
Eurographics Symposium on Rendering - Experimental Ideas & Implementations (2016)
E. Eisemann and E. Fiume (Editors)

Shape Depiction for Transparent Objects with Bucketed k-Buffer

D. Murray1,2 and J. Baril2 and X. Granier1

1LP2N (UMR 5298 CNRS, Univ Bordeaux, IOGS) - Inria, Talence, France 2FEI Bordeaux, France

Figure 1: Enhancing surface with Mean Curvature Transparency and Bucketed k-Buffer. On the left of the image is classical rendering (OIT)
with constant transparency. In the center is shape depiction on opaque surfaces, while on the right is our method (using the transfer function
prensented in Figure 7(a)). Observe how object details on each surface is highlighted to provide a better understanding of the composition
of the object. The model runs on our system at 64 FPS with OIT and 24 FPS with our solution, for a resolution of 1000 by 1000 pixels and
16 layers of transparency. Model courtesy of dessindus.blogspot.fr.

Abstract
Shading techniques are useful to deliver a better understanding of object shapes. When transparent objects are involved, depict-
ing the shape characteristics of each surface is even more relevant. In this paper, we propose a method for rendering transparent
scenes or objects using classical tools for shape depiction in real time. Our method provides an efficient way to compute screen
space curvature on transparent objects by using a novel screen space representation of a scene derived from Order Indepen-
dent Transparency techniques. Moreover, we propose a customizable stylization that modulates the transparency per fragment,
according to its curvature and its depth, which can be adapted for various kinds of applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

The simulation of a lighting model for visualizing three-
dimensional scenes is an essential tool for understanding the con-
tent of the scene. While current real-time rendering techniques are
convincing for everyday objects, some models suffer from lack of
real landmark and thus, from grasp of the shape. Actually, trans-
parency is a common tool for analysing complex object subtleties,
e.g. Computer-Aided Design. However, with raster-based applica-
tions, ambiguities from using classical alpha-blending are two-fold:
(i) a correct composition involves to render the scene back-to-front;
(ii) composition of multiple non-related fragments introduces a
bias in shape perception. The back-to-front composition issue (i) is

solved by Order-Independant Transparency (OIT) methods. How-
ever, the second one (ii) has no obvious solution.

In this paper, we provide customizable tools that help to work
around shape perception ambiguities during alpha-blending. Our
predicate is that shape perception relates on expressive rendering
methods. Among the large set of techniques available in this do-
main, we are particulary interested in shape depiction algorithms
that aim at stylizing the rendering of a shape according to its fea-
tures. Basically, these features can be classified into three cate-
gories: surface orientation, surface curvature and inflection points.
While the first one can be considered as supplied during render-
ing process, other ones should be computed during the rendering in

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/sre.20161207

http://dessindus.blogspot.fr/
http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/sre.20161207

D. Murray & J. Baril & X. Granier / BK-Buffer for transparent scene

order to benefit from screen-space formulation. Screen-space ap-
proaches for feature extraction have proven useful for exploring
dense meshes obtained by photogrammetry using Radiance Scal-
ing [GVP∗12], with applications in Cultural Heritage. We consider
this as we focus on the exploration of complex models (e.g. CAD),
which require efficiently computing curvature at a scale adapted
to the current viewpoint. The computation of surface properties
is linked to derivative considerations: curvature is a derivative of
the normals and we need a derivative of the curvature to find in-
flection points. Using discrete differential geometry operators, the
derivative computation in screen-space involves to have access to
the neighborhood of a point, i.e. a fragment located at a pixel posi-
tion. For opaque object, depth-test operation is enough to eliminate
unnecessary fragments. Thus, with one fragment per pixel, finding
neighbor information is straightforward. For transparent objects, a
pixel may contain multiple fragments. Since a differential operator
must be applied per fragment to perform shape depiction locally,
the complexity of using such an operator is overweighted by the
complexity of finding neighbor information.

Thus, our main contribution is two-fold. First, we introduce the
Bucketed k-Buffer, a data structure suited to find fragment’s neigh-
borhood efficiently. Second, we present a customizable stylisation
that modulates shading and transparency per fragment, according to
its curvature and its depth, which can be adapted for various kinds
of application.

