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Figure 1: User interface of Grontocrawler

Abstract
Biomedical ontologies helps discover hidden semantic links between heterogeneous and multi-scale biomedical
datasets. Computational methods to ontology analysis may provide a semantic flavor to data analysis of biomed-
ical mathematical models and help discover hidden links. In this paper we present Grontocrawler - a framework
for visual ontology exploration applied to the biomedical domain. We define an OWL sublanguage - L and we
present a methodology for transformation of L ontologies into directed labelled graphs. We then show how Social
Network Analysis techniques (e.g., centrality measures, graph partitioning, community detection) can be used to
i) filter the information presented to the user, and ii) provide a summary of knowledge encoded in the ontology.
Finally, we show the application of ontology exploration in the biomedical domain to help discover hidden links
between the biomedical datasets.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Information Search and Retrieval]: Information
filtering—H.5.2 [Information Interfaces and Presentation]: User interfaces—Graphical user interfaces (GUI) I.2.4
[Computing Methodologies]: Artificial Intelligence—Knowledge Representation Formalisms and Methods J.3
[Computer Applications]: Life and Medical Sciences—Medical information systems
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1. Introduction

Physiological processes inside a human body may be repre-
sented with mathematical models. Computational methods
may then be used in order to get further insight about these
processes. Consider the two datasets on Figure 2. On the left
a CT acquisition which produces discrete medical images
that represent a human brain. From these images we can
build a 3D model of a human crane. We start with the iso-
lation of pixels corresponding to the boundary of a human
crane in each image by thresholding the grayscale values.
We then apply a surface reconstruction algorithm to obtain
a 3D representation. On the right of the Figure 1 we have
another type of acquisition, describing digitally the human
motion. Motion capture markers as well EMG markers are
placed on human body and record the spatial displacement
of anatomical landmarks and muscle activity throughout one
gait (motion) cycle.

The two acquisition scenarios produce multi-scale
biomedical data, which are highly heterogeneous. They have
different spatial domains and they represent information
coming from different biological scales (organ, behavior).
Though, these data may be represented as a vector space and
similarity measures may be applied to them, the interpre-
tation of the similarity may not be trivial. Without a med-
ical background knowledge, relating the two datasets, it is
not clear how the two scenarios are related. When distance
measures are not enough to assess the semantics of simi-
larities, we need to have background knowledge (e.g., same
patient has underwent two different acquisition sessions, hu-
man brain activity might have influenced the gait pattern of
the patient).

One way to formalize this knowledge is to use ontolo-
gies [Gru93], which conceptualize the domain of applica-
tion by representing it as a set of concepts and relations
among them. In fact, in the biomedical domain it is a com-
mon practice to formalize the medical background knowl-
edge in biomedical ontologies to increase the interoperabil-
ity between the medical applications [SAR∗07]. Ontologies
provide a semantic layer which facilitates data management
and browsing. Concepts of ontologies drive query formu-
lation over the content stored in repositories or knowledge
bases and help in indexation of data and information [Mä05].
Biomedical knowledge bases and repositories, that use on-
tologies as their semantic backbones, can be explored by
navigating interactively and visually ontologies that they
rely on. Computational methods to ontology analysis may
enhance data analysis of biomedical mathematical models
stored in the knowledge bases, by reasoning on the semantic
links.

In this paper the three aspects of ontology analysis are
considered: i) Ontology segmentation or module extrac-
tion from ontologies [PJC09], ii) Ontology visualization
or Ontology exploration [KHL∗07], and iii) Structural Se-
mantic Analysis of ontologies [HHJ∗06] via SNA (Social

Network Analysis) [CSW05]. We present Grontocrawler, a
framework to combine the three facets of ontology anal-
ysis applied in the biomedical domain. Ontocrawler re-
lies on graph representation of OWL (Web Ontology Lan-
guage) [BvHH∗04] ontologies and uses graph analysis al-
gorithms to address these aspects. The contributions of this
paper to the state of the art are as follows: i) while most of
the OWL ontology to graph transformations are based on
intuitive notions [NM00,SR06,HHJ∗06,MMP∗11], we pro-
pose a method based on the OWL’s theoretical foundation
- Description Logic [BCM∗03], ii) apart for some excep-
tions [SK04, MMP∗11], the three aspects of ontology anal-
ysis were studied separately, whereas we demonstrate con-
nections between them and how they can be used together
for ontology exploration, iii) and we show the application of
ontology exploration in the biomedical domain to help dis-
cover hidden links between the biomedical datasets.

