STAG: Smart Tools & Apps for Graphics (2015)
Silvia Biasotti and Marco Tarini and Andrea Giachetti (Editors)

RameshCleaner: conservative fixing of triangular meshes

Marco Centin and Alberto Signoroni

Information Engineering Dept. DII, University of Brescia, Italy

Abstract

In this work, after a careful examination of the most common errors and flaws which typically occur in meshes
produced by 3D scanning processes, we propose a set of fixing tools which solve effectively several important
mesh defects while preserving the original data. The proposed tools are then organized and activated in the
RameshCleaner pipeline allowing the user to take advantage of a semi-automated fixing solution, optimized for
speed and efficiency, as well as of the possibility to selectively activate individual tools. The comparison, over a
set of representative scanned models, with free and commercial semi-automated fixing solutions gives a significant
evidence of the defect abatement and computational speed characteristics of the proposed system.

1. Introduction

3D mesh models coming from devices and processes dedi-
cated to the geometric digitization of real objects are typi-
cally originated from triangulation techniques that work on
sets of overlapping range images (or derived point clouds).
Because of several factors related to both the physics and to
the geometry of the acquisition, meshes derived from point-
based scan data are likely to contain a large number of flaws
that, whether they are visually impacting or hardly visible,
make it difficult or unstable the job of subsequent process-
ing and editing stages which are needed, accordingly to the
specific application context. A certain number of works have
dealt with these problems. We refer the reader to two re-
cent surveys which have been given by Ju [Ju09] and At-
tene, Campen and Kobbelt [ACK13]. The methods of mesh
fixing may be divided into two categories: the volumetric
methods that try to reconstruct volumetrically the object
(and often imply a complete remeshing), and surface meth-
ods, that try to solve the degeneracies from the mesh topol-
ogy and connectivity. In [Att10], Attene presents a surface-
based fixing strategy and a software tool that try to preserve
the original data while adopting effective local refinements.
However, the presented heuristics assume that the object is
closed and accessible from a single connected component.
When the input object comes broken into multiple compo-
nents, the method tends to fail, possibly erasing relevant
connected components and closing large holes in an unnat-
ural way. What we propose here is a structured set of ef-
fective fixing strategies that maximally preserve the original
data while effectively solving several important mesh weak-

(© The Eurographics Association 2015.

DOI: 10.2312/stag.20151300

nesses. Our method is also able to reliably handle the fix-
ing of the edges. This improves, with respect to other ap-
proaches, the possibility and the quality of closing holes be-
low a certain size, while blunting and cleaning from large
degeneracies the mesh borders.

The paper is organized as follows: we initially identify
and analyze the most common problems which can arise on
triangular meshes (Sec. 2), then we develop a number of ef-
fective solutions able to detect and solve most of degenera-
cies with low expenditure of time, high fixing success rate,
flexibility and ease of use, minimal invasiveness and a high
degree of preservation of the original meshing (Sec. 3). A
(semi-)automated pipeline, named RameshCleaner, allows
the user to take advantage of an automatic fixing solution,
optimized for speed and efficiency, as well as of the possi-
bility to selectively activate individual steps (Sec.4). Com-
parisons are proposed with respect to free and commercial
reference solutions to exemplify and demonstrate the effec-
tiveness of the proposed method (Sec. 5).

2. Typical problems in triangular meshes

We assume that we have in input a manifold triangular mesh
with assigned connectivity. More precisely we require that
there are no complex vertices (vertices whose neighborhood
is not a topological disk) or complex edges (edges having
more than two incident faces). Most scanning systems gen-
erate mesh with these requirements. We internally represent
the mesh connectivity and the additional properties using the
the halfedge-based data structure OpenMesh [BSBK02], that
doesn’t support the representation of complex edges by de-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/stag.20151300

130 M. Centin, A. Signoroni / RameshCleaner: conservative fixing of triangular meshes

"o G

(a) spike (b) foldover (c) microtunnel
foo
4
(d) boundary (e) components (f) near-degenerate

Figure 1: A showcase of some common issues fixed by the
proposed method: spikes (a), fold overs (b), micro tunnels
(c), complex boundaries (d), small connected components
(e) and near-degenerate faces (f).

fault (see. [BSBKO2]). In particular, the proposed method
is not suitable for converting a non-manifold mesh into a
manifold one or for rebuilding a valid mesh connectivity
from a triangle soup (like it has been done, for example,
in [GTLH98]).

In the following we list some of the most relevant prob-
lems that can be found in meshes acquired by modern 3D
scanning systems, also depicted in Figure 1. These problems
can also occur in a combined way in proximity of important
features of the mesh, so it is important to adopt solutions that
preserve as much as possible the mesh features.

Isolated and degenerate vertices. We consider as degen-
erate every vertex of the mesh that has no adjacent faces
(isolated vertex) or such that the corresponding 3D coordi-
nates are degenerate (having infinite or non-numeric values).
Their presence may impact the performances of other al-
gorithms by altering the size of the bounding box or other
global statistics and causing ill-posed computing.

Spikes. We call spike any small protrusion of few triangles
on a relatively-flat portion of the surface having the topology
of a disk. An example of spike is shown in Fig.1a. Spikes
are often the result of a triangulation of sparse outliers in
proximity of the surface and can be identified by looking at
edges having very high dihedral angles.