2. Related Work

Shape depiction techniques aim at conveying a message based on
shape properties. Some previous methods propose to modify the
reflection pattern according to constraints such as geometric fea-
tures, material properties or stylisation. Gooch Shading [GGSC98]
relies on a cool to warm color transition based on normal con-
sideration giving information about surface orientation. With the
same idea, Sloan et al. [SMGG01] propose to use precomputed
Lit Sphere addressed with surface normals. Barla et al. [BTM06]
extend this idea by adding depth information to mimic aerial per-
spective. Exaggerated Shading [RBD06] uses normals at multiple
scales to enhance the relief of a shape. Using higher order con-
sideration, Kindlmann et al. [KWTM03] modulate the shading be-
tween concavities and convexities based on object-space curvature.
Vergne et al. [VPB∗09] propose to compute image-space curvature
to shift the normals of a surface, thus exaggerating the reflection
patterns. The screen-space approach has the additional benefit of
exaggerating curvature magnitudes toward object contours, which
increases surface legibility. Later, Vergne et al. [VPB∗10] propose
a generalisation of this technique for any model of illumination and
any type of material.

Line-based rendering have also been used to convey geometric
informations. Initiated by Saito and Takahashi [ST90], line-based
techniques may be used to depict purely intrinsic geometric prop-
erties, for instance ridges and valleys (e.g. [OBS04]) or surface in-
flections (e.g. [KST08]). It can also enhance view-dependent fea-
tures like occluding contours, Suggestive Contours [DFRS03] and
later Suggestive Highlight [DR07], or Apparent Ridges [JDA07],
an view-dependent proposition of [OBS04].

Most previous techniques work on opaque surfaces with raster-

based applications. Dealing with transparent surfaces involves
to consider Alpha Blending issues, solved by Order-Independent
Transparency techniques. Prior is Depth Peeling [Eve01], which
consists in peeling the scene by doing several opaque geometry
passes, while stripping away the layers already rendered at each
pass, enhanced later by Bavoil et al. [BM08]. With the availabil-
ity of atomic operations on GPU, Yang et al. [YHGT10] propose
an implementation of the A-Buffer [Car84], a per-pixel linked list
of fragments constructed in a single geometry pass and sorted by
depth before blending. In the same way, for a fixed number of frag-
ment per pixel, the k-Buffer [BCL∗07], stores only the k nearest
fragments. Dual pass k-Buffer [Kub14] is a variant that uncorre-
lates depth and color information. Finally, McGuire et al. [MM16]
relies on a commutative blending function which uses weights ap-
plied on transparency to approximate correct blending to simulate
physical phenomena.

Combining OIT with expressive rendering methods is addressed
by Hummel et al. [HGH∗10], with Normal-Variation Transparency.
However, as they use built-in GLSL function, neighborhood is in-
acurate. Carnecky et al. [CFM∗13] proposed an altered A-Buffer, in
which fragments are connected to their neighboring fragments. Ac-
cording to the connexity and the logical depth of a fragment, trans-
parency is modulated such that creases are emphasized to nearly
opaque, smoothly decreasing to nearly transparent otherwise. Gün-
ther et al. [GSE∗14] propose an enhancement with surface patches
to make part of a surface transparent if an object is behind. How-
ever, to our knowledge, there is no method that computes screen-
space geometric features per fragment to modulate shading and
transparency in real-time. Based on a tailored data structure that
allows such computation, our method provides a way to address
existing shape depiction techniques on transparency shapes.

3. Solution overview

The goal of the presented method is to enhance shape depiction for
transparent object. For such intention, our process is composed of
three main steps as shown in Figure 2:

1. Scene discretization into a screen-space representation.
2. Per fragment feature-based stylization.
3. Blending of the generated fragments.

Stylisation

Z̄

Blending
Discretization in

BK-Buffer

z | ~n | rgba

B

D

D

Figure 2: Pipeline used for feature-based stylization with Bucketed
K-Buffer. The discretization pass fills the buffer Z, the bucket buffer
B and the data buffer D with their respective information (see Sec-
tion 4). The stylization extracts features and applies modulation on
fragment’s data (see Section 5). Finally, the blending pass consists
in traditional OIT back-to-front composition.