Grontocrawler demonstrates novel possible connections
between the SNA methods, graph visualization and formal
methods to knowledge modelling, in the vein of previous
works [HHJ∗06,MMP∗11,Mik11,MRW14] which motivate
hybrid approaches to ontology analysis.

2. Related work

Current ontology engineering tools (e.g. Protégé [NM01])
provide various functionalities for ontology analysis and in-
teractive visual exploration. Ontology analysis techniques
can be divided into two categories, depending on which
theoretical model is chosen. The first one relies on formal
representation of ontologies in a knowledge representation
language (e.g., Description Logic [BCM∗03]); it includes
services such as: consistency checking and ontology clas-
sification [Abb12]. The second category treats an ontology
as a (labeled, directed) graph and relies on graph analy-
sis techniques for ontology analysis (ontology segmenta-
tion [PJC09], ontology visualization [KHL∗07]).

In literature ontology segmentation is known under dif-
ferent names: subontology extraction, ontology modulati-
zation, ontology decomposition. First algorithms to extract
a module of an ontology, satisfying certain user require-
ments, were proposed in PROMPT tool [NM00]. A simi-
lar approach based on graph traversal was outlined under the
name of Web Ontology Segmentation in [SR06]. Both repre-
sent graph-based approaches to ontology modularization and
provide only intuitive notions of what an ontology module is.
Pathak et al [PJC09] provide a good overview of the appli-
cation of ontology modularization in the biomedical domain.
Since Pathak’s survey ontology modularizaiton domain has
known many results. First of all the formal underpinning
of what an ontology module is was defined in [GHKS08].
Based on this formal notion Del Vescovo et al, have defined
Atomic decomposition of ontologies [DVPSS11] by study-
ing chains of modules extracted from one ontology, thus
defining its atomic structure. Later, the same group has stud-
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Figure 2: Heterogeneity of acquired and processed biomedical data

ied the level of decomposability of open biomedical ontolo-
gies available at BioPortal [DVGK∗11]. More recently, a lin-
ear algorithm for computing atomic modular structure of an
OWL ontology by using hypergraph representation of axiom
dependance has been presented in [MRW14].

Visual exploration of ontologies is usually obtained
through the adaptation of InfoVis techniques (Hierarchical
or Network Visualization techniques) on graph (network)
representation of ontologies [KHL∗07]. Some techniques
are better at detailing topological information of an ontol-
ogy; some are better at specific tasks of showing a particu-
lar class instance with a certain constraint [MMP∗11]. Most
popular visualization algorithms rely on network layout cal-
culation and belong to a class known as force-directed algo-
rithms [Tam07].

Graphs have been also used to tackle other (i.e., other
than extraction of modules and/or visualization of ontolo-
gies) problems of ontology analysis. Lembo et al. [LSS13]
propose ontology classification algorithm, which transforms
OWL QL ontologies into directed graphs, and computes sub-
sumption relations via transitive closure computation. Social
Network Analysis techniques application to ontology anal-
ysis has been pioneered by Hoser et al. [HHJ∗06], where
standard in SNA community graph metrics based on: node
degree, node betweeness and on eigenanalysis of the adja-
cency matrix, were used to study properties of ontologies.
The connection between SNA and Ontology Analysis have
also been studied in a highly cited paper by Mika [Mik11],
bridging Social Networks and Semantics. Network partition-
ning algorithms have been used in [SK04] to identify islands
of ontology, a notion comparable to a module of ontology
(as used by the graph-based modular extraction community),
with the applications to Visual Analytics.