Foldovers. A foldover is the result of a wrong triangulation
of points that are in proximity of the surface. As shown in
Fig.1b, these problems consist in few vertices that are bent
below (or above) the surface, having few triangles attached
to them. These mesh parts are often manifold and non self-
intersecting and causes wrong geometrical computations on
the surrounding surface. Unfolding these clusters have a ben-
eficial effect on the stability of many algorithms that depend
on the local geometry. Foldovers are often generated by sur-
face reconstruction techniques, but can be also produced by

naive editing techniques that modify the mesh connectivity
without implementing valid geometrical checks.

Micro tunnels. Similarly to foldovers, microtunnels are
also the result of a wrong triangulation of noise in prox-
imity of the surface. However, they differ from foldovers
in having a non-trivial local topology, that is, there exist
a geodesic neighborhood having a non-disk topology. We
put these defects into a separate class because they require
more involved fixing procedure. Some work explicitly con-
sidered ad-hoc solutions for detecting and fixing these prob-
lems (see [GWO1]). The heuristic defined in Section 4 is ca-
pable of removing some of these problems if they can be
identified as a cluster of few triangles (see Fig.1c).

Complex boundaries. A certain number of degeneracies
can be present along the mesh boundaries, including small
protrusions of few faces leading to boundary curves having a
complex jagged shape and flipped faces (see Fig.1d). Fixing
these issues before applying any hole-filling procedure has a
drastic effect on the final result (as will be shown in Section
5). In Section 3.3 we describe how to remove these problems
and smooth the boundary curves.

Small components. Small islands and connected compo-
nents are often considered a problem. They can be the re-
sult of triangulation of nosy clusters of points or obtained by
other techniques that involves deletion of some mesh parts.
Our fixing method will remove these components since they
generate small boundaries that cannot be easily merged with
the rest of the mesh. Fig.1le show an example of small com-
ponents along a boundary of the mesh.

Near-degenerate facets. We call near-degenerate facet ev-
ery face of the mesh such that the corresponding triangle
is almost degenerate, that is, its area or minimum angle are
below a certain threshold. In Section 3.6 we extend this def-
inition to every triangle having edges that are too short with
respect to a locally-defined average edge length. The pres-
ence of near-degenerate triangles causes degenerate compu-
tations in estimating the face normals and leads to numerical
instability in most mesh processing techniques. Removing
these elements has a beneficial effect for every subsequent
processing step and also increases the efficiency of the mesh
representation. Near-degenerate facets can be generated by
Marching Cubes contouring methods or by other processing
techniques (e.g. decimation). An example of these elements
is shown in Fig.1f (cyan color facets).

Self-intersections. The self intersecting parts of the mesh
are obtained by the detection of the faces such that the cor-
responding triangles intersect with some other triangle of
the mesh. Spatial sorting structures or parallelized computa-
tions are often used in oder to reduce the time-complexity of
brute-force intersection tests (computed, for example, using
the method of Moller [M6197]). This test however remain
quite expensive for large and dense meshes, while merely
revealing the self intersecting triangles does not give addi-
tional information on how to fix them. Practically speaking,

(© The Eurographics Association 2015.

M. Centin, A. Signoroni / RameshCleaner: conservative fixing of triangular meshes 131

we distinguish between two types of self intersections (as it
is schematically drawn in Figure 2). The local self intersec-
tion (Fig.2(a)) are clusters of self-intersecting triangles that
are connectivity-wise close (that is, triangles intersect with
faces that are in a certain small ring). This kind of self in-
tersections are frequent in mesh obtained by scanning and
reconstructing real world objects and they often correspond
to a bad triangulation of outliers. Non-local self intersections
(Fig.2(b)) are more commonly occurring in meshes that have
been processed by CAD software or some algorithm that de-
forms the surface or merge different meshes. Therefore, we
will adopt a simpler lightweight strategy by indirectly de-
tecting clusters of the first type through their local geome-
try (spikes and highly creased edges), instead of identifying
them as self-intersections using computationally expensive
routines.

—_——

(a) (b)

Figure 2: Local vs non-local self intersections.

3. Fast and effective fixing methods

In this section we develop a set of fast and effective tools
for fixing local geometrical and topological errors. We rely
on detecting mesh problems by looking at the regularity
of some local geometrical statistics. We first describe how
to compute and keep updated all the necessary properties
(Sec.3.1) and then how to use them in order to fix the
mesh problems. In Sec.3.2 we implement a fast detection
of small connected components, in Sec.3.3 we develop an
effective routine that can be used in order to remove degen-
eracies and smooth the mesh boundaries. An improved hole-
filling method is proposed in Sec.3.4 and a method for auto-
matically resolving failure cases is explained in Sec.3.5. In
Sec.3.6 we explain how to identify degenerate triangles and
fix them through sequences of safe edge collapses. Then, in
Sec.3.7, we analyze the resolution of spiked vertices by im-
plementing a local relaxation routine. In Sec.3.8 we eventu-
ally define an heuristic that can be used in order to fix spiked
vertices that cannot be solved by local relaxation.