The first step consists in capturing the scene into the bucketed
k-buffer (BKB). The BKB is a discretization of the scene such that
fragments are organized pixelwise into three 3D data structures: Z,
B and D. The roles of Z and D are nearly the same as data structures
used in dual pass k-buffer [Kub14] to capture, respectively, depth

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

34

D. Murray & J. Baril & X. Granier / BK-Buffer for transparent scene

and data. B is used to group fragments belonging to the same shape
per bucket. Details of the BKB’s data structures are presented in
Section 4. Note that the BKB contains geometric and color data
per fragment. The second step is a stylization process which ex-
tracts geometric features from the BKB (i.e. based on the normals)
to enhance shape depiction (i.e. by modulating shaded color). The
stylization is customizable by providing user-defined transfer func-
tions indexed by the fragment’s depth and curvature (see Section
5). The last step consists in reordering fragments back-to-front in
order to realize a correct alpha-blending.

Every stage of our system is performed in real-time on modern
graphics hardware. Results are presented in Section 6.

4. Bucketed K-Buffer for efficient neighbor query

Leaving aside commutative OIT which excludes per fragment op-
erations, we focus on per pixel fragment list. We seek a way to ef-
ficiently access a fragment’s neighborhood. First, we introduce the
concept behind our solution, that is, the elaboration of the Buck-
eted k-Buffer. Then, we provide several practical details about the
method.

4.1. Definition of the structure

Our structure relies on a k-Buffer basis. Indeed, with current GPU,
Depth Peeling is obsolete. A-Buffer relies on a linked list which
implies unbound memory. Moreover, all fragment information is
stored in the same buffer. For a better flexibility on data structure,
the dual pass k-Buffer [Kub14] technique is well-suited. Indeed,
by decorraleting depth and color, we can manipulate only depth or
color information separately. Furthermore, storing only the k near-
est fragments in k layers ensures a total control over memory oc-
cupancy. Those two points are key elements for the choice of our
structure.

In such structure, a naive approach to find the best neighbor can-
didate is to iterate through each neighboring pixel’s fragment list.
However, this implies costly memory access. Vardis et al. [VVP16]
use buckets to decompose a fragment list such that fragments are
grouped by depth range. In the same way, we propose to reorganize
the fragment lists so that fragments belonging to a same object are
regrouped in a bucket. That way, only fragments in the correspond-
ing bucket needs to be traversed, thus avoiding many memory ac-
cess. Using such partition, finding a one-ring neighborhood would
go down, in theory, from a complexity of O(k2) per pixel to O(kn),
where k is the number of fragments per pixel and n is the number
of fragments in a bucket, so we should have a gain as soon as n < k.

The proposed algorithm shares the same concepts as the dual-
pass k-Buffer in the sense that we use two geometry passes to store
depth and data in separate buffers. However, in order to facilitate
access to neighbors, our data structures differ in the data we store
and we use additionnal computing passes to arrange the data ac-
cording to our needs. The remainder of this section describes the
pipeline to build the BKB data structure in a sequential order. In the
following, W and H denote respectively the width and the height of
the rendering window.

z0,b2 z1,b1 z2,b2 z3,b0

b0,z3 b1,z1 b2,z0 b2,z2

b0,0,0 b1,1,1 b2,2,3 empty

1: Z(x,y)

2: Reorder Z

3: B(x,y)

z

Screen

Pixel(x,y)

Figure 3: Description of the discretization process. In the first pass
(1), Z is filled with a depth-ordered fragment list, containing depth
(z) and shape ID (b) for each fragment. In the second one (2) Z is
reordered by shape Id. Then (3), B is filled with bucket’s informa-
tion : shape Id (b), first and last fragment index (i, j).

Z insertion Such as the dual pass k-Buffer [Kub14], we store frag-
ment’s depth per pixel in the first geometry pass. Relying on the
benefit of such approach, the n nearest fragments from the camera,
n ≤ k, are stored and ordered by depth in the buffer Z. For each
fragment, we keep not only its depth (z) but also its shape ID (b)
(see Figure 3 (1)), where b is a integer representing the identifier of
the shape where the fragment is from. Thus, the Z data structure is
of size W ×H× k, containing pairs (z,b).

Z reordering During this pass, we reorder per pixel fragment pairs
of the Z data structure along b instead of z (see Figure 3 (2)). Sort-
ing fragment pairs in this manner allows grouping fragments that
belong to the same shape consecutively in order to gather them into
buckets.