In most cases, whenever graph representation of on-
tologies is used, the process of identification of edges
takes into account mostly RDFS (Resource Description
Framework Schema) [BG14] axioms, targeting direct
hierarchical relations of concepts (taxonomies). For
example, the most frequent OWL ontology to graph
transformation treats named OWL concepts and/or OWL

individuals and/or OWL Object/Datatype properties as
nodes and TBox (rdfs:subClassOf, rdfs:domain
and rdfs:range) Abox (rdf:type) and RBox
(rdfs:subPropertyOf) axioms as edges. Such a trans-
formation is sufficient for lightly axiomatized linked-data
collections, relying on ontologies having mostly taxonom-
ical structure, but does not cover the whole spectrum of
biomedical knowledge encoded in biomedical ontologies
(see Section 3.1 for more details).

For biomedical ontologies model parthood and functional
relations of anatomical entities by using, for instance, exis-
tential restriction on properties [Boe12]. These ontologies
require a more expressive language than RDFS to capture
biomedical relations. OWL language [HPSvH03] provides a
rich set of constructors to model complex relationships be-
tween the concepts and for that reason is a de-facto stan-
dard for modelling complex biomedical knowledge. Conse-
quently, the need for computational analysis of OWL ontol-
ogy axioms to support interactive ontology exploration and
segmentation has arisen.

Graph analysis algorithms have been used separately for
ontology visualization and ontology segmentation in liter-
ature, apart for some exceptions [MMP∗11, SK04], where
the focus was mostly on visualization and the ontology ax-
iom processing was based on intuitive notions rather than
on Description Logic [BCM∗03]. The two problems (vi-
sualizaiton and segmentation), can however be linked in a
common framework where knowledge is represented as di-
rected and labelled graphs, with the identification of nodes
and edges guided by the theoretical model to knowledge
modeling (DL). Social Network Analysis techniques, can
then provide more intuitive ways of querying linked data
backed up by highly axiomatized OWL ontologies to sup-
port Visual Analytics, Decision making tools and general
Intelligent Systems focused on hypothesis testing in various
biomedical domains as in [GBM∗08, AVF∗14].

3. Notation

Before we proceed with the presentation of Grontocrawler,
we would like to introduce the: i) OWL sublanguage L
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which we consider in our work and the notation to repre-
sent its axioms, ii) notation for directed labeled graphs, and
iii) connection of L to the biomedical ontologies. We also
discuss the assumptions we make in our methodology about
the structure and the content of OWL ontologies.

Considered sublanguage for OWL ontologies We present
the subset of OWL 2 [GHM∗08] language - L considered in
this work during the OWL ontology to graph transformation,
roughly it corresponds to OWL2-EL [BBL05] with a restric-
tion of having atomic concepts only in the left hand side of
the concept inclusion A v C. We use the German notation
for describing its constructs and axioms, similarly to the one
found for OWL2 QL profile in [LSS13].

B→ A|δ(U) C→ B|∃P.A|∃P.D

D→ BtB|BuB R→ P|U.

where: A,P,U are symbols denoting respectively an atomic
concept, an atomic role, and an atomic attribute. B - set of
basic concepts, B(a) denotes that a is an individual of B. C
set of concepts formed by using a qualified restriction on
atomic concepts or concepts from set D. D - set of concepts
constructed using conjunction or disjunction of basic con-
cepts, δ(U) - the domain of U , i.e., the set of objects that U
relates to values. R - set of properties.

Notation for Graphs In this work we use directed graphs
G = (V,E), nodes and edges are labelled and may have at-
tributes attached to them. For convenience LV ,LE denote la-
bels and AV ,AE denote attributes for nodes and edges, re-
spectively. We use predecessors(n,G) to denote the set of
nodes pn ∈V such that there exists in E an edge (pn,n). Sim-
ilarly we use successors(n,G) = {sn |∃e = (n,sn),e∈ E}.
For ease of the notation every edge is represented as a tuple
(source, target, label, attributes).

Adjacency matrix for graphs. We use adjacency matrix A,
with 1 row and 1 column for each node, defined as follows:

A =

{
ai j := 1,(vi,v j) ∈ E
ai j := 0,otherwise

.