3.1. Computing local geometrical properties

The first step of our fixing routines is to precompute some
geometrical statistics that allow us to quickly detect degen-
erate elements and implement fast geometrical checks. In
our implementation we rely on the OpenMesh data structure
[BSBKO02] that allows the assignment of additional proper-
ties to every element of the mesh (vertices, halfedges, edges
and faces). More precisely: a) we associate to every halfedge
the angle of the opposite corner in its face (if existent); b) ev-
ery inner angle of any triangle is then associated with some
halfedge of the mesh; c) an edge is associated with its length

(© The Eurographics Association 2015.

and with the dihedral angle formed by the two adjacent faces
(if existent); d) a face is associated with its area, its barycen-
ter and the minimum inner angle; e) a vertex is associated
with its valence, the average of the length of the adjacent
edges and the maximum of the absolute values of the dihe-
dral angles of those edges. In addition to the above prop-
erties an integer status is added in order to mark elements
that are not yet computed or degenerate computations. Our
fixing strategy requires that all the above stats are computed
and kept updated in any operation for every involved element
of the mesh. This goal is achieved by implementing routines
both for the global and local update of the above statistics.

Global update. We efficiently compute all the statistics
in three steps. A first cycle run over the (non-deleted)
halfedges. The edge vector is computed. The edge length is
collected from the edge stats (or computed if non-existent).
If the edge is not boundary, the opposite vertex exists. We
then compute the other edge vector, compute or retrieve its
length, and compute the face area. The face area is stored
in the face statistics. From the two normalized edge vectors,
the inner angle is also computed and stored in the halfedge
statistics. If the edge is not boundary, then we have two ad-
jacent faces. The corresponding dihedral angle is then com-
puted and stored in the edge properties. A second cycle run
over the mesh facets. It assumes that the edge and halfedge
properties are already computed, together with the face ar-
eas. By iterating over the face halfedges the minimum angle
and the face centroid are computed and stored in the face
properties. Finally, a third cycle over the mesh vertices col-
lects local statistics by looking at the outgoing halfedges.
By computing the properties in the above order it is possible
to recycle expensive computations and have the geometrical
statistics available in constant time.

Local updates. After each elementary editing operation on
the mesh (flip, split, collapse) it is necessary to update the lo-
cal statistics accordingly or computing them for the new gen-
erated elements. We therefore implemented optimized local
update routines for the 1-ring of a vertex or a face.

(b)

Figure 3: Example of boundary with many small connected
components (a) that are removed by our procedure (b).

132 M. Centin, A. Signoroni / RameshCleaner: conservative fixing of triangular meshes

3.2. Removing small connected components

The sparsity of the data samples (caused by insufficient ac-
quisition) often leads to small isolated surface patches (Fig-
ure 3 shows an example taken from the the Awakening
model of the Stanford repository). In our fixing routine we
remove these small components if their dimension is less
than a user-defined threshold, since they increase the com-
plexity of hole filling and may lead to self intersections or
wrong hole patches. These components are computed using
a queue-based region-growing procedure that iteratively col-
lects adjacent faces up to a certain size.

3.3. Boundary cleaning and smoothing

One main component of our mesh fixing tool is a boundary
cleaning method, designed for the following purposes:

e Removing flipped boundary faces that introduces illness
in every subsequent hole-filling procedure;

e Cleaning small isolated components from the boundary
whose closure is often ambiguous;

e Regularizing and smoothing the boundary curves both for
improving the aspect of the open boundaries and simpli-
fying closure of small holes.

The first goal is achieved by adopting a procedure that itera-
tively removes vertices from the boundary. A bad boundary
vertex is a (non-deleted) boundary vertex such that at least
one of the following conditions is satisfied: a) the valence of
the vertex is equal to 2; b) there exist an adjacent edge hav-
ing dihedral angle above a certain user-defined threshold (in
all the examples of this paper we used 120 degrees); c) the
number of adjacent boundary edges is greater than 2.

The cleaning phase proceeds as follows. Given a boundary
of the mesh, i.e. a sequence of boundary vertices pairwise
connected by boundary edges, we initially determine a con-
fidence region by computing the n-ring of the boundary ver-
tices (in all the shown examples we set n = 4). Then we iter-
ate over these vertices and progressively remove bad bound-
ary vertices from the mesh. The algorithm terminates when
one of the following conditions is satisfied:

e The number of non-deleted bad boundary vertices con-
tained in the confidence region is 0;

e A maximum number of iterations is reached (in all our
examples the maximum number of iterations was 30);

Figure 4(a) shows an example of mesh with many bad
boundary vertices and 4(b) the result of the iterative proce-
dure defined above. The deletion of vertices from the mesh
potentially generate new isolated components of the mesh.
We therefore compute the face-connected components of the
confidence region and remove the small ones (in all the ex-
amples we removed the components whose size is inferior to
40 faces. Finally we apply a modified Laplacian relaxation
to the 1-ring of the (updated) boundary vertices. In order to
avoid boundary shrinkage, we restrict the contributes of the
Laplacian along the boundary curves as follows. If v is a
non-boundary vertex, then we denote the N(v) the 1-ring

(b)

Figure 4: Example of boundary cleaning. The jagged bound-
aries of the input mesh (a) are first cleaned by our iterative
procedure (b). The vertex 1-ring of the boundaries is then
smoothed in order to obtain a pleasant shape.