Bucket creation Per pixel groups of fragments, which share the
same shape ID, are implicitly defined by the reordering of Z in the
previous pass. However, in order to have a direct access to the range
of these groups, the B data structure is built in a computing pass.
Such groups are defined as buckets: a bucket contains the shape ID
(b, i.e. a bucket ID) and the indices (i, j) of the first and last frag-
ments of a group. The bucket buffer B contains W ×H× k triplets
(b, i, j) (see Figure 3 (3)).

Since n fragments are stored in Z during the first pass, n≤ k, no
more than k buckets are stored per pixel. However, storing bucket
information in a table indexed by b can lead to indices that are out
of range if b > k. Thus, B is considered as a per pixel hash table in
which each bucket is indexed byH(b), whereH is a hash function
defined as:

H(b) = b mod k

Using such hash function may lead to collision in the hash table.
Thus, during insertion of a bucket b in buffer B, we check that the
slot at indexH(b) in the hash table is free. If the slot is unoccupied,
the bucket information is stored at this index. If the slot is occupied,
b is incremented until the index H(b) points to a free slot. Note
that a free slot is always available since the number of buckets per
pixel cannot be greater than k, the size of the hash table. The same

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

35

D. Murray & J. Baril & X. Granier / BK-Buffer for transparent scene

z4 b3 c4 n4

b1 b2 b3 b4

4 6 7 81 2 3 3

z1 z7 z6 z2 z4 z5 z3 z8

Data position

Current fragment(x,y,z4)

B(x,y)

Z(x,y)

D(x,y)

3: write

1: look-up

2: bucket range

Figure 4: Fragment query for data storage pass. For a generated
fragment, the shape ID is used to locate, with a linear search, the
associated bucket (1) and extract its range (2). The current frag-
ment is located within these range. To find its index, a depth com-
parison is used. Fragment’s data, color and normal, are stored at
this index (3). For neighbor query, the fragment (x,y,z) is used for
a look-up in B(x+dx,y+dy) and Z(x+dx,y+dy).

incremental process is used to find a bucket, except that we check
if the slot contains the right bucket. Organized in that way, B, in
combination with Z, is used as an index lookup to perform efficient
fragment query as shown in Figure 4.

Data storage To store fragment’s data, a second geometry pass is
performed to fill the buffer D. The fragment’s data are its color (c)
and normal (n). Only fragments pre-selected during the first geo-
metric pass must be stored. Thus, for each generated fragment, we
perform a fragment query as shown in Figure 4. If the query is suc-
cessful, data are stored to the given index, or rejected otherwise.
Buffer D thus contains W ×H× k pairs (c,n).

4.2. Implementation details

As presented in the previous section, we manipulate three 3D struc-
tures. Each of them will be able to contain W ×H × k elements,
where W and H correspond to the viewport size and k is the num-
ber of layers in the buffer.

During the first pass, the sorted-insertion by depth is done using
atomic comparison. As atomic comparisons rely on a bitwise AND
operator, depth must be used as Most Significant Bit, even if we
store both depth and shape number. These two values are packed
on 32 bits with 16 bits each, in the buffer Z. Using depth as MSB
ensures that we keep the k-nearest fragments.

For the construction of the buckets, depth and shape number are
swaped inside Z. This way, shape number is now used as MSB in-
stead of depth and we can easily reorder our list. After reordering,
buckets are constructed as described in the previous section. Us-
ing this structure requires 32 bits per bucket : 8 bits for the first
fragment position, 8 bits for the last one and 16 bits for the shape
number.

Finally, to insert the data in the buffer D, we rely on a binary
search done directly inside the correct bucket. This bucket is lo-
cated using the process in Figure 4 with a condition on shape num-
ber. Once we know the correct fragment’s layer, we can store the
fragment color after shading to use only 32 bits for color. The shad-
ing relies on the Bidirectionnal Reflectance Distribution Function

(BRDF) proposed by Disney [BS12] for direct illumination and
Image-Based Lighting to approximate indirect illumination. We
store as well the fragment’s normal, packed on 32 bits (15 bits for
each x and y components and 2 for the sign of z). This results in
using 64 bits per fragment for the data structure.

5. Feature-driven stylisation

In this section, we demonstrate how to use the BKB for an efficient
feature-driven stylization. First, we present how to find fragment’s
neighborhood to compute curvature per fragment. Then, an appli-
cation of stylization is shown adapted from existing shape depiction
techniques.