Adjacency matrices are used in the computation of cen-
trality measures as well as in the construction of the graph
Laplacian matrix. Please note that for the graph Laplacian
we transform G into an undirected graph, i.e. ∀ei j,ai j =
a ji = 1. This is a strong assumption and we discuss the con-
sequences of it in the discussion section.

3.1. L and biomedical ontologies

Whereas RDFS ontologies mainly define taxonomical rela-
tionships between the concepts as well as domain and range

restrictions for properties, Web Ontology Language pro-
vides several enhancements to represent more complex re-
lationships between the concepts. In the biomedical domain,
the existential axioms are used to model parthood, spatial,
causal and functional relationships.

As an example, consider the following axioms, which de-
fine what Femur terminologically is (expressed in Descrip-
tion Logic (DL) [BCM∗03]). The Femur subontology (set of
DL axioms) is an excerpt of the FMA (Foundational Model
of Anatomy) ontology [RM03] and visualized in Protégé on-
tology editor on Figure 3 (bottom right part of the GUI).

Femur := {
A︷ ︸︸ ︷

Femur v
A︷ ︸︸ ︷

Longbone (1a)

Femur︸ ︷︷ ︸
A

v ∃constitutional part o f .T high︸ ︷︷ ︸
∃P.A

(1b)

}

Figure 3: OWL axioms (beyond RDFS) as employed in FMA
Note that concept inclusion 1a models the sub-

sumption relation A v A between two atomic concepts
{Femur,Longbone} ∈ A. It is the usual direct taxonomical
or hierarchical relationship between the two concepts. Such
axioms constitute the main taxonomical skeleton of an ontol-
ogy and is visualized as a rooted tree or a hierarchy in most
of the ontology editors (cf. left part of Figure 3). Usually
graph-based approaches to Ontology Analysis consider only
such kind of semantic relations between the concepts (i.e.,
DL concept inclusion axiom between two atomic concepts).

DL concept inclusion axiom 1b of type A v C,
where A = Femur (atomic concept) and C = ∃P.A is
formed with a existentially qualified restriction on property
constitutional part ∈ P, is an example of a semantic relation
between two concepts {Femur,T hing} ∈ A, as we call be-
yond RDFS. Note that FMA definition of Femur uses several
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concept inclusions of type A v C. These semantic relations
between the concepts are too important to be neglected, yet
state-of-art graph-based approaches to Ontology Analysis do
not seem to be taking them into account.

Assumptions for OWL ontologies L was designed to sup-
port the DL axioms common to the biomedical ontologies.
We assume that ontologies are expressed in OWL and have
many axioms which can be captured by L. The ontologies
which contain axioms not taken into account by the lan-
guage constructs of L are accepted, but only the supported
axioms will be used in OWL ontology to directed labelled
graph transformation.

4. Methodology and algorithms

Grontocrawler may be used as an ontology segmentation
tool as well as a visual ontology exploration tool. In both
cases it relies on OWL ontology to graph transformation,
which we refer to as L 7→G (i.e., the procedure to transform
ontology into graph). Nodes in G represent concepts (B) or
individuals (B(a)), attributes are used to keep track of the
specific type. Edges represent a semantic relation between
concepts (e.g., direct taxonomical, existential taxonomical
as in concept inclusions 1a, 1b) (see 4.1 for implementation
details). As in the case of nodes, edge attributes help us iden-
tify the specific type of semantic relation.

4.1. L axioms and RDF graphs

We provide one detailed example of one edge production
corresponding to a Av ∃.P.A, L axiom 2.

Consider the following L axiom:

Cartilage_thinning v︸︷︷︸
rdfs:subClassOf

blank node construction︷ ︸︸ ︷
∃causes.Joint_stiffness

(2)

It is encoded as a set of RDF triples forming an RDF graph
(see official W3C specification for RDF graph patterns for
DL axioms [BvHH∗04]) as depicted on the following List-
ing 1. Notice how the right hand side of the concept inclu-
sion is realized through a blank node construction.