(a) (b)

Figure 5: Example of hole filling. A triangulation of the ini-
tial boundary loop is computed (a). The hole patch is then
remeshed in order to obtain a semi-regular hole patch (b).

neighborhood of v, otherwise N'(v) is defined as the 1-ring
of boundary vertices only. If p(v) denotes the 3D point as-
sociated with the vertex v, the uniform restricted Laplacian
operator is defined by the following formula:

1
L(v) = WOl WEJZWV)p(w) —p(v). (1)

After collecting the 1-ring of the boundary vertices we apply
few smoothing iterations using the above Laplacian operator
(by default, 10 iterations with timestep of 0.02). Figure 4(c)
shows the result of this step applied to the cleaned bound-
aries of Figure 4(b).

3.4. Filling small holes

We adopt a terminological distinction between hole filling,
where the model have many small holes that can be closed
by simply triangulating the corresponding boundary (e.g.
[BS95] and [Lie03]), and mesh completion that aims to com-
plete bigger missing parts of the model by adopting volu-
metric techniques (e.g. [PR0O5] and [CPS15]) or by consid-
ering contextual information (e.g. [SACO04], [HTG14]). In
our mesh fixing pipeline we include some routines that are
suitable for filling small simple holes enclosed by a single

(© The Eurographics Association 2015.

M. Centin, A. Signoroni / RameshCleaner: conservative fixing of triangular meshes 133

2
PN
o)
S

Figure 6: With respect to [Lie03] (a), our solution produces
better patches (b) and allows to configure the triangle density
in order to obtain coarser (c) or denser (d) patches.

boundary loop. The proposed technique is a variant of the
well-known method of Liepa [Lie03], where the remeshing
part is replaced by the fast and effective method of Botsch et
al. [BKO4]. The procedure is composed of two steps, repre-
sented in Figure 5 and described below.

Loop triangulation. Given a boundary loop (i.e. a closed
boundary curve), we want to compute an initial (possibly
non self-intersecting) minimum-weight triangulation of the
corresponding 3D polygon. A popular approach to solve this
problem is to adopt a dynamic programming technique that
was developed (in the planar case) independently by Klinc-
sek [K1i80] and Gilbert [Gil79]. This technique was adapted
for the 3D case by computing area-minimizing triangula-
tions by Barequet and Sharir [BS95] and then extended by
Liepa in order to reduce self-intersections in presence of
crenellations [Lie03]. Our mesh fixing tool implements by
default the method of Liepa for computing the initial trian-
gulation of holes whose boundary loop is below a certain
user-defined size. The result of the initial triangulation of
the cleaned boundary of Fig.4(c) is shown in Fig.5(a).

Hole patch remeshing. After an initial weight-minimizing
triangulation of the boundary loop is computed, a refinement
is necessary in order to add internal vertices and improve the
quality of the hole patch. Liepa [Lie03] proposes a refine-
ment strategy that propagates a local sampling density across
the hole (see Fig.6(a)). This propagation combined with the
irregularity of the initial triangulation often leads to artifacts
or patterns of denser triangles across the hole. We therefore
replace this refinement strategy with the uniform remeshing
method proposed by Botsch et al. [BK04] which produces
well shaped triangulations (see Figg.5(b) and 6(b)) and al-
lows to configure the triangle density (Figg.6(c)-(d)).

3.5. Handling incorrect hole fills

In some special cases, the definition of the boundary loops
that identify the small holes is ill-posed. Fig.7(a) is an ex-
ample of a broken triangulation that can be classified as a
single hole but is formed by many conflicting parts (that are

(© The Eurographics Association 2015.

not even self-intersecting or spiked). An initial triangulation
generated with the method explained in Section 3.4 would
generate complex edges, that are disallowed by OpenMesh
[BSBKO2]. We detect these cases by checking the validity
of the corresponding handles and we treat them as aborted
fills. We then attach to these events a special cleaning that
enlarges these bad holes by removing their vertex 1-ring and
then fills the cleaned hole, as shown in Fig.7.

(b) (c)

Figure 7: Example of hole whose closure generates complex
edges (a). The aborted fill is handled by cleaning the 1-ring
of the boundary (b), and filling the new hole (c).

3.6. Fixing near-degenerate faces

Near degenerate triangles are repaired through an iterative
procedure that evaluates reliable edge collapses. We initially
run over the mesh edges and check the local statistics. Let /g
be the global average edge length and [, be the local average
length (computed by averaging the edge lengths stored in the
vertices of the edge). The edge e is said to be collapsible if
at least one of the following conditions is satisfied:

1. Zero edge: the edge length is below a (very small) global
threshold, defined as € - I, where € is a parameter (0.1 by
default in all our examples);

2. Skinny edge: the edge length is below a local threshold,
defined as & I, where & is a parameter (0.25 by default)
and at least one of the adjacent faces have opposite angle
inferior to a certain threshold (10 degrees by default).