5.1. Feature extraction

Carnecky et al. [CFM∗13] propose a method to find the neighbor of
a fragment. A comparison is performed between a fragment and all
the fragments contained in an adjacent pixel. The comparison func-
tion (ε) is based on normal and depth differences and the best neigh-
bor candidate is the fragment which obtains the minimum value.
We use a similar approach with the following criteria:

εn(i, j) = 1−~ni · ~n j

εz(i, j) = |zi− z j|2

ε(i, j) = εn(i, j)+ εz(i, j)

To ensure that we correctly identify the neighborhood, each frag-
ment labeled as the best candidate does a reverse check to deter-
mine if this candidate also views the current fragment as a neighbor.
If one of the neighbors is not found, we use a special value indicat-
ing a missing neighbor. Figure 5 illustrates the interest of this re-
verse check. Comparing to the work of Carnecky et al. [CFM∗13],
a crucial point in our method is the lower complexity of this al-
gorithm. Actually, thanks to the BKB, fragments belonging to the
same object are grouped together. Thus, as explained in the previ-
ous section, the number of pairs to test is restricted to a subset of
candidates, i.e. the ones with the same shape number. We access
to this subset using the same process as data storage, presented in
Figure 4, except that the query is done on the neighboring pixel’s
lists (buckets and fragments).

The neighbor information is used to compute screen-space cur-
vature per fragment, such as Vergne et al. [VPB∗09]. In this ap-
proach, principal curvatures, κ1 and κ2, are extracted from sur-
face normals. Instead of directly using of the mean curvature
(κ1 +κ2)/2, we prefer, for practical reason, the following mapping
varying between −1 and 1:

κ = tanh(κ1 +κ2)

For the rest of this paper, κ is considered as a curvature value.
In our convention, −1 corresponds to a convetixity et 1 to a con-
cavitiy. Contrary to Vergne et al. [VPB∗09], our method does not
suffer from undefined behavior at the object’s boundaries. By tak-
ing advantage of potential missing neighbors, we can handle those
aera: the curvature of a fragment with a missing neighbor is set to
κ =−1.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

36

D. Murray & J. Baril & X. Granier / BK-Buffer for transparent scene

(a)

(b)

κ

−1 10

Figure 5: Importance of doing a reverse check. (a) shows a simple
check, which result in biased results at creases. (b) shows a reverse
check, with creases identified as such.

5.2. Stylization

For the stylization, our method modulates both shaded color and
transparency. These modulations are controlled by transfer func-
tions: an 1D texture for color and a 2D one for transparency.

The shaded color is modulated with a curvature-indexed trans-
fer function, presented in Figure 6(a). This function is inspired
by Mean Curvature Shading [KWTM03] and Radiance Scaling
[VPB∗10], with bright convexities and dark concavities. It provided
convincing results for our application, as we wanted to modulate a
physically-based shading. However, for other applications, a differ-
ent transfer function could be used in our pipeline for other stylisa-
tions as shown in Figure 6(b).

The modulation of the transparency extends the work presented
by Hummel et al. [HGH∗10] as we use curvature instead of normal-
variation considerations. Based on the idea of X-Toon [BTM06],
we propose to modulate opacity with a transfer function indexed
by absolute mean curvature and depth. A value of 1 corresponds
to fully opaque and 0 to fully transparent. An example of trans-
fer function can be seen in Figure 7. We choose to use the absolute
mean curvature so that either convexities or concavities would have
the same opacity. Indeed, based on our observations, both are cru-
cial to fully grasp shape charactestics.

κ

−1 0 1

(a)
κ

−1 0 1

(b)

Figure 6: (a) The transfer function we use to modulate shading
brighten convexities and darken concavities. (b) Another example :
bright curved surfaces, dark flat ones.

abs(κmean)0 1
0

1

z

(a)

abs(κmean)0 1
0

1

z

(b)

Figure 7: Example of different transfer functions. White corre-
sponds to opaque (opacity of 1) and black to transparent (opacity
of 0). Both follow the same idea: more transparency on flat and
close surfaces, more opacity on curved surfaces as well as far ones.

(a) (b)

(c) (d)

Figure 8: Examples of Mean Curvature Transparency. (a,b) The
transfer functions used are respectively the one presented in Fig-
ure 7 (45 FPS versus 120 without modulation). (c,d) The transfer
functions are shown in the top left corner (10 FPS, versus 20 with-
out modulation). Times are obtained with a resolution of 1200 by
800 for the bike 1000 by 1000 pixels for the UNC Powerplant and
16 layers.