Listing 1 RDF graph encoding of a DL existential axiom
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix msh: <http://example.org/msh/1.0/> .

msh:Cartilage_thinning rdf:type owl:Class .
msh:Joint_stiffness rdf:type owl:Class .
msh:causes rdf:type owl:ObjectProperty .
msh:Cartilage_thinning

rdfs:subClassOf [ # blank node construction
rdf:type owl:Restriction;
owl:onProperty msh:causes;
owl:someValuesFrom msh:Joint_stiffness

] .

We analyse this RDF graph and infer a relationship
between Cartilage thinning (vi) and Joint stiff-

ness (v j) as depicted on Figure 4. Finally, we pro-
duce edges (vi,v j,"causes","existential superclass") and
(v j,vi,"causes","existential child").

Figure 4: RDF graph corresponding to Listing 1

Other L axioms are treated in the similar manner during
the edge production procedure. The Table 1 summarizes the
edge production rules that we support in Grontocrawler.

As a result L 7→ G allows us represent an ontology as a
network of interrelated concepts, where relations are seman-
tically consistent up to the L language.

4.2. Graph traversal and L segmentation/exploration

Ontologies with over ten thousand classes suffer severely
from scaling problem [SR06]. Segmentation of ontologies
by choosing application-specific subparts of an ontology (or
modules) is a way of overcoming these difficulties. As an
example consider a biomedical application which requires
a formalization of knee anatomy. Developers may choose
to re-use a comprehensive ontology, such as FMA [RM03],
for that purpose. However, the original FMA ontology cov-
ers the whole human body anatomy and is too complex
and broad. The developers may extract a relevant subpart
of FMA ontology focusing on the human knee. They pro-
vide the seed nodes, for instance the bones participating in
the knee joint articulation Figure 4.2. By processing the ax-
ioms, with which this information is encoded, we can extract
the relevant subpart of what was deemed to be a subpart of
formalization of information on the knee joint.

In Grontocrawler the User starts the segmenta-
tion/exploration by providing a focus entity and as a
result Grontocrawler presents the infered semantic context
around the focus entity. Ontology segmentation/exploration
is thus performed through a graph traversal of G starting
from the seed node. Specifically, we adopt the itera-
tive breadth-first search algorithm for graph traversal in
Grontocrawler (cf. Algorithm 1).
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CI Rule Pattern α := seed v β Production
R1 β := A1 E← E ∪ (seed,A1,v,"superclass")
R2 β := ∃P.A1 E← E ∪ (seed,A1,R,"existential superclass")
R3 β := ∃P.C,∀Ai ∈C E← E ∪ (seed,Ai,P,"existential superclass")

ABox Rule Pattern Production
R4 α := seed(a) E← E ∪ (a,seed,"is a","instance of")
R5 α := P(seed,b) E← E ∪ (seed,b,P,"R-successor")

DBox Rule Pattern Production
R6 α := D(a,Literal(seed)) E← E ∪ (a,φ(seed),D,"D-successor")

Table 1: Production rules L 7→ G for Algorithm 2 (produce_edges)

Figure 5: FMA module focused on Femur
Algorithm 1 Graph traversal algorithm (Iterative Breadth-
first search)
Require: seed,visited,start_queue,crawl_options

G←∅
to_crawl← start_queue

⋃
seed

while to_crawl 6= ∅ do
u← pop(to_crawl)
if u 6∈ visited then

visited← visited
⋃

u
successors← get_successors(u,crawl_options)
to_crawl← to_crawl

⋃
successors

G← connect(G,u,successors)
end if

end while

4.2.1. Visualization of G representation on a computer

Rule-based transformation of ontologies into graphs detailed
previously, produces smaller subgraphs which are merged
into one final labelled graph with every edge having an at-
tribute describing the type of an edge (name of the rule). In
Grontocrawler, we use JSON to represent G (cf. Figure 6) for
exchange of information over the Web as well as the input to
the graph visualization frameworks.