Note that the definition of collapsible edge is not including
any topological or geometrical check of the correctness of

Algorithm 1 Fixing near-degenerate faces

1: function FIXNEARDEGENERATEFACES(M)

2: reset edge timestamps to 0;

3 Q <« priority queue of quadruplets (o, ke, p,1);

4: initialize Q by inserting collapsible edges;

5: while Q # (0 do

6: pop front element (o, ke, p,t) from Q;

7 if(¢ # timeStamp(e)){ skip }

8 collapse he onto p, update neighbor timestamps;

9: update all statistics in the neighborhood of he;
10: detect new neighboring collapsible edges;

11: compute optimal halfedge he and destination p
12: push (a, ke, p,t) in queue

13: end while
14: end function

134 M. Centin, A. Signoroni / RameshCleaner: conservative fixing of triangular meshes

the actual collapse. Once these edges are identified, a suit-
able collapse direction and destination point is computed by
testing the correctness of different solutions (respectively,
collapse on most featured vertex, collapse to midpoint and
collapse to less featured). The correctness of a collapse of
the halfedge he onto the destination point p is verified by
simultaneously checking two conditions:

1. Connectivity check: is done by testing if, on each side of
the collapsed edge, only one pair of edges are joined;

2. Geometrical check: the normals of the faces in the 1-ring
neighborhood of the extremal vertices that persist after
the collapse operations are tested before and after a sim-
ulated collapse in order to verify if the angle deviation is
below a certain threshold (45 degrees by default);

After a proper collapse direction and destination is deter-
mined, the edge is inserted into a priority queue with a prior-
ity given by the inverse of its length (o = 1/(/ +¢€)) so that
short edges have higher collapse priority. Algorithm 1 sum-
marizes the fixing procedure. After an edge is collapsed, the
local statistics of the neighborhood are updated and new col-
lapsible edges are inserted in the priority queue. By updating
an edge time-stamp property in the edge neighborhood it is
possible to disable adjacent collapses that were invalidated
in the process and re-classify the neighborhood. In Section
5 we will show examples of fixing near-degenerate faces oc-
curring in popular datasets.

3.7. Relaxing spiked vertices

With reference to the notations of Section 2, we now con-
sider procedures that can fix mesh foldovers and spikes.
In our procedure, a spiked vertex is any vertex having at
least one edge whose dihedral angle is greater (in absolute
value) than a user-specified dihedral angle threshold. Since
we already computed all the geometrical properties, we can
rapidly detect these vertices by looking at the stored val-
ues. If the local connectivity have the topology of a disk,
we found that a simple Laplacian relaxation of the surround-
ing vertices rapidly unfolds few vertices that are bent off the
surface. We define a modified Laplacian smoothing whose
speed is controlled by the maximum absolute dihedral an-
gle of the vertices. The fundamental idea is to quickly relax
spiked elements while reducing the motion of neighbor areas
that are encoding a correct geometry. The process is applied
only on the vertices that have absolute dihedral angle above a
certain threshold (and their 1-ring). The relaxing Laplacian
vector for a vertex v is computed with the formula

_Jo 0(v)<a
&) _{ (0(0)—a/(b—a)L(y) () >a @ @

where 0(v) is the maximum absolute dihedral angle of the
edges adjacent to vertex v, L(v) is the Laplacian defined by
(1) and a,b are used-defined parameters denoting respec-
tively the minimum dihedral angle that will be fixed in the
smoothing and the threshold level at which the vertices will
be uniformly smoothed. This smoothing routine, repeated

Algorithm 2 Relax spiked vertices

1: function RELAXSPIKEDVERTICES(M)

2 S < spiked vertices in M

3 W < working region (n-ring) of S

4: i< 0

5: while S+ () and i < maxlterations do
6: compute 1-ring R of S

7 relax R by applying (2)

8 update geometrical properties over R
9: S < spiked vertices in W

10: i+—i+1

11: end while

12: end function

Figure 8: Removing spikes and highly creased edges by
relaxing the vertex positions using the operator defined in
equation (2). The small protrusion (top part) is gradually ab-
sorbed and eliminated (bottom part).

few times, introduces a tension on the surface that tends to
resolve many simple degenerate configurations while pre-
serving the neighboring mesh geometry. Figure 8 shows an
example of applying this operator on a protrusion of the
mesh. The right part of the picture shows that the evolution
of the surface tends to absorb these small protrusions while
preserving the surrounding geometry. Algorithm 2 summa-
rizes the described relaxation procedure.

3.8. Fixing unrelaxable spiked vertices

Not all the spiked vertices can be fixed by a local relaxation.
In particular, if the local connectivity is not disk-shaped, then
the operator defined in Sec.3.7 is unable to unfold the edges
with high dihedral angles. An example is shown in Fig.9(a)
where a micro-tunnel is considered. The relaxation of these
degenerate configurations results in applying a tensity that
tends to emphasize the problem. In our procedure we define
unrelaxable spiked vertices the non-deleted vertices of the

(© The Eurographics Association 2015.

M. Centin, A. Signoroni / RameshCleaner: conservative fixing of triangular meshes 135

mesh that cannot be relaxed by few applications of the oper-
ator described in Sec.3.7 (including microtunnels or severe
foldovers). These vertices are removed, as shown in Fig.9(b):
the boundaries generated in the process are cleaned and the
small holes are filled, as shown in Fig.9(c). Holes generated
by the deletion of unrelaxable spiked vertices are handled by
the fixing routine explained in Sec.3.4.

Figure 9: Microtunnels of severe foldovers that cannot be un-
folded using a local relaxation (a) are removed and cleaned
(b). Small holes eventually generated are then filled (c).