Our system allows the use of any transfer function to modulate
opacity. Figure 8 illustrates how different functions allow to emp-
hazise specific parts of the scene. For instance, the function used
in (a) and (c) results in nearly transparent fragments on flat sur-
faces close the viewport, while curved surface are nearly opaque.
The opacity quickly grows as the distance to the camera increases.
This behavior allows to place more focus on the front part of the
scene. On the contrary, the function in (b) places less focus in front
but depicts shape on a wider range of depth. Finally, (d) presents
another behavior, where front parts are more opaque than far ones.
Both use the function presented in Figure 6(a) to modulate shading
so that convexities are enlightened while concavities are darkened.

6. Results and performances

To illustrate the benefits of extending shape depiction to transpar-
ent surfaces, Figure 9 shows a comparison of: (a) simple OIT, (b)
enhancing convexities and concavities on opaque surfaces and (c)

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

37

D. Murray & J. Baril & X. Granier / BK-Buffer for transparent scene

(a) (b) (c)

Figure 9: (a) OIT using a k-Buffer with a constant opacity value of 0.6 (50 FPS). (b) Mean Curvature Shading only. (c) Mean curvature
transparency (20 FPS). The transfer function used is on the top-right corner. Model courtesy of dessindus.blogspot.fr. Times are obtained
with a resolution of 1000 by 1000 pixels and 16 layers.

with transparency, enhanced as well with our method. OIT allows
only to guess the internal structure of the car while Mean Curva-
ture Shading enhances surface features only on the outer parts. On
the contrary, our method enhances both internal and external parts,
with a focus on the front of the scene.

To measure the impact on performances of our method, we use
a synthetic test configuration, in which rendering time is only de-
pendent of the number of objects. The scene is composed of 32
stacked full-screen quads so that each of the 32 layers are always
filled. Each quad is located at a random depth, and is associated
with a random object. We then vary the maximum number of ob-
ject, as described in Figure 10. We compare the result of our so-
lution with the brute force approach. Note that the brute-force ap-
proach has a constant rendering time, as complexity is only depen-
dent on the number of fragments. The latter roughly corresponds to
the method of Carnecky et al. [CFM∗13]. Implementation and ren-
derings were done using the Open Inventor R© 9.6 SDK by FEI

TM

with an NVIDIA GTX 980. Results are shown on Figure 10 for
32 layers and a resolution of 512x512 (around 8,4 million of frag-
ments). If our solution is obviously much slower that simple trans-
parency (10 ms in this configuration), we can see that it improves
performances for transparent shape depiction as soon as there is
more than one bucket. With more than five buckets, we halve the
time required, going down to a fifth of the performances of the brute
force approach when there are many objects.

These observations fit rather well with theorical gain of Section
4, going from O(k2) to O(nk), but only when n is at least 2. Indeed,
when n≤ 2, the cost of accessing all the fragments in a bucket be-
comes nearly equal to the cost of accessing the bucket, whereas for
n > 2, the bucket cost becomes quickly insignificant with regards to
the cost of accessing all fragments. However, this gain is valid only
for neighbor query, as our structure still requires two sorting pass.
In our algorithm, we use insertion sorting which has a complexity
of O(k2) in the worst case, O(k) when fragments are nearly-sorted,
which is often the situation with our structure.

The last aspect concerns memory consumption. The proposed
solution requires up to 128 bits per fragment (32 bits for depth and

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 5 10 15 20 25 30 35

Cu
m

ul
at

iv
e

tim
e

in
 m

s

Number of buckets

Brute force approach
BK-Buffer
Stylisation

Blending

Figure 10: Cumulative rendering times of a fixed number of frag-
ments (32) for different bucket configurations (colored quads) and
512 by 512 pixels. Full lines depict cumulative times of our method,
the dot line represents the total time of the brute force approach. As
a reference, a dual pass k-Buffer alone with constant transparency
requires around 10 ms per frame.

bucket id, 64 bits for color and normal, and 32 for bucket infor-
mations) whereas a classic dual pass k-Buffer requires 64 bits per
fragment. For a Full HD resolution, this over is around 32 MByte
per layer versus 16 MByte for a simple k-Buffer.

