ground truth solution. The material structures
and the boundary roughness are displayed on the top of each
image. As already mentioned, traditional microfacet BSDF
model only correctly handles surface reflection, while our
model also accounts for subsurface reflection. Although Fig.
14(b) is rendered with the same roughness as the bottom sur-
face of the layer, the effect of subsurface reflection in Fig.
14(c) is bit softer in comparison. This is to be expected since
the perceived roughness of subsurface is determined by both
boundaries, not just the bottom one. In this figure, both our
method and the ground truth solution successfully capture
surface reflection and one-bounce subsurface reflection, but
our method gains a two-fold increase in speed on the same
platform (ours: 19.7 min; g.t.: 34.8 min).

(a) [WMLT07] (b) [WMLT07] (c) ours (d) g.t.

Figure 14: Comparison with traditional microfacet BSDF
model ( [WMLT07]) and the ground truth solution (g.t.).

To further explain the accuracy of the proposed layered
BSDF model, we run a step-by-step comparison against the
ground truth solution that relies on recursive sampling. From
Fig. 15(a) to Fig. 15(c), we show the separate results of one-
bounce subsurface reflection and two-bounce subsurface re-
flection, as well as the total effects including surface reflec-
tion. In all cases, our approximated results match the ground
truth results quite well. As expected, one-bounce subsurface
reflection dominates the final results, and it maintains a high
degree of directionality. Apparently, such subsurface reflec-

Table 2: The illustrations and comparisons of timing perfor-
mance in seconds for different bounces of subsurface reflec-
tion in Fig. 15.

bounces one two three four
g.t. 561 868 1,194 1,519
ours 338 346 349 355
speedup 1.66 2.51 3.42 4.28

tion effect cannot be captured by a simple diffuse term. The
timing performance for different bounces of subsurface re-
flection is listed in Table. 2, and we can see that the speedup
is linear in terms of internal reflection bounces.

ou
rs

g.
t.

(a) one-bouce (b) two-bounce (c) total

Figure 15: Detailed comparison against the ground truth
solution. Top row: the ground truth results (g.t.); Bottom
row: our approximated results. Here κm1 = 104 and κm2 =
103.

Results of Light Absorption. In Fig. 16, we show ex-
amples of rendering results with light absorption, and we
also compare our method with the method of Weidlich and
Wilkie [WW07]. Still, our method achieves high image qual-
ity and the result is very close to the ground truth. Since Wei-
dlich and Wilkie’s model is based on the assumption that the
refracted light beam from the first layer interface is also col-
limated, the glossiness for subsurface reflection is not quite
correct.

Results of Complex Scenes. In Fig. 1, we show several
complex scenes rendered with our method. Every object in
these images is coated by a thin transparent layer with dif-
ferent roughness on both sides. Clearly, our model can work
with any microfacet distribution. Moreover, our method also
supports spatially varying roughness as shown in Fig. 1(b)
and small light sources as shown in Fig. 1(c).

Real-Time Rendering with Pre-Filtered Environmen-
tal Lighting. Fig. 17 demonstrates the usage of our BSDF
model in real-time rendering applications. Here we show a
bunny model lit by a distance environmental light. Using
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(a) [WW07] (b) ours (c) g.t.

Figure 16: Rendering results of thin layers with light ab-
sorption. For the kitten model (top), κm1 = κm2 = 103, σa =
[0.2,0.8,0.8], d = 0.5, while for the horse model (bottom),
κm1 = 10,κm2 = 106, σa = [0.8,0.8,0.2], d = 0.5.

pre-filtered environment map, we can easily achieve real-
time performance while still maintaining the phenomenolog-
ical correctness compared with ground truth. For this real-
time rendering application, we obtain a sustained rendering
frame rate of around 700 fps, while the path traced ground
truth takes 1,085 seconds (with 400 spp). Please refer to the
accompanying video for an animated version of this figure.

(a) real-time rendering (b) path tracing

Figure 17: Image quality comparison between our real-
time implementation and the path traced ground truth. Here
κm1 = 104, κm2 = 10, and η = 2.

Real-Time Appearance Editing: Since our BSDF model
does not require any cumbersome precomputation, and the
ENDF can be evaluated on-the-fly, the roughness of each
layer boundary can be edited in real-time. This is shown
in Fig. 18, where we see the rendering results of a dragon
model (100K triangles) with varying surface roughness on
both sides. We simply adjust the concentration parameters
of two vMF distributions (κm1 and κm2 , respectively), and
our system is able to give the corresponding shading results
in around 1.3 ms. More appearance editing results can be
found in the accompanying video.

κm2 = 106 κm2 = 103 κm2 = 10 κm2 = 1

κ m
1
=

1
κ m

1
=

10
κ m

1
=

10
3

κ m
1
=

10
6

Figure 18: .Real-time appearance editing examples. From
up to down we show the results of changing the first surface’s
roughness κm1 , while from left to right we show the results
of changing the second surface’s roughness κm2 .

7. Conclusions and Future Work

To summarize, this paper has presented a framework for the
practical rendering of thin transparent layers with both sur-
face reflection and subsurface reflection. The main insight of
our work is the extension of the traditional microfacet BS-
DF model to handle layered rough surfaces. After analyzing
the dependence of visually perceived roughness for the sub-
surface reflection on the material properties of each layer
boundary, we employed the ENDF, a new representation de-
signed for depicting the appearance behavior of the subsur-
face reflection. Unlike previous methods that capture multi-
ple internal reflections using recursive importance sampling,
our approach based on the ENDF requires only one sampling
process for each bounce of subsurface reflection, and it can
also efficiently handle small light sources. Experimental re-
sults demonstrate that our BSDF model is applicable to both
offline and real-time rendering.

In our current implementation, we use an isotropic vMF
lobe to fit both NDF and ENDF. This will cause large
anisotropic distortion at grazing angle, as shown in Fig. 10.
To reduce such error, we would like to use multi-lobe dis-
tributions, such as movMF, or use anisotropic basis func-
tions in our future work. Moreover, in the future we also
would like to investigate the influence of light scattering on
the shape of the ENDF when dealing with translucent layers.
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