4. Automatic mesh repair pipeline

We designed and implemented a semi-automatic fixing
pipeline that makes use of the solutions developed in Sec.3.

Preprocessing. The mesh is scanned for degenerate vertices
and these are removed. We do this operation in a preprocess-
ing step since the procedures described in Section 3 do not
generate new degenerate vertices. The geometrical proper-
ties are added and computed as explained in Sec.3.1.

Fixing pipeline. A single iteration of the automatic fixing
tool consists in the following steps. The execution order of
the operations is designed to avoid the repetition of multi-
ple cleaning operations. For example, operations involving
deletion of elements of the mesh (that potentially generates
new holes or components) are done before removing small
components and filling holes.

1. Relax spiked vertices: the method of 3.7 is applied in
order to eliminate spiked vertices that are relaxable. The
properties in the 1-ring of these vertices are updated;

2. Remove unrelaxable spikes: the unrelaxable spiked ver-
tices are collected and deleted. The properties in the 1-
ring of these vertices are updated;

3. Clean the boundaries: the cleaning procedure described
in Section 3.3 is applied. The stats in the vertex 1-ring of
the new mesh boundaries are updated;

4. Remove small components: small face-connected com-
ponents of the mesh are computed as described in Section
3.2 and deleted from the mesh. No update for the local
statistics is necessary after this step;

5. Fill small holes The boundary loops having a number
of vertices below a user-specified threshold are filled us-
ing the method described in Section 3.4. Aborted fills are
handled with the enlargement procedure as described in
Section 3.5. All the local geometrical properties corre-
sponding to the new faces are computed;

(© The Eurographics Association 2015.

6. Fix near-degenerate faces: based on the updated local
statistics, the list of collapsible edges is collected and the
iterative fixing routine of Section 3.6 is applied. All the
stats are left updated by the method;

7. Relax spiked vertices: the relaxation step of Section 3.7
is applied again in order to eventually fix new highly
creased edges generated by the above steps. The local
stats are updated after this process.

Postprocessing. All the additional properties are removed
and a compact representation of the mesh is obtained by re-
moving the elements marked as deleted (garbage collection).

User parameters. The described processing pipeline al-
lows the user to select few intuitive parameters for the fixing
routine. Every step of the fixing pipeline can be executed
separately or disabled. The spiked vertices are determined
through a threshold on the dihedral angles (120 degrees by
default). The hole filling procedure requires a maximum hole
size, given as the number of vertices of the boundary loop.

5. Examples, experiments and results

In this section, results and comparisons on meshes acquired
with 3D scanners are illustrated. We selected some rep-
resentative data from the Stanford 3D Scanning Reposi-
tory1 (Happy Buddha, Awakening), from the Stanford Dig-
ital Michelangelo Project2 (David) and a dataset acquired
using the 3D scanner Scan-in-a-Box® (Hulk). We provide
experimental comparisons with respect to the MeshFix* tool
by Marco Attene [Att10] and the Mesh Doctor tool (here re-
ferred as MeshDr) included in the commercial software Ge-
omagic Studio® 2014 for Windows x64. The open source
software MeshLab® also includes a number of cleaning and
repairing routines that can be applied on a mesh (e.g. re-
moving small components, isolated vertices, merging closed
vertices, etc.). It could be however a non-trivial task for the
user to identify which problems might be present in the in-
put and how to properly combine these tools for finalizing
the input. Since in this work we are not considering user be-
haviour, we limited our comparisons to tools that can detect
and repair mesh problems in a guided and semi-automated
way. The proposed method was implemented in C++11 us-
ing the OpenMesh [BSBKO02] library. The timings provided
refer to a version of the software compiled for Windows x64
using Visual Studio 2012 and executed on a PC equipped
with an Intel® Core™ i7-4790 CPU 4.00 GHz and 16 GB
of RAM. The timings provided in the tables of this paper re-
fer to the total user time, which includes loading the input
mesh, initializing the tool, applying one or multiple fixing

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/mich/
http://www.scaninabox.com/
http://sourceforge.net/projects/meshfix/
http://www.geomagic.com/
http://meshlab.sourceforge.net/

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/mich/
http://www.scaninabox.com/
http://sourceforge.net/projects/meshfix/
http://www.geomagic.com/
http://meshlab.sourceforge.net/

136 M. Centin, A. Signoroni / RameshCleaner: conservative fixing of triangular meshes

Figure 10: Fixing the David model.

iterations and saving the output mesh. The speed gap of the
proposed method with respect to MeshFix and MeshDr is
explained by the fact that our method is focused in resolv-
ing geometrical errors in a local way and is not relying on a
global self-intersection test. Also, the performance of Mesh-
Fix are also affected by a pre-processing step that attempt to
resolve eventual non-manifold parts of the mesh, while our
tool assumes a manifold input. We evaluate the quality of
the output both visually and quantitatively by comparing the
number of problems detected before and after fixing.

The tables of this paper indicate a list of problems that
were be detected with our tool (before and after the ap-
plication of the various tools). Only the number of self-
intersections and the small tunnels were detected using
MeshDr, since our tool do not include an explicit detection
of those problems. In the following we show how the sim-
ple lightweight strategies described in the previous sections
can effectively resolve most of the mesh problems, including
flaws that were not explicitly addressed (such as self inter-
sections and microtunnels), with a significant boost in the
performances with respect to other popular solutions.