4.3. Social Network Analysis on G

The resultant (labelled, directed) graph G can be analysed
by using SNA techniques (centrality measures, graph parti-
tioning and community detection). We employ the centrality

Algorithm 2 get_successors for Algorithm 1
Require: seed,crawl_options

E←∅
for all Ri ∈ crawl_options do

E← E ∪ produce_edges(seed,Ri)
end for

Figure 6: Structured graph representation as JSON object

measures to identify the most important nodes (concepts) ac-
cording to their strategic position in the network. The mea-
sure of importance is then used to limit the number of in-
formation presented to the user by thresholding only impor-
tant nodes. Graph partitioning and community detection al-
gorithms are used to identify clusters of ontology according
to a specific topicality.

Centrality metrics on Graphs. We consider primarily two
centrality measures for nodes in a graph; based on the degree
of a node (degree centrality); calculated from A as a row or
column sum ck =∑

n
l akl , and (betweenness centrality): based

on the proportion (g(v)) of all the shortest paths from node s
to node t (any two nodes in a graph) that pass through a node
v (denoted σst(v)) to the total number of number of shortest
paths (σst ). We denote it as g(v) = ∑i6=v6= j

σst (v)
σst

.

Graph partitioning and community detection The
Fiedler vector corresponding to the second smallest
eigenfunction of the graph Laplace operator is used to
partition the graph [Chu97] representing the ontology. We
use Louvain’s [BGLL08] heuristic metric for modularity
computation and community detection. This algorithm tries
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to keep highly densed subgraphs separate from others, thus
it produces certain clusters which could be separated even
further and contain nodes of several topicalities.

5. Grontocrawler: design and specifications

Both Ontology visualization and Ontology segmentation re-
quire computational means of axiom processing to ade-
quately capture the variability of the domain knowledge en-
coded. We argue that, the two can work in couple. In Gron-
tocrawler the visualization of ontology guides the ontology
segmentation process, by providing the user an overview (a
summary) of an ontology. The user can then identify the
relevant seed nodes, which are fed to the segmentation al-
gorithm, yielding the induced subpart. Analagously, ontol-
ogy analysis and identification of key-concepts [MMP∗11]
guides the visualization of ontologies by filtering which and
how much of information should be presented to the user.

Grontocrawler is implemented as a Web application and
consists of two logical components: i) ontology process-
ing (owl to graph transformation, performed server-side),
ii) interactive visual ontology exploration (performed client-
side). The test version of the tool is available at this address
http://45.33.71.144/grontocrawler/.

Interface of the system The interface of Grontocrawler fol-
lows a simplistic approach of an information portal similar
to a welcome page of a web-search engine (e.g. Google).
Inputed text - a string a - is fed to φ, which matches the pos-
sible concepts. We use Levenshtein distance [Lev66] (metric
on strings) to decide to which concept s it maps to (i.e., we
perform argmaxa φ(s,a)). s is then used as a seed node in the
graph traversal algorithm.

The user controls the level of inference (identification of
neighbors in the graph traversal algorithm) through a check-
list, in which every option is mapped to one of the RDF
graph patterns (L 7→G transformation rule (cf. Table 1). The
list of transformation rules are fed to the server via AJAX
call for interactive response. Result of the graph traversal al-
gorithm, a subgraph, is then presented to the user, with the
size of nodes reflecting its importance measured by the cen-
trality measures of the network (cf. Figure 1).

OWL ontology transformation. Server-side OWL ontol-
ogy transformation into a directed graph is done on the
server-side, the exact rules of transformation are summa-
rized in Table 1. We use RDFLib - Python RDF processing
library to perform RDF graph pattern matching and other
RDF processing manipulations. We use available RDFLib
plugins for ontology persistance mechanisms, in particular
we are using RDFAlchemy to connect to persisted triple store
in a MySQL relational database, as well as the SPARQLUp-
date pluging to connect to arbitrary triple stores, support-
ing SPARQL endpoints (e.g., Stardog). The server is imple-
mented via Python Flask library for wSGI server applica-
tions. Graph management and algorithms are provided by

the NetworkX Python library for Network Analysis, we use
Louvain’s community detection implementation provided by
the authors (available on Bitbucket).