7. Conclusions and limitations

We have presented a new approach to propose one solution to the
bias in shape perception introduced by compositing multiple non-
related fragments. We convey geometric properties of transparent
surfaces with Mean Curvature Transparency based on the Buck-
eted k-Buffer. The BKB allows an easy access to the fragments
of a shape. Moreover, we provide a customizable tool to enhance
scene perception for transparent surfaces. Based on a user-defined
transfer function, it is possible to choose which features should be

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

38

http://dessindus.blogspot.fr/

D. Murray & J. Baril & X. Granier / BK-Buffer for transparent scene

highlighted. The choice is highly dependent of which features need
to be enhanced, as well as the complexity of the scene.

Our approach is dedicated to scenes with multiple objects: on a
unique object, such an approach introduces too much complexity.
Our structure performs better than existing ones, even if it implies
a overhead in memory. However, our data structure may be opti-
mized for more applications than neighbor query. In particular, we
could use it with editing techniques like Fast-Edit, or extend the
amount of optical phenomena that we currently simulate, like re-
fraction, sub-surface scattering or translucency with a limited im-
pact on performances.

On the other side, in a scene with many small objects, results can
become less legible. The current stylization is based on the feed-
back provided by our team. A further user-study, with a representa-
tive panel, would be necessary to accurately validate the perceptual
gain of our method. In future work, we also plan to investigate the
impact of using line-based rendering ([DFRS03, OBS04, JDA07,
KST08], introduced in Section 2) to enhance third order features
on transparent surfaces.

8. Acknowledgements

We thank FEI
TM

for funding this work and providing a licence of
Open Inventor R©, and the members of the Open Inventor R© team
for their support and feedback, particularly Fedy Abi-Chahla for
his useful advices on OIT. We are grateful to the GrabCAD com-
munity (Car prototype and Suzuki R1, credits go to their respective
designer) and the AIM@SHAPE VISIONAIR repository for the
Circular box model.

References

[BCL∗07] BAVOIL L., CALLAHAN S. P., LEFOHN A., COMBA J. L.,
SILVA C. T.: Multi-fragment effects on the gpu using the k-buffer.
In Proceedings of the 2007 symposium on Interactive 3D graphics and
games (2007), ACM, pp. 97–104. 2

[BM08] BAVOIL L., MYERS K.: Order independent transparency with
dual depth peeling. NVIDIA OpenGL SDK (2008), 1–12. 2

[BS12] BURLEY B., STUDIOS W. D. A.: Physically-based shading at
disney. In ACM SIGGRAPH (2012), pp. 1–7. 4

[BTM06] BARLA P., THOLLOT J., MARKOSIAN L.: X-Toon: An ex-
tended toon shader. In International Symposium on Non-Photorealistic
Animation and Rendering (NPAR’06) (Annecy, France, June 2006), De-
Carlo D., Markosian L., (Eds.), ACM. 2, 5

[Car84] CARPENTER L.: The a -buffer, an antialiased hidden surface
method. In Proceedings of the 11th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 1984), SIG-
GRAPH ’84, ACM, pp. 103–108. 2

[CFM∗13] CARNECKY R., FUCHS R., MEHL S., JANG Y., PEIKERT
R.: Smart transparency for illustrative visualization of complex flow
surfaces. Visualization and Computer Graphics, IEEE Transactions on
19, 5 (2013), 838–851. 2, 4, 6

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S., SAN-
TELLA A.: Suggestive contours for conveying shape. ACM Transactions
on Graphics (Proc. SIGGRAPH) 22, 3 (jul 2003), 848–855. 2, 7

[DR07] DECARLO D., RUSINKIEWICZ S.: Highlight lines for convey-
ing shape. In International Symposium on Non-Photorealistic Animation
and Rendering (NPAR) (Aug. 2007). 2

[Eve01] EVERITT C.: Interactive order-independent transparency. White
paper, nVIDIA 2, 6 (2001), 7. 2

[GGSC98] GOOCH A., GOOCH B., SHIRLEY P., COHEN E.: A non-
photorealistic lighting model for automatic technical illustration. In Pro-
ceedings of the 25th annual conference on Computer graphics and inter-
active techniques (1998), ACM, pp. 447–452. 2

[GSE∗14] GÜNTHER T., SCHULZE M., ESTURO J. M., RÖSSL C.,
THEISEL H.: Opacity optimization for surfaces. 11–20. 2