David. In Fig.10 and Tab.1 we consider the (decimated)
David model from the Stanford repository. The mesh has
500k vertices and 1M faces. We finalize this mesh by ap-
plying 3 iterations of the fixing routine explained in Sec.4
(total processing time 5s). By comparing the details in
Fig.10 before and after fixing, it is possible to appreciate
how foldovers are quickly resolved and the combination of
boundary cleaning and improved hole filling effectively fi-

Input MeshFix MeshDr Ramesh
isolated vertices 5 0 6440 0
components 259 0 0 0
small holes 1543 0 0 0
near-degenerate 571 1318 856 0
spiked vertices 2874 4711 235 0
intersections 541 0 0 0
microtunnels 1 3 0 0
time - 239s 43s Ss

Table 1: Results for the David model (500k vertices, 1M
faces). Components below 400 faces and holes below 100
vertices are considered small. The dihedral angle threshold
for the spiked vertices was set to 110 degrees.

nalizes the model with full preservation of fine details and
minimal invasiveness. In particular, note the complex holes
in the hair of the model are recovered by the combination of
our boundary cleaning routine with the improved hole fill-
ing method. The 541 self intersections of the input model
can easily be identified as spiked vertices and locally re-
solved by our tool. In comparison, MeshFix does not re-
solve spiked vertices, foldovers and near-degenerate faces
and automatically fills every hole (including a wide hole in
the bottom part). Although most applications require work-
ing with watertight models, automatically filling large holes
using a basic surface-based method drastically increases the
computational cost (see Table 1) and often defines inappro-
priate patches. In contrast, the proposed method will only
polish the mesh boundary, so that, if needed, more advanced
completion techniques could be applied afterwards. Eventu-
ally note how in this case, as well as in the following ones,
MeshDr produces many isolated vertices in output (probably
corresponding to deleted portions of the mesh) that have to
be fixed in a separated step.

Happy Buddha. In Fig.11 we considered the Happy Bud-
dha model, which is a good example of mesh having a large
number of near-degenerate faces (see Sec.3.6) that cause un-
stable computation in many algorithms. By removing these
elements we obtain a mesh that is more suitable for fur-
ther processing and it is more compactly represented. The
model has 543k vertices, 1M faces and can be fixed by ap-
plying 5 iterations of the proposed method (about 11s of total
processing time). As before, Table 2 provides a comparison
with MeshFix and MeshDr. Note that our tool is the only
one that automatically removes near-degenerate faces. The
input mesh has 79 small tunnels detected using MeshDr. Al-
though our method does not implement any explicit fixing
of topological noise [GWO01], the number of tunnels is re-
duced to 4 in the finalized model. As shown in Fig.11, the
remaining 4 larger tunnels are well-sampled on the model
and their simplification can be considered out of the scope
of a general-purpose fixing routine. The number of tunnels

(© The Eurographics Association 2015.

M. Centin, A. Signoroni / RameshCleaner: conservative fixing of triangular meshes 137

Figure 11: Fixing the Happy Buddha model.

Input MeshFix MeshDr Ramesh

isolated vertices 0 0 29538 0
components 51 0 0 0
small holes 56 0 0 0
near-degenerate 111815 108681 107589 51
spiked vertices 5879 5694 1206 0
intersections 499 4 0 0
microtunnels 79 69 0 4

time - 59s 174s 11s

Table 2: Results for the Happy Buddha model (544k ver-
tices, 1M faces). Components below 400 faces and holes be-
low 100 vertices are considered small. The dihedral angle
threshold for the spiked vertices was set to 60 degrees.

is not drastically reduced by MeshFix, since most of them
cannot be detected as self-intersecting triangles.

Awakening. Fig.12 shows some details of fixing the Awak-
ening model. The input mesh has 2M vertices, 4M faces and
a large number of small connected components that corre-
spond to incomplete data (see Fig.3 and Fig.12). As a conse-
quence, the input has a large number of irregular boundaries
whose closure is not well-defined. Quantitative results are
shown in Table 3. The heuristic implemented in MeshFix,
described in [Att10], fails in finalizing the model, since it re-
lies in resolving the errors by iteratively filling holes and re-
moving self intersections. Since both operations are quite ex-
pensive when applied to the inconsistent boundaries of this
example, the computational cost and the memory required to
fulfill the task is too high and the program crashes. MeshDr

(© The Eurographics Association 2015.

W
s

EE

Figure 12: Fixing the Awakening model.

terminates after several minutes of processing time, but the
final result is not satisfactory since the output mesh still
present small components, spikes, foldovers and small holes
and not all the self intersections are resolved. The lightness
of the proposed method allows us to finalize the model in
22s of total processing time. The output have no self inter-
sections, 1 small tunnel and 116 near-degenerate faces that
are not collapsed since they do not pass the correctness test
explained in Sec.3.6.

Input MeshFix MeshDr Ramesh

isolated vertices 116 - 56886 0
components 1563 - 2 0
small holes 3596 - 16 0

near-degenerate 8193 - 7003 116
spiked vertices 3065 - 855 0
intersections 1361 - 60 0
microtunnels 6 - 0 1

time - - 391s 22s

Table 3: Results for the Awakening model (2M vertices, 4M
faces). Components below 700 faces and holes below 300
vertices are considered small. The dihedral angle threshold
for the spiked vertices was set to 70 degrees.