Interactive exploration. Client-side The results of the
query are presented to the user as a network of connected
concepts. The HTTP queries to extract the semantic con-
tent of a focus entity is implemented through an AJAX calls,
providing interactive means to KB exploration. The nodes
are drawn interactively on the canvas of the Web browser
as SVG elements, and laid out by using the force-directed
layout for graph drawing [FR91]. We use the javascript
D3 [BOH11] library to render 2D visualization of the graph
as well as for the layout computation. Interactivity comes
from the fact that it is possible to redraw and recompute the
layout of the graph every time the user performs a query.
Moreover, the user can drag the nodes to spread them apart
for better exploration experience, the layout is recomputed
everytime the nodes’ configuration (position) is altered.

6. Initial experiments

Social Network Analysis on a network produced as a re-
sult of OWL ontology to directed labelled graph transfor-
mation gave us some insights about the structure and the
semantics of the knowledge encoded in the ontology. We
applied our methods on the MSH (MultiScaleHuman) ontol-
ogy [FP715], which focuses on the description of multi-scale
biomedical data. It connects the medical background knowl-
edge on clinical practices (patients, acquisition sessions) to
the anatomy (knee joint formalization, derived from FMA).
In addition it formalizes the causal chain of cartilage degra-
dation during Osteoarthritis. In that ontology the authors also
studied User interests in data and knowledge, modeled as
affinity measures of specialists (radiologists, orthopedists) to
concepts in the ontology such as: specific anatomical entities
or biological scale of biomedical data.

6.1. L 7→ G (MSH ontology)

We considered two graph transformations: i) subgraph ex-
traction where focus is Femur, all inference rules were set
and ii) full graph of the MSH ontology. We denote them
G1,G2 respectively and present some statistics on these net-
works on Table 6.1.

Graph # nodes # edges # partitions density # components
G1 170 472 12 0.01642 1
G2 213 538 21 0.01191 11

Table 2: Network statistics for two graphs

6.2. Inference and hidden link discovery

We would like to discuss the purpose of inference and how
it can help discover hidden links. In Grontocrawler the final
representation of the ontology is represented as a directed
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label graph, where edges are typed (their type is stored as
edge attribute) and represent a structural semantic similarity
link between the two concepts (represented as two nodes).
Thus, a path in the graph G between the two nodes u,v
exhibits presence of semantic similarity and its (weighted)
length represents the strength of that similarity.

We provide an example where computing paths between
the nodes is used to infer new relationships between the
datasets in the presence of partially asserted facts. Expla-
nation of semantic path or a path of relationships from one
dataset di to another (d j) is approximated by the computa-
tion of shortest paths from the nodes representing di to d j.
The procedure is as follows, the User enters the names of
two datasets and the system presents the possible connec-
tions between the two:

[[’Segmented femur’, ’Femur’, ’MRI 1’],
[’Segmented femur’, ’Radiologist’, ’MRI 1’],
[’Segmented femur’, ’Gait analysis’, ’MRI 1’],
[’Segmented femur’, ’Soft tissue loading’, ’MRI 1’],
[’Segmented femur’, ’Medium scale’, ’MRI 1’]]

The user is thus given an overview of possible links be-
tween the two datasets, i.e. that both are related to Femur
bone, might interest Radiologist, could be important in the
study of Gait analysis and/or Soft tissue loading and come
from Medium scale (spatial representation in visualization
systems). These semantic paths are then used as input to the
algorithm compute the induced subgraph, yielding as a re-
sult the semantic context in which the two occur (cf. Fig-
ure 7). Notice that the subgraph contains more information
and can be used for further hidden-link discovery process.

Of course the same subgraph could have been extracted by
running ad-hoc SPARQL [PAG09] queries to the KB, how-
ever in that case the user is not only required to know the
syntax of the querying language, but also the exact structure
of the RDF graph.