[GVP∗12] GRANIER X., VERGNE R., PACANOWSKI R., BARLA P.,
REUTER P.: Enhancing surface features with the radiance scaling
meshlab plugin. In Computer Applications and Quantitative Meth-
ods in Archaeology (CAA) 2012 (Southampton, United Kingdom, Mar.
2012), Chrysanthi A., Wheatley D., Romanowska I., Papadopoulos C.,
Murrieta-Flores P., Sly T., Earl G., Verhagen P., (Eds.), vol. 2 of Archae-
ology in the Digital Era, Amsterdam University Press, pp. 417–421. 2

[HGH∗10] HUMMEL M., GARTH C., HAMANN B., HAGEN H., JOY
K. I.: Iris: Illustrative rendering for integral surfaces. Visualization and
Computer Graphics, IEEE Transactions on 16, 6 (2010), 1319–1328. 2,
5

[JDA07] JUDD T., DURAND F., ADELSON E.: Apparent ridges for line
drawing. In ACM SIGGRAPH 2007 Papers (New York, NY, USA, 2007),
SIGGRAPH ’07, ACM. 2, 7

[KST08] KOLOMENKIN M., SHIMSHONI I., TAL A.: Demarcating
curves for shape illustration. In ACM Transactions on Graphics (TOG)
(2008), vol. 27, ACM, p. 157. 2, 7

[Kub14] KUBISCH C.: Order independent transparency in opengl 4.x. In
GPU Technology Conference (GTC) (2014). 2, 3

[KWTM03] KINDLMANN G., WHITAKER R., TASDIZEN T., MÖLLER
T.: Curvature-based transfer functions for direct volume rendering:
Methods and applications. In Visualization, 2003. VIS 2003. IEEE
(2003), IEEE, pp. 513–520. 2, 5

[MM16] MCGUIRE M., MARA M.: A phenomenological scattering
model for order-independent transparency. In I3D 2016 (February 2016),
p. 10. 2

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: Ridge-valley lines
on meshes via implicit surface fitting. ACM Transactions on Graphics
(TOG) 23, 3 (2004), 609–612. 2, 7

[RBD06] RUSINKIEWICZ S., BURNS M., DECARLO D.: Exaggerated
shading for depicting shape and detail. In ACM SIGGRAPH 2006 Papers
(New York, NY, USA, 2006), SIGGRAPH ’06, ACM, pp. 1199–1205. 2

[SMGG01] SLOAN P.-P. J., MARTIN W., GOOCH A., GOOCH B.: The
lit sphere: A model for capturing npr shading from art. In Graphics
interface (2001), vol. 2001, Citeseer, pp. 143–150. 2

[ST90] SAITO T., TAKAHASHI T.: Comprehensible rendering of 3-d
shapes. In Proceedings of the 17th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 1990), SIG-
GRAPH ’90, ACM, pp. 197–206. 2

[VPB∗09] VERGNE R., PACANOWSKI R., BARLA P., GRANIER X.,
SCHLICK C.: Light Warping for Enhanced Surface Depiction. ACM
Transaction on Graphics (Proceedings of SIGGRAPH 2009) 28, 3
(2009). 2, 4

[VPB∗10] VERGNE R., PACANOWSKI R., BARLA P., GRANIER X.,
SCHLICK C.: Radiance Scaling for Versatile Surface Enhancement.
In I3D ’10: Proc. symposium on Interactive 3D graphics and games
(Boston, United States, Feb. 2010), ACM. 2, 5

[VVP16] VARDIS K., VASILAKIS A. A., PAPAIOANNOU G.: A multi-
view and multilayer approach for interactive ray tracing. In Proceedings
of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games (New York, NY, USA, 2016), I3D ’16, ACM, pp. 171–178.
3

[YHGT10] YANG J. C., HENSLEY J., GRÜN H., THIBIEROZ N.: Real-
time concurrent linked list construction on the gpu. In Computer Graph-
ics Forum (2010), vol. 29, Wiley Online Library, pp. 1297–1304. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

39

https://grabcad.com/library
https://grabcad.com/library/sports-car-with-details-bac-mono-1
https://grabcad.com/library/yamaha-r1-2006-1
http://visionair.ge.imati.cnr.it/ontologies/shapes/