138 M. Centin, A. Signoroni / RameshCleaner: conservative fixing of triangular meshes

Figure 13: Hulk model, acquired with Scan-in-a-Box.

Input MeshFix MeshDr Ramesh
isolated vertices 0 0 1470 0
components 7 0 0 0
small holes 3 0 0 0
near-degenerate 7477 7995 6234 9
spiked vertices 13251 12605 1174 0
intersections 3178 0 0 0
microtunnels 7 2 0 0

time - 382s 138s 11s

Table 4: Results for the Hulk model (1.3M vertices, 2.7M
faces). Components below 400 faces and holes below 60 ver-
tices are considered small. The dihedral angle threshold for
the spiked vertices was set to 70 degrees.

Hulk. Figure 13 shows some details of fixing a model of
a toy acquired using the 3D scanner Scan-in-a-Box. The
model has 1.3M vertices and 2.7M faces. Although the
overall fidelity is high, the mesh has many small foldovers
caused by outliers. By applying few iterations of the pro-
posed method these problems are effectively resolved. As
it can be seen in Table 4, all the self intersections and mi-
crotunnels are indirectly eliminated with less computational
effort. The spiked vertices are not resolved by MeshFix and
only partially fixed by MeshDr. Although the model final-
ized using MeshFix is watertight, big or complex holes (e.g.
the left hand of the model) are closed in an inappropriate
manner. In comparison, the proposed method only cleans de-
generacies along the boundary curves so that these parts can
be easily completed using other dedicated tools.

6. Conclusion

In this paper we described the main flaws that can af-
fect triangular meshes, especially when they derive from
3D scan data, and we implemented a lightweight work-
flow that can effectively finalize the digitized model for
other application-oriented tasks. The experimental results
show the effectiveness of the proposed method also in
comparison to other semi-automated solutions. Further re-
search could investigate convergence heuristics to further
increase the automation level, alternate strategies to fur-
ther reduce the unaddressed problems, methods for adapt-
ing the proposed tool for specific applications (e.g. non-
manifold meshes, highly irregular meshes, non-triangular
meshes, CAD meshes).

References

[ACK13] ATTENE M., CAMPEN M., KOBBELT L.: Polygon
mesh repairing: An application perspective. ACM Comput. Surv.
45,2 (Mar. 2013), 15:1-15:33. 1

[Att10] ATTENE M.: A lightweight approach to repairing digi-
tized polygon meshes. Vis. Comput. 26, 11 (Nov. 2010), 1393—
1406. 1,7,9

[BKO4] BoTscH M., KOBBELT L.: A remeshing approach to
multiresolution modeling. In Symp. on Geom. Proc. (2004),
pp. 185-192. 5

[BS95] BAREQUET G., SHARIR M.: Filling gaps in the boundary
of a polyhedron. Comput. Aided Geom. Des. 12, 2 (Mar. 1995),
207-229. 4,5

[BSBKO2] BoOTSCH M., STEINBERG S., BISCHOFF S.,
KOBBELT L.: Openmesh-a generic and efficient polygon mesh
data structure. 1,2, 3, 5,7

[CPS15] CENTIN M., PEZZOTTI N., SIGNORONI A.: Poisson-
driven seamless completion of triangular meshes. Comp. Aided
Geom. Design 35 (2015), 42-55. 4

[Gil79] GILBERT P. D.: New Results on Planar Triangulations.
Tech. rep., DTIC Document, 1979. 5

[GTLH98] GUEZIEC A., TAUBIN G., LAZARUS F., HORN W.:
Converting sets of polygons to manifold surfaces by cutting and
stitching. In Visualiz.’98. (1998), pp. 383-390. 2

[GWO1] Guskov 1., WooD Z. J.: Topological noise removal.
2001 Graphics Interface Proceedings (2001), 19. 2, 8

[HTG14] HARARY G., TAL A., GRINSPUN E.: Context-based
coherent surface completion. ACM Trans. Graph. 33, 1 (Feb.
2014), 5:1-5:12. 4

[Ju09] Ju T.: Fixing geometric errors on polygonal models: A
survey. J. Comput. Sci. Technol. 24, 1 (Jan. 2009), 19-29. 1

[K1i80] KLINCSEK G.: Minimal triangulations of polygonal do-
mains. Ann. Discrete Math 9 (1980), 121-123. 5

[Lie03] LIEPA P.: Filling holes in meshes. In Symp. on Geom.
Proc. (2003), pp. 200-205. 4,5

[M6197] MOLLER T.: A fast triangle-triangle intersection test.
Journal of graphics tools 2, 2 (1997), 25-30. 2

[PRO5] PODOLAK J., RUSINKIEWICZ S.: Atomic volumes for
mesh completion. In Proceedings of the Third Eurographics Sym-
posium on Geometry Processing (2005), SGP *05. 4

[SACO04] SHARF A., ALEXA M., COHEN-OR D.: Context-
based surface completion. ACM Trans. Graph. 23,3 (Aug. 2004),
878-887. 4

(© The Eurographics Association 2015.