6.3. Community detection and modularization

Even though our networks are relatively small ≈ 200 nodes
and ≈ 500 edges, it is not possible to present all the infor-
mation at once to the user. We study the modularity prop-
erties of our network by applying the Louvain clustering
heuristics, suitable for dense networks [BGLL08]. Some
clusters were quiet surprisingly good and reflected the cor-
rect topicality of concepts involved and some were under-
standably poor. For instance, one of the clusters correctly
identified entities around cartilage and histological data (cf.
Figure 8), which could interest a Molecular biologist. The
other one contained only information on Meniscus (cf. Fig-
ure 9), though the two belonged to the same hierarchy in the
Anatomical entity tree, the community detection algorithm
was able to separate the two, due to the presence of informa-
tion of User interests in certain anatomical entities and our
axiom processing algorithm.

Patient Acquisition session

Acquisition protocol

Static MRI protocol

Acquired Data

Processed data

Femur

Lower limb

part of

Video sequence 1

MRI 1
Segmented femur

Patient 1

is a 

Acquisition session 1

undergoes

Patient 2

is a

Acquisition session 2undergoes

is a 

Dixon fat

performed with

is a
MoCAP protocol

performed with

is a

acquires

is a 

acquires

is arepresents

is a 

represents
is a

represents

belongs to

Figure 7: Example of inference in G through path reachabil-
ity computation, which helps discover hidden links between
the datasets

Figure 8: Cluster (module) related to Cartilage

7. Discussion

The OWL sublanguage which we consider in our work does
not capture the whole spectrum of expressivity that OWL
language can offer. Axioms expressed (ontologies) in this
language do however lend themselves easier to transforma-
tion into directed labelled graphs. L focuses on biomedi-
cal ontologies where the considered restricted language con-
structors are sufficient to model (axiomatize) some of the
most important biomedical relationships. Grontocrawler po-
sitions itself as a both research contribution and a technolog-
ical contribution. From research viewpoint it tries to study
the connection between formal methods to knowledge rep-
resentation and Social Network Analysis. From a techno-
logical point of view, Grontocrawler can be considered as
a means to ontology analysis with a contribution to the test-
ing phases of ontology creation or to ontology exploration.
Since it supports Web services it opens up new opportunities
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Figure 9: Cluster (module) related to Meniscus

of collaborative knowledge modelling and hypothesis testing
in the biomedical domains.

Future work and limitations The initial experiments and
the results obtained were tested on one ontology (MSH on-
tology), which suited the best the axioms of the L language
introduced in the paper. More elaborate comparison/analysis
of our approach on other ontologies is needed to support the
research point that Grontocrawler aims to make. Well de-
signed user studies are necessary to assert the usefulnes of
the proposed methodology. The two points will be the top
priority of our future work. The drawback of our visualiza-
tion is that, though the edges produced by the graph traversal
algorithm are typed or labelled, they are visualized indistin-
guishably by the same polygon line. Better glyph visualiza-
tion techniques, taking into account the topological informa-
tion that SNA analysis can bring, should be envisioned in the
future.

Eigenanalysis of networks Unfortunately, eigenanalysis of
the Laplacian matrices did not give much insight into the
structure and the semantics encoded in the resultant graphs.
This maybe partially explained by the fact that spectral anal-
ysis of graphs provides global properties of the network and
perhaps is not the best suite for community detection. More-
over while doing spectral analysis we transformed our net-
works into undirected graphs, this is known to produce sub-
optimal partitions when the relationships are not symmetric.
Besides, we also assumed that our networks were 1-mode
networks, i.e. having the same type of edges, which is se-
mantically not true. However, we have not found any spectral
graph theory results for n-mode networks in the literature,
and usually the reserachers relax this constraint by turning
every network into a 1-mode network. Additional pointers
may be found in [HGS05].

8. Conclusion

In this paper we presented Grontocrawler - a tool for interac-
tive exploration and segmentation of biomedical ontologies.
We defined a sublanguage L of OWL which we consider

in our work. We presented a methodology of transformation
of an ontology expressed L into a directed, labelled graph.
We then showed how Social Network Analysis techniques
(e.g., centrality measures, graph partitioning, community de-
tection) can be used to i) filter the information presented to
the user, and ii) provide a summary of knowledge encoded
in the ontology. Finally, we showed the application of ontol-
ogy exploration in the biomedical domain to help discover
hidden links between the biomedical datasets.
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